
computation

Article

Explicit Sensitivity Coefficients for Estimation of
Temperature-Dependent Thermophysical Properties
in Inverse Transient Heat Conduction Problems

Farzad Mohebbi

Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University,
Bay Campus, Fabian Way, Crymlyn Burrows, Swansea SA1 8EN, UK;
farzad.mohebbi@swansea.ac.uk or farzadmohebbi@yahoo.com

Received: 3 October 2020; Accepted: 3 November 2020; Published: 6 November 2020
����������
�������

Abstract: Explicit expressions are obtained for sensitivity coefficients to separately estimate
temperature-dependent thermophysical properties, such as specific heat and thermal conductivity,
in two-dimensional inverse transient heat conduction problems for bodies with irregular shape from
temperature measurement readings of a single sensor inside the body. The proposed sensitivity
analysis scheme allows for the computation of all sensitivity coefficients in only one direct problem
solution at each iteration with no need to solve the sensitivity and adjoint problems. In this method,
a boundary-fitted grid generation (elliptic) method is used to mesh the irregular shape of the heat
conducting body. Explicit expressions are obtained to calculate the sensitivity coefficients efficiently
and the conjugate gradient method as an iterative gradient-based optimization method is used to
minimize the objective function and reach the solution. A test case with different initial guesses and
sensor locations is presented to investigate the proposed inverse analysis.

Keywords: inverse transient heat conduction; conjugate-gradient method; sensitivity analysis;
parameter estimation; temperature-dependent thermophysical properties

1. Introduction

The accuracy of the numerical simulation of heat transfer problems relies significantly on
the accuracy of data, including, among others, the thermophysical properties such as the thermal
conductivity and the specific heat of heat-conducting body. If, no a priori information on the
thermophysical properties is available, inverse methods, as inexpensive alternatives to expensive
experiments with sophisticated instruments, may be employed to estimate the unknown properties
accurately. The inverse methods are widely used to estimate the thermal conductivity and the
specific heat. Sawaf et al. [1] estimated linearly temperature-dependent thermal conductivity and
specific heat capacity for an orthotropic solid using an inverse analysis. The Levenberg–Marquardt
iterative procedure is used to minimize the objective function. Flach and Özişik [2] employed an
inverse analysis to estimate spatially varying thermal conductivity and heat capacity per unit volume
of an one-dimensional slab using the Levenberg–Marquardt method. Talukdar et al. [3] used ant
colony optimization algorithm for the estimation of temperature-dependent thermal conductivity
and specific heat. Mohebbi et al. [4] derived explicit sensitivity coefficients to estimate the linearly
temperature-dependent thermal conductivity in steady-state heat conduction problems using an
inverse analysis. The conjugate-gradient method is used as a minimization method to minimize
the objective function and estimate the unknown parameters. Liu [5] used a hybrid method based
on a combination of the modified genetic algorithm and Levenberg–Marquardt method to identify
simultaneously the fluid thermal conductivity and heat capacity for a transient inverse heat transfer

Computation 2020, 8, 95; doi:10.3390/computation8040095 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
http://dx.doi.org/10.3390/computation8040095
http://www.mdpi.com/journal/computation
https://www.mdpi.com/2079-3197/8/4/95?type=check_update&version=2


Computation 2020, 8, 95 2 of 20

problem. Czél et al. [6] presented an artificial neural network based solution of the inverse heat
conduction problem to simultaneous identification of temperature-dependent volumetric heat capacity
and thermal conductivity function of a solid.

However, in the literature, it can be noticed that there are still major limitations on the problems
and the proposed methods to address the parameter estimation problems, including

- The steady-state or transient heat conduction problems are concerned with regular bodies only
(inability to consider the irregular bodies) and the heat conduction equation is solved using the
traditional finite-difference method.

- Most of the boundary conditions considered are associated with either a constant temperature
(Dirichlet boundary condition) or an insulated surface. Hence, the Neumann and Robin boundary
condition types are not addressed.

- Most of the earlier works have been limited to the one-dimensional heat conduction problems.

Therefore, a sufficiently accurate general methodology for solving transient heat conduction
problems in the presence of temperature-dependent thermophysical properties, which can handle
a general 2D domain and a variety of boundary conditions, is required. This study is concerned
with direct and inverse transient heat conduction problems in general 2D domains with different
boundary conditions.

The inverse heat transfer problems are mathematically challenging problems due to their ill-posed
nature. They are inherently unstable and very sensitive to noise and special methods are required
to treat them. Among such methods are iterative regularization methods [7,8]. In these methods,
the original objective function expression, defined as a nonlinear least-square formulation, is not
modified and the minimization of the objective function is performed by a gradient-based minimization
method such as conjugate-gradient method or steepest descent method and the discrepancy principle
can be used as a criterion to stop the iteration process and obtain a reasonably stable solution. As this
study is concerned with a parameter estimation problem, the gradient of the objective function with
respect to the unknown parameters (as needed in gradient-based minimization methods) can be
computed by using the finite-difference method (by additional direct problem solutions and forming
the sensitivity matrix) or adjoint method. Both methods involve an increase in computational cost.
Moreover, the adjoint method has its own mathematical complexity. In this study, however, using the
obtained explicit sensitivity coefficients, the gradient of the objective function can be computed in only
one direct problem solution at each iteration, thereby decreasing the computational cost significantly.

2. Governing Equation

The heat conducting body shown in Figure 1a is made of a material whose thermal conductivity
and specific heat are linearly temperature-dependent variables, namely kT = k1 + k2T and c = c1 + c2T
where k1, k2, c1, and c2 are constant. The density of the body is ρ and the body is initially at the
temperature T0. For the time t > 0, a time wise varying heat flux

.
q(t) is applied at the boundary surface

Γ1. Convective heat transfer is imposed on boundary surfaces Γi, i = 2, 3, 4 with corresponding heat
transfer coefficients hi, i = 2, 3, 4 and surrounding temperatures T∞i , i = 2, 3, 4.

For this problem, the two-dimensional transient heat conduction equation with no heat
generation is

∂
∂x

(
kT
∂T(x, y, t)

∂x

)
+

∂
∂y

(
kT
∂T(x, y, t)

∂y

)
= ρc

∂T(x, y, t)
∂t

in physical domain Ω(x, y) (1)

for the linearly temperature-dependent thermal conductivity and the specific heat, namely kT = k1 + k2T
and c = c1 + c2T, Equation(1) is expressed as

∂
∂x

(
(k1 + k2T(x, y, t)) ∂T(x,y,t)

∂x

)
+ ∂

∂y

(
(k1 + k2T(x, y, t)) ∂T(x,y,t)

∂y

)
= ρ(c1 + c2T(x, y, t)) ∂T(x,y,t)

∂t (2)
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by simplifying Equation (2), we get

(k1 + k2T(x, y, t))
(
∂2T(x,y,t)

∂x2 +
∂2T(x,y,t)

∂y2

)
+ k2

((
∂T(x,y,t)

∂x

)2
+

(
∂T(x,y,t)

∂y

)2
)
=

ρ(c1 + c2T(x, y, t)) ∂T(x,y,t)
∂t

(3)
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Figure 1. Arbitrarily shaped two dimensional heat-conducting body (physical domain) subjected to
a timewise varying heat flux

.
q(t) on surface Γ1 and convective heat transfer on surfaces Γi, i = 2, 3, 4

(a) and the corresponding computational domain (b).

The boundary and initial conditions are

∂T(x, y, t)
∂n1

=

.
q(t)
kT

on boundary surface Γ1(x, y) (4)

∂T(x, y, t)
∂ni

= −
hi
kT

(
TΓi(x, y, t) − T∞i

)
on boundary surface Γi(x, y), i = 2, 3, 4 (5)

T(x, y, 0) = T0(x, y) in physical domain Ω(x, y) (6)

where t is the time. Since the x and y physical domain (the geometry of the heat-conducting body)
is irregular, it is mapped onto a regular one (the ξ and η computational domain). The elliptic grid
generation method (by solving two Laplace equations ξxx + ξyy = 0 and ηxx + ηyy = 0) is used
to mesh the physical domain. Then the transient heat conduction equation and its associated
boundary and initial conditions can be transformed from the (x, y, t) to the (ξ, η, t) variables [7,9–11].
The transformation gives

(k1 + k2T(ξ, η, t))

α
∂2T(ξ,η,t)

∂ξ2 −2β ∂
2T(ξ,η,t)
∂ξ∂η +γ

∂2T(ξ,η,t)
∂η2

J2

+
k2


 ∂y
∂η

∂T(ξ,η,t)
∂ξ −

∂y
∂ξ

∂T(ξ,η,t)
∂η

J

2

+

− ∂x
∂η

∂T(ξ,η,t)
∂ξ + ∂x

∂ξ
∂T(ξ,η,t)

∂η

J

2 = ρ(c1 + c2T(ξ, η, t)) ∂T(ξ,η,t)
∂t

(7)

where
α = x2

η + y2
η

β = xξxη + yξyη
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γ = x2
ξ + y2

ξ

J = xξyη − xηyξ(Jacobian of transformation) (8)

are the coefficients obtained from the elliptic grid generation method. By simplifying Equation (7),
we get

(k1 + k2T(ξ, η, t))
(
α
∂2T(ξ,η,t)

∂ξ2 − 2β∂
2T(ξ,η,t)
∂ξ∂η + γ

∂2T(ξ,η,t)
∂η2

)
+

k2

(
α
(
∂T(ξ,η,t)

∂ξ

)2
− 2β∂T(ξ,η,t)

∂ξ
∂T(ξ,η,t)

∂η + γ
(
∂T(ξ,η,t)

∂η

)2
)
=

J2ρ(c1 + c2T(ξ, η, t)) ∂T(ξ,η,t)
∂t in 1 < ξ < M, 1 < η < N, for t > 0

(9)

The transformed boundary and initial conditions become(
−1

J
√
γ

(
γ
∂T(ξ, η, t)

∂η
− β

∂T(ξ, η, t)
∂ξ

))
Γ1

=

.
q(t)
kT

at 1 < ξ < M, η = 1, for t > 0 (10)

(
1

J
√
γ

(
γ
∂T(ξ, η, t)

∂η
− β

∂T(ξ, η, t)
∂ξ

))
Γ2

= −
h2

kT
(T(ξ, η, t) − T∞2) at 1 < ξ < M, η = N, for t > 0 (11)

(
−1

J
√
α

(
α
∂T(ξ, η, t)

∂ξ
− β

∂T(ξ, η, t)
∂η

))
Γ3

= −
h3

kT
(T(ξ, η, t) − T∞3) at 1 < η < N, ξ = 1, for t > 0 (12)

(
1

J
√
α

(
α
∂T(ξ, η, t)

∂ξ
− β

∂T(ξ, η, t)
∂η

))
Γ4

= −
h4

kT
(T(ξ, η, t) − T∞4) at 1 < η < N, ξ = M, for t > 0 (13)

T(ξ, η, 0) = T∗0(ξ, η) in 1 < ξ < M, 1 < η < N, for t = 0 (14)

where T∗0(ξ, η) is the initial condition T0(x, y) rewritten in terms of the variables ξ and η. The derivatives
appearing in the transformed heat conduction equation, Equation (9), can be discretized in the regular
computational domain using the finite-difference method, as follows (assuming ∆ξ = ∆η = 1)

fξ =
1
2
( fi+1, j − fi−1, j)

fη =
1
2
( fi, j+1 − fi, j−1)

fξξ = fi+1, j − 2 fi, j + fi−1, j

fηη = fi, j+1 − 2 fi, j + fi, j−1

fξη =
1
4
( fi+1, j+1 − fi−1, j+1 − fi+1, j−1 + fi−1, j−1) (15)

where f ≡ x, y, T. One-sided forward and one-sided backward relations should be used to discretize
the boundary condition equations. Using forward-time-central-space (FTCS) discretization and the
relations in Equation (15), and employing an explicit approach, we can approximate the differential
Equation (9) as follows

(
k1 + k2Tn

i, j

)(
α(Tn

i+1, j − 2Tn
i, j + Tn

i−1, j) − 2β(
Tn

i+1, j+1−Tn
i−1, j+1−Tn

i+1, j−1+Tn
i−1, j−1

4 ) + γ(Tn
i, j+1 − 2Tn

i, j + Tn
i, j−1)

)
+

k2

α(Tn
i+1, j−Tn

i−1, j
2

)2

− 2β
Tn

i+1, j−Tn
i−1, j

2

Tn
i, j+1−Tn

i, j−1
2 + γ

(
Tn

i, j+1−Tn
i, j−1

2

)2 =
J2ρ

(
c1 + c2Tn

i, j

)Tn+1
i, j −Tn

i, j
∆t i = 2, M− 1, j = 2, N − 1 for t > 0

(16)

where ∆t and n are the time step and the time level, respectively. By considering the stability criterion
for the solution of Equation (16), a time-marching procedure can be used to obtain Tn+1

i, j . In other



Computation 2020, 8, 95 5 of 20

words, the nodal temperatures at the time level n + 1, Tn+1
i, j , can be determined from the knowledge of

nodal temperatures at the previous time level n, Tn
i, j, as follows

Tn+1
i, j = Tn

i, j +

 ∆t
(
k1+k2Tn

i, j

)
J2ρ

(
c1+c2Tn

i, j

)
(α(Tn

i+1, j − 2Tn
i, j + Tn

i−1, j)−2β(
Tn

i+1, j+1−Tn
i−1, j+1−Tn

i+1, j−1+Tn
i−1, j−1

4 )+

γ(Tn
i, j+1 − 2Tn

i, j + Tn
i, j−1)

)
+

∆t(k2)

J2ρ
(
c1+c2Tn

i, j

)α(Tn
i+1, j−Tn

i−1, j
2

)2

−

2β
Tn

i+1, j−Tn
i−1, j

2

Tn
i, j+1−Tn

i, j−1
2 + γ

(
Tn

i, j+1−Tn
i, j−1

2

)2
(17)

3. The Inverse Analysis

3.1. Objective Function

The objective of this study is to separately estimate the linearly temperature-dependent
thermophysical properties such as the thermal conductivity and the specific heat using the transient
readings of a single sensor S placed at the point (Si, Sj) inside the body. To do so, using an inverse
analysis the square of the difference between the estimated temperatures at the sensor place,Te(Si, Sj, ti),
computed from the solution of the direct heat conduction problem using the estimated thermophysical
properties and the measured temperatures Tm(Si, Sj, ti) over the time domain 0 < t < t f is minimized.
This can be mathematically expressed as

min

 J
kT(T), c(T) in Ω

:= C
∥∥∥Te(Si, Sj, t) −Tm(Si, Sj, t)

∥∥∥2
: Equation (1) in Ω, BCs and IC in Equations (2)–(4)

 (18)

where C is a positive constant and can be considered as C = 10n, n = 1, 2, 3, . . . The inverse analysis
is used to minimize the following objective function expression:

J = C
f∑

i=1

[Te(Si, Sj, ti) − Tm(Si, Sj, ti)]
2 (19)

3.2. Sensitivity Analysis

The calculation of the gradient of the objective function J defined by Equation (19) with respect to
the unknown variables, k1, k2, c1, and c2 is needed in the inverse problem. Thus, we can write

∂J
∂P = 2C

f∑
i=1

[Te(Si, Sj, ti) − Tm(Si, Sj, ti)]
∂Te(Si,Sj,ti)

∂P = 2
f∑

i=1
[Te(Si, Sj, ti) − Tm(Si, Sj, ti)]C

∂Te(Si,Sj,ti)
∂P (20)

where P ≡ k1, k2, c1, c2. In Equation (20), C∂Te(Si,Sj,ti)
∂P (i = 1, f ) are called the sensitivity coefficients and

can be obtained by differentiating the obtained expression for Tn+1
e (Si, Sj, ti) in Equation (17) with

respect to k1, k2, c1, and c2, as follows

∂Tn+1
e (Si, Sj, ti)

∂k1
=

(
∆t

J2ρ(c1 + c2Tn
e (Si, Sj, ti))

)(
αTξξ − 2βTξη + γTηη

)
(21)

∂Tn+1
e (Si,Sj,ti)
∂k2

=
(

∆t
J2ρ(c1+c2Tn

e (Si,Sj,ti))

)(
Tn

e (Si, Sj, ti)
(
αTξξ − 2βTξη + γTηη

)
+

(
αT2

ξ − 2βTξTη + γT2
η

))
(22)

∂Tn+1
e (Si,Sj,ti)
∂c1

=(
−∆t

J2ρ(c1+c2Tn
e (Si,Sj,ti))

2

)(
(k1 + k2Tn

e (Si, Sj, ti))
(
αTξξ − 2βTξη + γTηη

)
+ k2

(
αT2

ξ − 2βTξTη + γT2
η

)) (23)
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∂Tn+1
e (Si,Sj,ti)
∂c2

=(
−

∆tTn
e (Si,Sj,ti)

J2ρ(c1+c2Tn
e (Si,Sj,ti))

2

)(
(k1 + k2Tn

e (Si, Sj, ti))
(
αTξξ − 2βTξη + γTηη

)
+ k2

(
αT2

ξ − 2βTξTη + γT2
η

)) (24)

where
Tξ =

1
2
(Tn

e (Si + 1, Sj, ti) − Tn
e (Si− 1, Sj, ti))

Tη =
1
2
(Tn

e (Si, Sj + 1, ti) − Tn
e (Si, Sj− 1, ti))

Tξξ = Tn
e (Si + 1, Sj, ti) − 2Tn

e (Si, Sj, ti) + Tn
e (Si− 1, Sj, ti)

Tηη = Tn
e (Si, Sj + 1, ti) − 2Tn

e (Si, Sj, ti) + Tn
e (Si, Sj− 1, ti)

Tξη =
Tn

e (Si + 1, Sj + 1, ti) − Tn
e (Si− 1, Sj + 1, ti) − Tn

e (Si + 1, Sj− 1, ti) + Tn
e (Si− 1, Sj− 1, ti)

4
(25)

where α, β, γ, J, Tξ, Tη, Tξξ, Tξη, and Tηη are computed using the finite-difference expressions associated
with the sensor place, S(Si, Sj) at the time ti, i = 1, f . By considering Equations (21)–(24), it can be seen
that the inverse problem of estimating k1 and k2 is linear (as the sensitivity coefficient expressions
are independent of k1 and k2) and the inverse problem of estimating c1 and c2 is nonlinear (as the
sensitivity coefficient expressions depend on c1 and c2).

Moreover, it can be noticed that all sensitivity coefficients C∂Te(Si,Sj,ti)
∂P (P ≡ k1, k2, c1, c2) can be

computed in only one single direct problem solution without the need for solving sensitivity and
adjoint problems. The sensitivity matrix Ja can be explicitly written as

Jak1 = C



∂Te(Si,Sj,t1)
∂k1

∂Te(Si,Sj,t2)
∂k1

∂Te(Si,Sj,t3)
∂k1
...

∂Te(Si,Sj,t f )

∂k1


f×1

, Jak2 = C



∂Te(Si,Sj,t1)
∂k2

∂Te(Si,Sj,t2)
∂k2

∂Te(Si,Sj,t3)
∂k2
...

∂Te(Si,Sj,t f )

∂k2


f×1

(26)

and

Jac1 = C



∂Te(Si,Sj,t1)
∂c1

∂Te(Si,Sj,t2)
∂c1

∂Te(Si,Sj,t3)
∂c1
...

∂Te(Si,Sj,t f )

∂c1


f×1

, Jac2 = C



∂Te(Si,Sj,t1)
∂c2

∂Te(Si,Sj,t2)
∂c2

∂Te(Si,Sj,t3)
∂c2
...

∂Te(Si,Sj,t f )

∂c2


f×1

(27)

3.3. The Conjugate Gradient Method (CGM)

In this study, the conjugate gradient optimization method is used to solve the inverse heat transfer
problem. The objective function given by Equation (19) is minimized by searching along the direction
of descent d(k) using a search step length β(k).

P(k+1) = P(k)
− β(k)d(k) (28)

where P ≡ k1, k2, c1, c2 are parameters to be estimated. The direction of descent of the current iteration
is obtained as a linear combination of the direction of descent of the previous iteration and the gradient
direction ∇J(k). Therefore,

d(k) = ∇J(k) + γ(k)d(k−1) (29)
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The Polak–Ribiere formula [12] is used to compute the conjugation coefficient:

γ(k) =

[
∇J(k)

]T
(∇J(k) −∇J(k−1))

‖ ∇J(k−1)
‖2

=

[
∇J(k)

]T
(∇J(k) −∇J(k−1))[

∇J(k−1)
]T
∇J(k−1)

(30)

The search step-length is given as follows [7]

β(k) =
[Ja(k)d(k)]

T
[Te −Tm]

[Ja(k)d(k)]T[Ja(k)d(k)]
(31)

The parameter update in the conjugate-gradient or steepest-descent methods can be written as

P(k+1) = P(k)
− β(k)d(k)

If P(k)
− β(k)d(k) < 0 then P(k+1) < 0 which may result in a negative thermophysical property

which is unacceptable. So, the objective function term (least squares norm) is multiplied by the
constant C to prevent a negative thermophysical property. The multiplication of the objective function
by a constant does not change the optimal solution. Then, from Equation (20), the gradient of the
objective function, ∇J(k), is also multiplied by C. As the sensitivity coefficients all are multiplied by the
constant C, from Equation (31) we find that the search-step length β(k) is multiplied by 1

C2 . Therefore,

by introducing the constant C the term β(k)d(k) = β(k)∇J(k) will be 1
C of its value without considering

the constant C ( 1
C is obtained from 1

C2 ×C). This way the updated parameter P(k+1) will be positive
and the iteration process can continue. we can interpret this matter as follows:

The incorporation of the constant C into the objective function definition has no effect on both
the optimal solution and the gradient and only decreases the step-length as 1

C of its value when the
constant C is not considered (i.e., we initiate the iterative process with a smaller step-length):

β(k)∇J(k)
∣∣∣
with C = (

1
C2 β

(k))(C∇J(k))
∣∣∣∣∣
without C

=
1
C
(β(k))(∇J(k))

∣∣∣∣∣
without C

= (
1
C
β(k))(∇J(k))

∣∣∣∣∣
without C

The value of C = 10n, n = 1, 2, 3, . . . is a convention based on numerical experience which
works well for the parameter estimation problems. In this study, until C = 103, we still get negative
thermophysical property and the iteration process is terminated and hence C = 104 is chosen to initiate
the iterations.

Optimization Algorithm

The following algorithm presents the direct and inverse analysis steps used to estimate the
linearly temperature-dependent thermal conductivity kT = k1 + k2T and the specific heat c = c1 + c2T
separately. To do so, either two parameters k1 and k2 for the thermal conductivity or two parameters
c1 and c2 for the specific heat are estimated simultaneously. In other words, it is assumed that
kT = k1 + k2T is known when estimating c = c1 + c2T, and vice versa. Simultaneous estimation of all
parameters k1, k2, c1, and c2 is not considered in this study.

- Estimation of kT = k1 + k2T (assuming c = c1 + c2T is known):

1. Specify the physical domain, the boundary and initial conditions, the thermophysical

properties, and the measured temperatures at the sensor place SSi,Sj and the time ti(i = 1, f ),
Tm(Si, Sj, ti).

2. Generate the boundary-fitted grid over the heat-conducting body using the elliptic grid
generation method.
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3. Solve the direct problem to obtain the temperature values at the sensor place and the time

ti(i = 1, f ), Te(Si, Sj, ti), through solving Equations (7)–(14).
4. Using Equation (19), compute the objective function (J(k)).
5. If value of the objective function obtained in step 4 is less than the specified stopping criterion,

the optimization is finished. Otherwise, go to step 6.
6. Compute the sensitivity matrix Jak1 from Equation (26).

7. Compute the gradient directions ∇J(k)k1
from Equation (20).

8. Compute the conjugation coefficients γ(k)k1
Equation (30). For k = 0, set γ(0)k1

= 0.

9. Compute the directions of descent d(k)k1
from Equation (29).

10. Compute the search step-length β(k)k1
from Equation (31).

11. From Equation (28), evaluate the new values for k1, namely k(k+1)
1 .

12. With new value for k1 repeat the steps 6 to 11 for k2.
13. Set the next iteration (k = k + 1) and return to the step 2.

- Estimation of c = c1 + c2T (assuming kT = k1 + k2T is known): Repeat the steps 1 to 13 given
above for the simultaneous estimation of c1 and c2.

3.4. Stopping Criterion

If there are no errors in the temperature measurements, then the iterations can be stopped when

J(k) < ε (32)

where ε is a small specified number chosen based on obtaining stable and appropriate results. In this
study, for the case of no measurement error, ε = 0.5. However, if there are errors in the temperature
measurements, the discrepancy principle is used to stop the iterative process. This principle states that
if the difference between estimated and measured temperatures is of the order of magnitude of the
measurement errors, that is, ∣∣∣Te(Si, Sj, t) −Tm(Si, Sj, t)

∣∣∣ ≈ σ (33)

then the solution is assumed to be sufficiently accurate and the iterative process can be terminated.
In Equation (33), σ is the standard deviation of the measurement errors and is assumed constant in
this study (σ = 0.5). If we substitute Equation (33) into Equation (19) (objective function definition),
then the value for ε can be obtained as

ε = C fσ2 (34)

Then the iterative process can be stopped when the following criterion is satisfied

J(k) < ε (35)

In this study, the measured temperatures containing random errors, Tmeas(Si, Sj, ti), (i = 1, f ),
are generated by adding an error term ωσ to the exact temperatures Texact(Si, Sj, ti) to give

Tmeas(Si, Sj, ti) = Texact(Si, Sj, ti) +ωσ (36)

where ω is a random variable with normal distribution, zero mean, and unitary standard deviation.
Assuming 99% confidence for the measured temperature, ω lies in the range −2.576 ≤ ω ≤ 2.576 and it
is randomly generated by using MATLAB.
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3.5. Simultaneous Estimation of the Parameters

The simultaneous estimation of all four parameters k1, k2, c1, and c2 traps in local minima (close to
the global minima). It is common to combine a global optimization method like genetic algorithm
with gradient based ones (such as what is considered in this study) to have both good initial guesses
and convergence speed to reach a global solution (as in [5]). In this work, the accurate estimation of
any pair of (k1, k2), (c1, c2) and constant parameters (c1, k1) is possible (global solution). Moreover,
it should be noted that only one single sensor (inside the body) is used in this work which makes the
minimization problem difficult. The investigation of the effect of using multiple sensors (inside or at
the boundary surface), the place of sensors, and linear-dependence or independence of all sensitivity
coefficients are not included in this work as the objective of this work is to derive explicit expressions
for the sensitivity coefficients and verify their accuracy. Moreover, the estimation of the parameters
separately does not limit the practical importance of the sensitivity coefficients obtained in this study.
The reason is that at first the temperature-dependent thermal conductivity components k1 and k2 can
be estimated using the method the author proposed in [4]. In this method, using a steady-state heat
transfer analysis (as k1 and k2 are constant in both steady-state and transient analyses) and temperature
measurements at a boundary surface (not inside the body), these two parameters can be estimated.
Then, by having k1 and k2, two parameters c1 and c2 can be estimated using the method presented
here (using a transient heat transfer analysis). It is worth mentioning that the sensitivity coefficients
expressions developed here for k1 and k2 are applied for the points located inside a heat-conducting
body and are different from the ones developed before for k1 and k2 in [4] which are applied for the
points located at a boundary surface.

4. Results

A test case is presented here to investigate the accuracy and efficiency of the proposed sensitivity
analysis scheme to estimate the linearly temperature-dependent thermal conductivity kT = k1 + k2T
and the specific heat c = c1 + c2T separately. Initially it is assumed that the thermophysical property to
be estimated is known, the transient heat conduction problem is then solved to estimate the temperature
at the sensor place at times ti (i = 1, f ). Then, the estimated temperatures are employed as simulated
measured ones to recover the initially used thermophysical property. The numerical values of the
coefficients involved in the test case are listed in Table 1.

Table 1. Data used for the heat conduction problem.

kT(
W

m.◦C ) ρ(
kg
m3 ) c( J

kg.◦C )
.
q( W

m2 )
hi(

W
m2.◦C ),

i = 2, 3, 4
T∞i (

◦C),
i = 2, 3, 4

12.5 + 0.05 T 7900 450 + 0.02 T 50000 + 40000 sin( πti
180 ),

0 < t ≤ 500 s
5 30

The grid size used in this study is M × N = 20 × 20 (Figure 2), the initial temperature is
T(x, y, 0) = T0(x, y) = 20 ◦C, the final time is t f = 500 s, and the time step is ∆t = 0.1 s. Thus,

the number of transient readings of the single sensor S is f =
t f
∆t =

500 s
0.1 s = 5000. The stopping criteria

for the test case with the measurement error of σ = 0.5 is

σ = 0.5⇒ ε = Cσ2 f = (10000.0)(0.52)(5000) = 1.25× 107

Before proceeding further, the accuracy and correct implementation of direct heat conduction
solver should be confirmed. In order to validate the results from the direct problem solution,
the temperature distribution for the heat conducting body used in this study is compared to the
temperature distribution obtained from the commercial finite element software COMSOL. To do so,
the timewise varying heat flux 50000 + 40000 sin( πti

180 ) is considered. The temperature distribution
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obtained by the explicit solver, Equation (17), using the problem data given in Table 1, a grid size of
20× 20, and the time step ∆t = 0.1 s is shown in Figure 3a and the temperature distribution obtained by
the finite element software COMSOL is depicted in Figure 3b. The temperature histories at the sensor
places (i, j) = (3, 12) (Figure 4a) and (i, j) = (18, 8) (Figure 5a) obtained by both the explicit solver and
the software COMSOL are compared and presented in Figure 4b or Figure 5b, respectively. Moreover,
the temperature distribution at the final time t f = 500 s at a given line, here along the nodes (i, j),
i = 1, . . . , M, j = 10 (Figure 6a) obtained by the explicit solver and the software COMSOL is shown in
Figure 6b. The comparison between the results shows a very good agreement, thereby confirming the
correct implementation of the explicit solver.
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Figure 2. Two different places for the single sensor S, S(3, 12) and S(18, 8), used to measure the
temperature at time ti.
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Figure 3. Validation of the direct problem solver using the finite element software COMSOL. The result
obtained by using our explicit code (a) and the result obtained by using COMSOL (b).
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Figure 4. Comparison of temperature history at the sensor place, S(3, 12), obtained from the explicit
solver and the finite-element software COMSOL.
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Figure 5. Comparison of temperature history at the sensor place,S(18, 8), obtained from the explicit
solver and the finite-element software COMSOL.
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Computation 2020, 8, 95 12 of 20

Two different places are considered for the single sensor S to study the effect of the sensor location
on the final results. The sensor is placed at the grid nodes (i, j) = (3, 12) and (i, j) = (18, 8) successively.
Once the nodal temperature at the sensor place is calculated at each time ti, the sensitivity coefficients
can be immediately computed during the transient solution using the explicit expressions obtained
previously. This implies that the proposed sensitivity analysis scheme is very efficient and does not
contribute significantly to the computational cost of the solution. As stated previously, we assume that
c = c1 + c2T is known when estimating kT = k1 + k2T, and vice versa. Initially we assume that the
thermal conductivity is known and is equal to kT = 12.5 + 0.05T. The aim of inverse problem is now to
recover the initially used specific heat c = 450 + 0.02T using two different initial guesses:

cinitial 1 = 100.0 + 0.003 T(
J

kg.◦C
)

cinitial 2 = 800.0 + 0.6 T(
J

kg.◦C
)

These different initial guesses are selected so that they can reflect the accuracy and efficiency of
the inverse analysis. The results of the recovery of the specific heat components c1 and c2 as well as
the history of the objective function during the minimization process are shown in Figure 7 (for the
initial guess cinitial 1) and Figure 8 (for the initial guess cinitial 2) by using the sensor placed at the node
(i, j) = (3, 12) and Figure 9 (for the initial guess cinitial 1) and Figure 10 (for the initial guess cinitial 2) by
using the sensor placed at the node (i, j) = (18, 8) and Figure 11 (for the initial guess cinitial 2) by using
the sensor placed at the node (i, j) = (18, 8) and the measurement error of σ = 0.5. As shown in Table 2,
without the measurement error, a 100% reduction in the objective function value and complete recovery
of the unknown specific heat components are achieved by initiating the minimization process from
both initial guesses, which shows the accuracy of the proposed sensitivity analysis scheme. Moreover,
it can be seen that the proposed inverse analysis is not strongly affected by the errors involved in the
temperature measurements, and the unknown parameters are recovered accurately.

Then we assume that the specific heat is known and is equal to c = 450 + 0.02 T. The aim of
inverse problem is then to recover the initially used thermal conductivity kT = 12.5 + 0.05 T using two
different initial guesses:

kTinitial 1 = 30.0 + 0.5T(
W

m.◦C
)

kTinitial 2 = 1.0 + 0.003T(
W

m.◦C
)

The results of the recovery of the thermal conductivity components k1 and k2 as well as the history
of the objective function during the minimization process are shown in Figure 12 (for the initial guess
kTinitial 1 ) and Figure 13 (for the initial guess kTinitial 2 ) by using the sensor placed at the node (i, j) = (3, 12)
and Figure 14 (for the initial guess kTinitial 1) and Figure 15 (for the initial guess kTinitial 2) by using the
sensor placed at the node (i, j) = (18, 8) and Figure 16 (for the initial guess kTinitial 1 ) by using the sensor
placed at the node (i, j) = (3, 12) and the measurement error of σ = 0.5. The summary of the results
given in Table 3 reveals that without the measurement error a 100% reduction in the objective function
value is obtained and the unknown thermal conductivity components are recovered accurately by
initiating the minimization process from both initial guesses, which again shows the accuracy of the
proposed sensitivity analysis scheme. Like the specific heat estimation case, it can be seen that the
estimation of thermal conductivity components is not strongly affected by the errors involved in the
temperature measurements and the unknown parameters are recovered accurately.
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Figure 7. Estimation ofc1 (a) and c2 (b), and the objective function versus iteration number (c) using
the initial guess cinitial 1 = 100.0 + 0.003 T( J

kg.◦C ) and a single sensor placed at the node (i, j) = (3, 12).
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Figure 8. Estimation of c1 (a) and c2 (b), and the objective function versus iteration number (c) using
the initial guess cinitial 2 = 800.0 + 0.6 T( J

kg.◦C ) and a single sensor placed at the node (i, j) = (3, 12).
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Figure 9. Estimation of c1 (a) and c2 (b), and the objective function versus iteration number (c) using
the initial guess cinitial 1 = 100.0 + 0.003 T( J

kg.◦C ) and a single sensor placed at the node (i, j) = (18, 8).
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Figure 10. Estimation of c1 (a) and c2 (b), and the objective function versus iteration number (c) using
the initial guess cinitial 2 = 800.0 + 0.6 T( J

kg.◦C ) and a single sensor placed at the node (i, j) = (18, 8).
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Figure 11. Estimation of c1 (a) and c2 (b), and the objective function versus iteration number (c) using
the initial guess cinitial 2 = 800.0 + 0.6 T( J

kg.◦C ) and a single sensor placed at the node (i, j) = (18, 8) by
considering the measurement error of σ = 0.5).
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Figure 12. Estimation of k1 (a) and k2 (b), and the objective function versus iteration number (c) using
the initial guess kTinitial 1 = 30.0 + 0.5 T( W

m.◦C ) and a single sensor placed at the node (i, j) = (3, 12).
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Figure 13. Estimation of k1 (a) and k2 (b), and the objective function versus iteration number (c) using
the initial guess kTinitial 2 = 1.0 + 0.003 T( W

m.◦C ) and a single sensor placed at the node (i, j) = (3, 12).
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Figure 14. Estimation of k1 (a) and k2 (b), and the objective function versus iteration number (c) using
the initial guess kTinitial 1 = 30.0 + 0.5 T( W

m.◦C ) and a single sensor placed at the node (i, j) = (18, 8).
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Figure 15. Estimation of k1 (a) and k2 (b), and the objective function versus iteration number (c) using
the initial guess kTinitial 2 = 1.0 + 0.003 T( W

m.◦C ) and a single sensor placed at the node (i, j) = (18, 8).
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Figure 16. Estimation of k1 (a) and k2 (b), and the objective function versus iteration number (c) using
the initial guess kTinitial 1 = 30.0 + 0.5 T( W

m.◦C ) and a single sensor placed at the node (i, j) = (3, 12) by
considering the measurement error of σ = 0.5).
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Table 2. A summary of results for the estimation of the temperature-dependent specific heat components c1 and c2 (c = c1 + c2T).

Sensor Place Desired Value Initial (Guess) Value Final Value Temperature
Measurement Error Initial Value of J Minimum Value of J Reduction in J & Computation Time

S(3, 12) c1 = 450.0
c2 = 0.02

c1 = 100.0
c2 = 0.003

c1 = 450.0
c2 = 0.02 σ = 0 1.44× 1012 (C = 104) 9.755× 10−8(C = 104) 100 %, 80 min (2718 iterations)

S(3, 12) c1 = 450.0
c2 = 0.02

c1 = 800.0
c2 = 0.6

c1 = 450.0
c2 = 0.02 σ = 0 2.15× 1010(C = 104) 9.995× 10−8(C = 104) 100 %, 72 min, (2455 iterations)

S(18, 8) c1 = 450.0
c2 = 0.02

c1 = 100.0
c2 = 0.003

c1 = 450.0
c2 = 0.02 σ = 0 1.18× 1012(C = 104) 9.85× 10−8(C = 104) 100 %, 80 min, (2704 iterations)

S(18, 8) c1 = 450.0
c2 = 0.02

c1 = 800.0
c2 = 0.6

c1 = 450.0
c2 = 0.02 σ = 0 2.08× 1010(C = 104) 9.945× 10−8(C = 104) 100 %, 75 min, (2557 iterations)

S(18, 8) c1 = 450.0
c2 = 0.02

c1 = 800.0
c2 = 0.6

c1 = 450.4
c2 = 0.0122 σ = 0.5 2.09× 1010(C = 104) 1.249× 107(C = 104) ~100 %, 24 min, (824 iterations)

Table 3. A summary of results for the estimation of the temperature-dependent thermal conductivity components k1 and k2 (kT = k1 + k2T).

Sensor Place Desired Value Initial (Guess) Value Final Value Temperature
Measurement Error Initial Value of J Minimum Value of J Reduction in J & Computation Time

S(3, 12) k1 = 12.5
k2 = 0.05

k1 = 30.0
k2 = 0.5

k1 = 12.5
k2 = 0.05 σ = 0 8.09× 109(C = 104) 9.879× 10−8(C = 104) 100%, 102 min, (3456 iterations)

S(3, 12) k1 = 12.5
k2 = 0.05

k1 = 1.0
k2 = 0.003

k1 = 12.5
k2 = 0.05 σ = 0 5.35× 1010(C = 104) 9.996× 10−8(C = 104) 100%, 89 min, (3008 iterations)

S(18, 8) k1 = 12.5
k2 = 0.05

k1 = 30.0
k2 = 0.5

k1 = 12.5
k2 = 0.05 σ = 0 2.86× 109(C = 104) 9.96× 10−8(C = 104) 100%, 74 min, (2503 iterations)

S(18, 8) k1 = 12.5
k2 = 0.05

k1 = 1.0
k2 = 0.003

k1 = 12.5
k2 = 0.05 σ = 0 5.97× 1010(C = 104) 9.96× 10−8(C = 104) 100%, 70 min, (2358 iterations)

S(3, 12) k1 = 12.5
k2 = 0.05

k1 = 30.0
k2 = 0.5

k1 = 12.46
k2 = 0.0505 σ = 0.5 8.096× 109(C = 104) 1.249× 107(C = 104) 99.8%, 31 min, (1068 iterations)
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5. Conclusions

Novel explicit expressions were derived for the sensitivity coefficients to estimate the
temperature-dependent thermal conductivity and the temperature-dependent specific heat in general
two-dimensional heat-conducting bodies using an inverse transient heat conduction analysis. Due to
inability of the traditional finite-difference method to effectively handle the solution of heat transfer
problems involving the irregular shapes, the irregular heat-conducting body was transformed into a
regular computational domain to perform all computations related to the direct and inverse transient
heat conduction solution using the finite-difference method, a method chosen for its widespread use in
numerical heat transfer and ease of implementation. The irregular body was meshed using the elliptic
grid generation technique because of its capability of producing a smooth grid over the body. Then,
the governing equation and the associated boundary conditions were solved in the computational
domain to obtain the temperature distribution over the body at each time step. In the inverse analysis,
an objective function was defined based on the least squares norm and the explicit expressions were
obtained for the sensitivity coefficients by differentiating the obtained expression for the temperature at
the sensor location with respect to the unknown parameters. In addition to being accurate expressions,
the use of explicit sensitivity coefficients eliminates the need for extra solution of direct problem
to calculate the sensitivity coefficients using the finite-difference method or eliminates the need for
solving adjoint problem to compute the gradient of the objective function with respect to the unknown
parameters. We showed that, using the derived explicit sensitivity coefficients, the sensitivity matrix
was computed in only one direct problem solution (at each iteration) and hence the computational
cost was decreased significantly. The conjugate gradient method, as an iterative gradient-based
optimization method, was used to minimize the objective function and reach the solution. A test case
with different initial guesses and the sensor locations was presented to investigate the proposed inverse
analysis. The obtained accurate results showed that the estimation of the temperature-dependent
thermal conductivity or specific heat using the proposed method is not affected by the initial guess
or sensor placement. Likewise, the results revealed that the method is not affected significantly by
the error in the temperature measurement. This confirms that the proposed inverse analysis is very
accurate, robust, and efficient.
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2. Flach, G.P.; Özişik, M.N. Inverse heat conduction problem of simultaneousy estimating spatially varying
thermal conductivity and heat capacity per unit volume. Numer. Heat Transf. Part A: Appl. 1989, 16, 249–266.
[CrossRef]

3. Talukdar, P.; Das, A.; Alagirusamy, R. Simultaneous estimation of thermal conductivity and specific heat
of thermal protective fabrics using experimental data of high heat flux exposure. Appl. Therm. Eng. 2016,
107, 785–796. [CrossRef]

4. Mohebbi, F.; Sellier, M.; Rabczuk, T. Estimation of linearly temperature-dependent thermal conductivity
using an inverse analysis. Int. J. Therm. Sci. 2017, 117, 68–76. [CrossRef]

5. Liu, F.B. A hybrid method for the inverse heat transfer of estimating fluid thermal conductivity and heat
capacity. Int. J. Therm. Sci. 2011, 50, 718–724. [CrossRef]

6. Czél, B.; Woodbury, K.A.; Gróf, G. Simultaneous estimation of temperature-dependent volumetric heat
capacity and thermal conductivity functions via neural networks, International. J. Heat Mass Transf. 2014,
68, 1–13. [CrossRef]

http://dx.doi.org/10.1016/0017-9310(95)00044-A
http://dx.doi.org/10.1080/10407788908944716
http://dx.doi.org/10.1016/j.applthermaleng.2016.07.051
http://dx.doi.org/10.1016/j.ijthermalsci.2017.03.016
http://dx.doi.org/10.1016/j.ijthermalsci.2010.11.020
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.09.010


Computation 2020, 8, 95 20 of 20

7. Özisik, M.; Orlande, H. Inverse Heat Transfer: Fundamentals and Applications; Taylor & Francis: New York, NY,
USA, 2000.

8. Alifanov, O.M. Inverse Heat Transfer Problems; Springer: Berlin/Heidelberg, Germany, 1994.
9. Mohebbi, F. Optimal Shape Design Based on Body-fitted Grid Generation; University of Canterbury: Catembury,

UK, 2014.
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