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Abstract: This research evaluates the inhibitory effect of L-amino acids (AAs) with different side
chain lengths on Fe (100) surfaces implementing Monte Carlo (MC) simulation. A quantitative
and qualitative description of the adsorption behavior of AAs on the iron surface has been carried
out. Calculations have shown that the absolute values of the adsorption energy of L-amino acids
increase with side chain prolongation; they are also determined by the presence of heteroatoms.
The maximum absolute value of the adsorption energy AAs on the iron surface in accordance with
the side chain classification increases in the following sequence: Glu (acidic) < Gln (polar) < Trp
(nonpolar) < Arg (basic). AAs from nonpolar and basic groups have the best adsorption ability to the
iron surface, which indicates their highest inhibitory efficiency according to the results of the MC
simulation. The calculation results agree with the experimental data.
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1. Introduction

Mild steel is a widely used structural material in various industries due to its good
mechanical properties, versatility, and relatively low cost [1]. However, mild steel, like
many other industrially utilized metals and alloys, has low corrosion resistance [2]. Thus,
the protection of mild steel can be achieved with the help of corrosion inhibitors by methods
of chemical surface modification to obtain molecular monolayers formed from silanes [3]
or phosphonic acids [4], or by the electrochemical reduction of aryldiazonium salts [5]. The
most widely applied method for inhibiting or preventing the corrosion of mild steel is the
usage of inhibitors, which, in relatively low concentrations, reduce metal corrosion. Many
inhibitors are molecular compounds containing heteroatoms and other specific atomic
groups that are susceptible to surface adsorption on a metal [6,7]. However, taking into
account the toxicity of many widely available compounds, in particular nitrites, chromates,
and phosphates [8,9], there is a growing need to reduce their usage and completely replace
them with new environmentally friendly inhibitors. L-amino acids, which are non-toxic,
biodegradable, completely soluble in an aqueous medium, and relatively cheap, can act
as a promising alternative to these compounds. All the mentioned facts point to the high
potential perspective of their application as “green” corrosion inhibitors [10,11].

The effectiveness of a particular inhibitor depends on many parameters, such as the
composition of the corrosive medium, pH value, temperature, contact time, chemical
nature of the inhibitor, type of surface, etc. [12–14]. Recently, there has been a boost in
the number of inquiries where theoretical methods based on quantum mechanical and
molecular simulation are applied to determine the nature of the molecular interaction
of inhibitors with a metal surface and to assess their effectiveness based on these data.
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These methods allow determining not only the mechanism of inhibitor adsorption on the
metal surface (by identifying nucleophilic attack and electrophilic attack atomic centers
that exchange electrons with the metal), but also an explanation of how corrosive ions
penetrate through inhibitor films formed on the metal [15–19]. This gives the possibility of
the computational predictive evaluation of a wide class of compounds to identify molecular
structures with evident inhibitory properties.

The findings of experimental investigations of L-amino acids [20,21] indicate that they
are promising as corrosion inhibitors for iron and its alloys. They have proved that the
inhibition mechanism implemented with the help of L-amino acids is connected with the
formation of an adsorbed film on the metal surface [22,23]. Thus, it is reasonable to evaluate
the efficiency of the corrosion inhibition of L-amino acids based on the determination of
the adsorption energy [24,25]. In this case, a comparative assessment of the adsorption
energies of L-amino acids allows identifying the most promising compounds that provide
the maximum corrosion inhibiting effect [26,27].

The aim of this work is to carry out a systematic comparative theoretical survey of
the adsorption behavior of L-amino acids (AAs) on the iron surface to identify promising
candidates for the role of effective iron corrosion inhibitors using Monte Carlo simulation.

2. Computational Details
2.1. Models

AAs structures have been taken from the public repository for chemical structures and
their bioactivities by the National Center for Biotechnology Information (NCBI) [28] and are
registered in Figure 1. The Fe (100) surface was selected to model the adsorption behavior
of amino acids. This simple low-index and energetically homogeneous surface is widely
used to research the adsorption of molecular compounds on iron [29,30]. An 8 × 8 Fe
(100) surface consisting of eight atomic layers was created basing on a pre-optimized bulk
structure with a lattice constant of 2.82 Å [31]. A vacuum layer of 30 Å was applied in
the cells (Figure 2) to exclude the influence of atomic layers associated with the imposed
periodic boundary conditions.

2.2. Monte Carlo Simulation

The molecular structure of the AAs and the Fe bulk structure were preliminarily opti-
mized in the framework of Density Functional Theory (DFT) adopting the CASTEP soft-
ware package [32]. The research is carried out using the equipment of the shared research
facilities of HPC computing resources at Lomonosov Moscow State University [33,34]. The
calculation of the exchange-correlation energy was performed in the generalized gradi-
ent approximation (GGA) [35] exploiting the potential of Perdew, Burke, and Ernzerhof
(PBE) [36]. The cut-off energy of the augmented plane wave basis was chosen to be equal
to 400 eV. This value was selected as a compromise between accuracy and calculation
time. The electron-ion interaction was calculated using the Vanderbilt ultrasoft pseudopo-
tential [37], which has a wide range of applications [38,39] and provides a high speed
and accuracy of calculation [40], with the valence electron configurations Fe 3d64s2, O
2s22p4, N 2s22p3, C 2s22p2, and H 1s1. Structure optimization was performed through the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [41]. For the Fe bulk structure, the
equilibrium atomic positions were determined in accordance with the following criteria:
energy change per ion (10−5 eV); maximum force (0.03 eV/Å); maximum stress (0.05 GPa);
maximum displacement (10−3 Å). A Monkhorst–Pack mesh of 4 × 4 × 4 k-points was used
for the cell [42]. The geometric structure of the AAs was optimized in a 40 × 40 × 40 Å cell
with periodic boundary conditions and Γ-point. During optimization, the cell parameters
were fixed. The contribution of non-covalent forces, such as hydrogen bonds and van
der Waals interactions, is taken into account within the hybrid semi-empirical solution as
damped atom-pairwise dispersion corrections of the form C6R−6 in the DFT formalism
according to the Grimme scheme (DFT-D correction) [43].
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The adsorption behavior of AAs on the iron surface in the gas phase was investigated
by Monte Carlo simulations employing the Adsorption Locator module of the Material
Studio software [44]. This approach is used to reveal the characteristic features of the
interaction of molecules and metal surfaces without taking into account the influence of
the solution [45–49]. The adsorption locator determines the configuration of the adsorbed
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L-amino acid based on the Metropolis algorithm [50]. The search for the global minimum
is based on the metaheuristic algorithm simulating annealing with automated temper-
ature control and the following parameters: 10 temperature cycles with 100,000 steps
for each [51,52]. For the system L-amino acid/Fe (100) surface, the charges are assigned
from DFT calculation by a Mulliken population analysis. The Monte Carlo parameters
were set to a probability of 0.32 (ratio = 1) for “conformer”, “rotate”, and “translate”,
while “regrow” was set to 0.03 (ratio = 0.1). A smart algorithm was used for geometry
optimization [44]. The optimization procedure that we have used limits the intramolecular
degrees of freedom of the molecule. This is how the relative distances within the molec-
ular groups selected by the algorithm are fixed. In this case, the position of the selected
molecular groups and fragments is optimized. This reduces the number of degrees of
freedom requiring optimization. Moreover, this allows retaining the configuration of
known functional groups during optimization. The COMPASS force field was employed
to optimize the structure of L-amino acids in the search for the minimum energy [53].
The choice of the COMPASS force field was made due to the fact that this field rather
accurately describes a wide class of organic and inorganic compounds in various phase
states [54–56]. It is widely used to research the adsorption behavior of organic molecules
on the surface of metals [45–47], including amino acids [27,48,57,58]. It has been displayed
in a number of works that the estimation of the affinity of organic molecules with metal
surfaces, carried out using the COMPASS force field, is consistent with the experimental
data [47,59,60]. The optimization of the structure of L-amino acids on the Fe (100) surface
was determined in accordance with the following criteria: energy (2 × 10−5 kcal/mol);
force (10−3 kcal/mol·Å); displacement (10−5 Å). No restrictions were imposed on the
parameters of the “L-amino acid/Fe (100) surface” system during optimization. The
Ewald summation method [61] was applied to describe the electrostatic interaction with
an accuracy of 10−5 kcal/mol. The Van der Waals interaction energies were calculated
implementing the atom-based method with a cubic spline truncation and a cut off distance
of 18.5 Å.

3. Results and Discussion

The investigation of the adsorption behavior of L-amino acids on the Fe (100) surface
was carried out by the Monte Carlo (MC) method in the gas phase. The evaluation of the
corrosion inhibition efficiency AAs is based on the analysis of the adsorption energy (Eads)
of equilibrium low-energy configurations of the structure.

A typical profile of searching for energetically favorable states by the simulating an-
nealing method for the total energy, average total energy, van der Waals energy, electrostatic
energy, and intramolecular energy for Thr/Fe (100) surface was obtained by optimizing
the entire system (Figure 3). The behavior of the energy characteristics in Figure 3 is typical
for the process of optimizing the energy of an organic molecule on a metal surface in the
gas phase [59,62]. The transition of the system to an equilibrium state is observed after a
series of first cycles of the simulating annealing algorithm to search for the global minimum
of the system. The attainment of the minimum for Thr/Fe (100) system is characterized
by the appearance of repeating topologies of curves for the energy characteristics of the
system after a given number of iterative steps have been performed. Close to constant
values of electrostatic and intramolecular energies are observed in the process of searching
for the global minimum, which are caused by the limitations of the algorithm imposed on
intramolecular interactions between atoms of the L-amino acid [63].
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Figure 4 exhibits the equilibrium low-energy structures of L-amino acids adsorbed on
the Fe (100) surface in the gas phase obtained as a result of the MC simulation. It can be
seen that all the inhibitor molecules are oriented parallel to the metal surface as a result
of adsorption. This indicates an enhanced stability of the formed L-amino acid molecular
layer, characterized by the participation of a larger number of L-amino acid atomic centers
interacting with the iron surface. In this case, the prolongation of the side chain amino
acids will provide an increased affinity for the iron surface. This indicates the ability to
protect the iron surface from the effects of an aggressive environment more effectively [64].
In this case, the side chain type will have a key effect on the structure of the adsorption
layer, determining the nature of the interaction with the iron surface.

The influence of the side chain type on the equilibrium configuration of L-amino
acids during adsorption on the iron surface was determined on the basis of Eads using the
following formula:

Eads = ET − (EA + ES), (1)

where Eads is the energy of the substrate-adsorbate configuration, ET is the total energy of
the system “L-amino acid/Fe (100) surface”, and EA and ES are the energy of the inhibitor
molecule and of the iron surface, respectively. The results of calculating Eads are submitted
in the diagram in Figure 5. All the values of the adsorption energies are negative, which
means that the process can proceed spontaneously. The highest negative adsorption energy
indicates the system with the most stable coating. In accordance with the AAs classification
by the side chain type, the calculation results manifested in Figure 5 are divided into four
groups: nonpolar, polar, acidic, and basic [65]. In each group, one can observe an increment
in the absolute value of the adsorption energy of an amino acid on the Fe (100) surface
due to a side chain prolongation and the number of heteroatoms. Thus, an increase in the
side chain length, which correlates with the values of the adsorption energy of L-amino
acids, indicates a multiplication of the number of the adsorption centers for the formation
of bonds with the metal surface.
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The molecular structure of the side chain affects the nature of the formed bonds of
L-amino acid with the metal surface and the affinity for it. The calculation demonstrated
(Figure 5) that the maximum absolute value of the adsorption energy of L-amino acids on
the Fe (100) surface in accordance with the side chain type classification increases in the
following sequence: Glu (acidic) < Gln (polar) < Trp (nonpolar) < Arg (basic). L-amino acids
from nonpolar and basic groups have the best adsorption ability to the iron surface, which
indicates their highest inhibitory efficiency according to the results of the MC simulation.

At the same time, it should be noted that more accurate estimates can be obtained by
taking into account the solution in the model. Another aspect of the influence of the affinity
of the inhibitor for the substrate is the size effect due to the influence of the mass of L-amino
acids on Eads. To evaluate this, we performed a calculation of the specific adsorption energy
for L-amino acids adsorbed to the iron surface (Figure 6). It can be seen that the adsorption
energy per unit mass gives a more uniform distribution of the energy characteristic. At the
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same time, the specific absorption energy for amino acids from the polar group begins to
prevail over the non-polar group. This result indicates the possibility of the influence of
hydrogen or covalent bonds which can form at L-amino acids in the solution.
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The calculation results (Figure 5) agree with the experimental data [21,22,66]. In [21],
it was presented that, in a hydrochloric acid solution, the inhibitory activity against the
corrosion of iron Cys prevails over Ala. At the same time, in [66] the researchers explored
the inhibitory activity of amino acids (Gly < Ala < Leu) against steel corrosion in hydrochlo-
ric acid solutions. The results demonstrated that the inhibition efficiency of amino acids
ranged from 28% to 91%, and these compounds are physically adsorbed on the metal
surface. To inhibit the corrosion of mild steel in a hydrochloric acid solution, experimental
data indicate an increase in the efficiency of amino acids in the following order: Ser < Cys
< His < Trp [22]. The inhibition efficiency of L-amino acids correlates with the energy of
adsorption. This happens due to the side chain length. Moreover, the inhibition efficiency
changes with an increase in the number of CH2 groups in the side chain.

4. Conclusions

In this work, we performed a comparative systematic analysis of the inhibitory effect
of L-amino acids with different side chain lengths on the Fe (100) surface in the gas phase.
Monte Carlo simulations have proved that AAs can be absorbed onto the iron surface,
maximizing the number of bonds formed by being horizontally positioned. The absolute
values of the energy of adsorption of these inhibitors on the Fe (100) surface increase with
the side chain prolongation and the number of heteroatoms in it. The calculation revealed
that the maximum absolute value of the adsorption energy of L-amino acids on the iron
surface in accordance with the side chain classification increases in the following sequence:
Glu (acidic) < Gln (polar) < Trp (nonpolar) < Arg (basic). The findings of theoretical studies
have demonstrated the promising nature of using L-amino acids from nonpolar and basic
groups as effective inhibitors of iron corrosion. The calculation results agree with the
experimental data.
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