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Abstract: We are concerned with the study of some classical spectral collocation methods, mainly
Chebyshev and sinc as well as with the new software system Chebfun in computing high order
eigenpairs of singular and regular Schrödinger eigenproblems. We want to highlight both the qualities
as well as the shortcomings of these methods and evaluate them in conjunction with the usual ones.
In order to resolve a boundary singularity, we use Chebfun with domain truncation. Although it is
applicable with spectral collocation, a special technique to introduce boundary conditions as well as
a coordinate transform, which maps an unbounded domain to a finite one, are the special ingredients.
A challenging set of “hard”benchmark problems, for which usual numerical methods (f. d., f. e. m.,
shooting, etc.) fail, were analyzed. In order to separate “good”and “bad”eigenvalues, we have
estimated the drift of the set of eigenvalues of interest with respect to the order of approximation
and/or scaling of domain parameter. It automatically provides us with a measure of the error within
which the eigenvalues are computed and a hint on numerical stability. We pay a particular attention
to problems with almost multiple eigenvalues as well as to problems with a mixed spectrum.

Keywords: spectral collocation; Chebfun; singular Schrödinger; high index eigenpairs; multiple
eigenpairs; accuracy; numerical stability
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1. Introduction

There is clearly an increasing interest to develop accurate and efficient methods of
solution to singular Schrödinger eigenproblems.

Thus, the first aim of our study is to qualitatively compare the classical and the new
Chebfun spectral methods in solving singular eigenproblems. The term qualitative refers
to the way in which they resolve different singularities, at finite distance or on infinite
domains. We also want to underline their capabilities and weakness in solving such
problems. Secondly, we want to show that these methods are more efficient, in terms of
accuracy and richness of the results they provide, than the classical non-spectral ones.

The classical spectral methods employ basis functions and/or grid points based on
Chebyshev, Laguerre, or Hermite polynomials as well as on sinc or Fourier functions.
The effort expended by both classes of methods is also of real interest. It can be assessed
in terms of the ease of implementation of the methods as well as in terms of computer
resources required to achieve a specified accuracy.

Spectral methods have been shown to provide exponential convergence for a large
variety of problems, generally with smooth solutions, and are often preferred. For details on
Chebfun, we refer to [1–6]. With respect to the wide applicability of Chebyshev collocation
(ChC), Laguerre–Gauss–Radau collocation (LGRC), Hermite (HC), and sinc collocation
(SiC), we refer among other sources to our contributions [7,8] as well as to the seminal
paper [9].

For problems on the entire real axis, SiC proved to be particularly well suited. More-
over, this method has given excellent results recorded in our contribution [8] and in the

Computation 2021, 9, 2. https://dx.doi.org/10.3390/computation9010002 https://www.mdpi.com/journal/computation

https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-8512-2466
https://www.mdpi.com/2079-3197/9/1/2?type=check_update&version=1
https://dx.doi.org/10.3390/computation9010002
https://dx.doi.org/10.3390/computation9010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/computation9010002
https://www.mdpi.com/journal/computation


Computation 2021, 9, 2 2 of 19

works cited there. The so-called generalized pseudospectral (GPS) method, actually the
Legendre collocation, is employed in [10] to calculate the bound states of the Hulthén and
the Yukawa potentials in quantum mechanics, with special emphasis on higher excited
states and stronger couplings. The author uses in [10] a two parameter dependent nonlinear
transformation in order to map the half-line into the canonical interval [−1, 1]. In contrast,
we will use an analogous transformation but which depends on only one parameter. In
addition, very recently spectral methods based on non-classical orthogonal polynomials
have been used in [11] in order to solve some Schrödinger problems connected with a
Fokker–Planck operator. Particular attention will be paid in this paper to the challenging
issue of continuous spectra vs. discrete (numerical) eigenvalues. It is well known that some
eigenvalue problems (see, for instance, the well known text [12]) for differential operators
which are naturally posed on the whole real line or the half-line, often lead to some discrete
eigenvalues plus a continuous spectrum. Actually, the usual numerical approximation
typically involves three processes:

1. reduction to a finite interval;
2. discretization;
3. application of a numerical eigenvalue solver.

Reduction to a finite interval and discretization typically eliminate the continuous
spectrum. Even if we do not truncate a priori, for the domain on which the problem is
formulated, such an inherent reduction can not be avoided.

It can be argued that, generally speaking, for solving various differential problems,
the Chebfun software provides a greater flexibility than the classical spectral methods.
This fact is fully true for regular problems.

Unfortunately, in the presence of various singularities, the maximum order of approxi-
mation N, of the unknowns can be reached (N ≥ 4000) and then Chebfun issues a message
that warns about the possible inaccuracy of the results provided.

We came out of this tangle using modified classical spectral methods. In this way, when
we had serious doubts about the accuracy of the solutions given by Chebfun, we managed
to establish the correctness of the numerical results.

As a matter of fact, in order to resolve a singularity on the ends of an unbounded
integration interval, Chebfun uses only the arbitrary truncation of the domain. Classical
spectral methods can also use this method, but it is not recommended. For singular
points at finite distances (mainly origin), we will use the so-called removing technique of
independent boundary conditions. The boundary conditions at infinity can be enforced using
basis functions that satisfy these conditions (Laguerre, Hermite, sinc). An alternative
method, which proved to be very accurate, is the Chebyshev collocation (ChC) method in
combination with a change of variables (coordinates) which transform the half line into
the canonical Chebyshev interval [−1, 1]. Then, the removing technique of independent
boundary conditions is essential in order to remove the singularities at the end points of
integration interval.

A Chebfun code and two MATLAB codes, one for ChC and another for the SiC method,
are provided in order to exemplify. With minor modifications, they could be fairly useful
for various numerical experiments.

A possible extension of collocation methods to two-dimensional eigenvalue problems
would mean the use of multi-dimensional polynomials or functions analyzed, for example,
in [13,14].

All computations were performed using MATLAB R2020a on an Intel (R) Xeon (R)
CPU E5-1650 0 @ 3.20 GHz. The structure of this work is as follows: in Section 2, we
recall some specific issues for the regular as well as singular Schrödinger eigenproblems.
The main comment refers to the notion of mixed spectrum. In Section 3, we review on the
Chebfun structure and the classical spectral methods (differentiation matrices, enforcing
boundary conditions, etc.). Section 4 is the central part of the paper. Here, we analyze
some benchmark problems. In order to separate the “good”from the “bad”eigenvalues,
we estimate their relative drift with respect to some parameters. The accuracy in comput-
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ing eigenfunctions is estimated by their departure from orthogonality. We end up with
Section 5 where we underline some conclusions and suggest some open problems.

2. Regular and Singular Schrödinger Eigenproblems

The Schrödinger equation reads

u′′ + [λ− q(x)]u = 0, −∞ ≤ a < x < b ≤ +∞. (1)

It is a Liouville normal form of a general Sturm–Liouville (SL) equation, where λ is
proportional with the energy levels of the physical system, q(x) is directly proportional
with the potential energy, and the “wave function”u may be real or complex such that
u u∗dx = |u|2dx is the probability that the particle under consideration will be “observed”in
the interval (x, x + dx). In problems involving Schrödinger equations, it is customary
among chemists and physicists to define the spectrum of this Sturm–Liouville problem as
the all eigenvalues λ for which eigenfunctions u exist. The set of isolated points (if any) in
this spectrum is called the discrete spectrum; the part (if any) that consists of entire interval
is called continuous spectrum. We shall adopt this suggestive terminology here.

Equation (1) can be given on a finite, semi-infinite, or infinite interval. Only on a
closed and finite interval a ≤ x ≤ b can the Schrödinger equation be associated with a
regular Sturm–Liouville problem. If the interval of definition is semi-infinite or infinite,
or is finite and q(x) vanishes at one or both endpoints, or if q is discontinuous, we can
not obtain from (1) a regular Sturm–Liouville problem. In any such case, the Schrödinger
Equation (1) is called singular. We obtain a singular eigenproblem from a singular Schrödinger
equation by imposing suitable homogeneous boundary conditions. They can not always
be described by formulae like αu(e) + βu′(e) = 0, where e can be the end point a or b.
For instance, the condition that u be bounded near a singular end point, which can be finite
or ±∞, is a common boundary condition defining a singular eigenproblem. For regular SL
problems, it is proved (see for instance [12]) that the spectrum is always discrete, and the
eigenfunctions are (trivially) square-integrable. For singular problems, the situation is
completely different. For instance, in their textbook [12], Birkhoff and Rota consider the
eigenproblem attached to the free particle equation and show that the spectrum of the free
particle is continuous.

Some software packages have been designed over time to solve various singular SL
problems. The most important would be SLEIGN and SLEIGN2, SLEDGE, SL02F, and
MATSLISE. The SLDRIVER interactive package supports the exploration of a set of SL
problems with the four previously mentioned packages. In [15,16] the authors designed
the software package SLEDGE. They observed that, for a class ofsingular problems, their
method either fails or converges very slowly. Essentially, the numerical method used in
this software package replaces the coefficient function q(x) by step function approximation.
Similar behavior has been observed on the NAG code SL02F introduced in [17,18] as
well as on the packages SLEIGN and SLEIGN2 introduced in [19,20]. The MATSLISE
code introduced in [21] can solve some Schrödinger eigenvalue problem by a constant
perturbation method of a higher order.

The main purpose of this paper is to argue that Chebfun, along with the spectral
collocation methods, can be a very feasible alternative to these software packages regarding
accuracy, robustness as well as simplicity of implementation. In addition, these methods
can compute the “whole”set of eigenvectors and provide some details on the accuracy and
numerical stability of the results provided.

3. Chebfun vs. Spectral Collocation (ChC, LGRC, SiC)
3.1. Chebfun

The Chebfun system, in object-oriented MATLAB, contains algorithms which amount
to spectral collocation methods on Chebyshev grids of automatically determined resolution.
Its properties are briefly summarized in [2]. In [1], the authors explain that chebops are
the fundamental Chebfun tools for solving ordinary differential (or integral) equations.
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One may then use them as tools for more complicated computations that may be nonlin-
ear and may involve partial differential equations. This is analogous to the situation in
MATLAB itself. The implementation of chebops combines the numerical analysis idea of
spectral collocation with the computer science idea of lazy or delayed evaluation of the associ-
ated spectral discretization matrices. The grammar of chebops along with a lot of illustrative
examples is displayed in the above quoted paper as well as in the text [5]. Thus, one can
get a suggestive image of what they can do.

In [1] (p.12), the authors explain clearly how the Chebfun works, i.e., it solves the
eigenproblem for two different orders of approximation, automatically chooses a reference
eigenvalue and checks the convergence of the process. At the same time, it warns about
the possible failures due to the high non-normality of the analyzed operator (matrix).

Actually, we want to show in this paper that Chebfun along with chebops can do
much more, i.e., can accurately solve highly (double) singular Schrödinger eigenproblems.

3.2. ChC, LGRC, and SiC Methods

In the spectral collocation method, the unknown solution to a differential equation
is expanded as a global interpolant, such as a trigonometric or polynomial interpolant.
In other methods, such as f. e. m. and f. d., the underlying expansion involves local
interpolants such as piecewise polynomials. This means that the accuracy of spectral
collocation is superior. For problems with smooth solutions, convergence rates are typically
of the order e−cN or e−c

√
N where N is the order of approximation or resolution, i.e., the

number of degree of freedom in expansion. In contrast, f. e. or f. d. yield convergence
rates that are only algebraic in N, typically of orders N−2 or N−4. The net superiority
of global spectral methods on local methods is discussed in detail in [22]. In all spectral
collocation methods designed so far, we have used the collocation differentiation matrices
from the seminal paper [9]. We preferred this MATLAB differentiation suite for the accuracy,
efficiency as well as for the ingenious way of introducing various boundary conditions.

In order to impose (enforce) the boundary conditions, we have used two methods that
are conceptually different, namely the boundary bordering as well as the basis recombination.
A very efficient way to accomplish the boundary bordering is available in [23] and is called
the removing technique of independent boundary conditions. We have used this technique in
the large majority of our papers except [24], where the latter technique has been employed.
In the last quoted paper, a modified Chebyshev tau method based on basis recombination
has been used in order to solve an Orr–Sommerfeld problem with an eigenparameter de-
pendent boundary condition. Even in eigenproblems that contain the spectral parameter in
the definition of the boundary conditions, we have used the boundary bordering technique
(see [25]).

In [26,27], we have solved some multiparameter eigenproblems (MEP) which come
from a separation of variables, in several orthogonal coordinate systems, applied to the
Helmholtz, Laplace, or the Schrödinger equation. Important cases include Mathieu’s
system, Lame’s system, and a system of spheroidal wave functions. We show that, by
combining spectral collocation methods, ChC and LGRC, and new efficient numerical
methods for solving algebraic MEPs, it is possible to solve such problems both very
efficiently and accurately. We improve on several previous results available in the literature,
and also present a MATLAB toolbox for solving a wide range of problems.

3.3. The Drift of Eigenvalues

Two techniques are used in order to eliminate the “bad”eigenvalues as well as to
estimate the stability (accuracy) of computations. The first one is the drift, with respect to
the order of approximation or the scaling factor, of a set of eigenvalues of interest. In a
simplified form, this concept has been introduced by J. P. Boyd in [28]. The second one is
based on the check of the eigenvectors’ orthogonality.

In other words, we want to separate the “good”eigenvalues from the “bad”ones, i.e.,
inaccurate eigenvalues. An obvious way to achieve this goal is to compare the eigenvalues
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computed for different orders of some parameters such as the approximation order (cut-off
parameter) N or the scaling factor. Only those whose difference or “resolution-dependent
drift”is “small”can be believed. Actually, in [28], the so-called absolute (ordinal) drift with
respect to the order of approximation has been introduced.

We extend this definition to the following one. The absolute (ordinal) drift of the jth
eigenvalue with respect to the parameter α is defined as

δj,absolute,α :=
∣∣∣λ(α1)

j − λ
(α2)
j

∣∣∣, α1 6= α2, (2)

where λ
(α)
j is the jth eigenvalue, after the eigenvalues have been sorted, as computed using

a specific value of the parameter. In the most common cases, this parameter can be N or c.
The dependence of δj,absolute,α, j = 1, 2, . . . , Ne, where Ne is the number of analyzed

eigenvalues, on the index (mode) j will be displayed in a log-linear plot. If we divide the
right-hand side of (2) by

∣∣∣λ(α1)
j

∣∣∣, we get the so-called relative drift denoted by δj,relative,α.

4. Numerical Benchmark Problems and Discussions
4.1. Bounded Potentials

The first two problems refer to bounded and semi-bounded potentials.

4.1.1. A Regular Schrödinger Eigenproblem with Oscillatory Coefficients

The bounded Coffey–Evans potential reads

q(x) := −2β cos(2x) + β2 sin2(2x), β ∈ R. (3)

We attach to Equation (1) the homogeneous Dirichlet boundary conditions u(±π/2) = 0
and use β := 30. In spite of being regular, the Coffey–Evans problem is one of the most
difficult test problems in the literature because there are very close eigenvalue triplets as
β increases.

We have used a short Chebfun code in order to solve this regular eigenproblem. It is
available in the next lines. With appropriate changes, this code can be used to analyze any
other Schrödinger eigenproblem.

dom=[-pi/2,pi/2];
x=chebfun(’x’,dom);beta=30; sigma=-1;
L=chebop(dom);
L.op =@(x,y) -diff(y,2)+(-2*beta*cos(2*x)+(beta*sin(2*x))^2)*y;
L.rbc=0; L.lbc=0; N=201;
[V,D]=eigs(L,N,sigma); D=diag(D)

The eigenvalues obtained by ChC and Chebfun are extremely close, practically indis-
tinguishable. They also compare very well with those computed in [29] by some coefficient
approximation methods of orders 2, 4, and 8 and reported in Table 3 of this paper.

The absolute drift reported in Figure 1 means that we can compute the first hun-
dred eigenvalues with better accuracy than 10−10. Unfortunately, no accuracy analysis is
reported in [21,29,30].

The eigenvectors are either symmetric (the even ones) or anti-symmetric (the odd
ones). The first four of them are depicted in Figure 2. They look fairly smooth and satisfy
the boundary conditions.

The Chebyshev coefficients of the first four eigenvectors of Coffey-Evans problem
computed by Chebfun are displayed in Figure 3. These coefficients decrease sharply and
smoothly to a rounding-off plateau below 10−15. Roughly speaking, this means they are
computed with the machine precision.
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Figure 1. The drift of the first 100 eigenvalues of the Coffey-Evans problem. ChC used the orders
of approximations N1 := 256 and N2 := 512-red dotted line and, respectively, N1 := 400 and
N2 := 512-green circled line.
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Figure 2. The first four eigenvectors of the Coffey-Evans problem computed by Chebfun.
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In order to obtain Figure 4, we have used the FCT (fast Chebyshev transform). It is
very interesting to compare this figure with Figure 3. It becomes very clear that, except
for the first two eigenvectors, ChC loses the accuracy with which it computes. Actually,
by default, Chebfun tries to find the six eigenvalues whose eigenmodes are "most readily
converged to", which approximately means the smoothest ones.
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Figure 4. In a log-linear plot, the Chebyshev coefficients of the first four eigenvectors of the Coffey-
Evans problem computed by ChC.

For this potential, the first eigenvalue λ0 is close to zero (actually we have got λ0 =
−6.254 959 429 708 980 · 10−12) and there are very close eigenvalue triplets (λ2, λ3, λ4),
(λ6, λ7, λ8), . . . as β increases. The common numeric part of the eigenvalues in the first
triplet is 2.31664929 and that of the eigenvalues in the second is a little shorter, i.e., 4.45283.

A selected set of eigenvalues computed by Chebfun and ChC are compared in Table 1
with those computed in [29]. An excellent agreement is visible.

Table 1. High index eigenvalues of Schrödinger eigenproblem equipped with Coffey-Evans poten-
tial (3) computed by three different methods.

j λj by Chebfun λj According to [29] λj by ChC

20 951.878 806 795 878 3 951.878806796591 951.8788067965993
30 1438.295244640637 1438.295244640802 1438.295244640797
40 2146.405360539156 2146.405360539854 2146.405360539845
50 3060.923491511540 3060.923491511421 3060.923491511401
100 10,653.52543568510 10,653.525435875921 10,653.52543587600
200 40,851.63764596094 40,851.637646050455 40,851.63764605047

The elapsed time used by Chebfun in finding the first 200 eigenvalues has equaled
6.37 s. and ChC used for the same number of eigenvalues only 0.06 s.

4.1.2. A Morse Potential with Deep Well

Let’s consider now Equation (1) with the potential

q(x) := 8000 exp(−3x)− 16000 exp(−1.5x), x ∈ R. (4)
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This problem is analyzed, among other works, in [17] where the author observes that
the points ±∞ are non oscillatory limit points according with Weyl’s classification. He does
not indicate any boundary conditions for these points. However, from a physical point of
view, the solutions must be bounded in these points (behavioral conditions). Our numerical
experiments show that imposing homogeneous Dirichlet or Neumann boundary conditions
practically obtains the same numerical results. Actually, we have used a Chebfun cod fairly
analogue with that in the previous section. When we truncate the real axis to the interval
[−X, X] with X := 6.5, we get the following results:

λ1 = −7866.398436565834, λ59 = −10.19285579012831, and λ60 = −2.698122858138959,

i.e., eigenvalues which overlap to the sixth decimal on those reported in [17] (Problem 39).
The first four eigenvectors are reported in Figure 5 and their coefficients are displayed

in Figure 6a. They decrease smoothly, but Chebfun requires higher Chebyshev polynomials
in order to resolve this problem than it required to solve the previous one. We can only put
this fact on the considerably longer length of the integration interval.
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Figure 5. Zoom in the first four eigenvectors of problem (1) equipped with the Morse potential (4).

In order to see how the accuracy of negative eigenvalues depends on the length of
the computation interval X, in Figure 6b, we report the relative drift of these eigenvalues
with respect to this parameter. It is visible that, in the second case, we can ensure an
accuracy of order 10−8 for most of these eigenvalues. Moreover, the computational process
is numerically stable.

The elapsed time used by Chebfun in finding the first 200 eigenvalues has now equaled
15.83 s.

It is important to note that, from the sixty eigenvalue on-wards, they become positive
and closer as their indices increase. We consider this to be a reasonable approximation of
the continuous part of the spectrum.
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Figure 6. (a) In a log-linear plot, the Chebyshev coefficients of the first four eigenvectors of problem
(1) equipped with the Morse potential (4). (b) The relative drift of the negative eigenvalues of this
problem with respect to the length of the interval of integration X; red dots correspond to X1 := 6.5
and X2 := 7.5, and the green circles correspond to X1 := 6.5 and to X2 := 5.5.

4.2. Two Half Range Singular Schrödinger Eigenproblems

In this section, we study the mixed spectrum of some Schrödinger eigenproblems
having a “well dying out at infinity”potential.

4.2.1. Hydrogen Atom Equation

The first example consists of Equation (1) equipped with the potential

q(x) := − 1
x
+

l(l + 1)
x2 , l ∈ R, (5)

along with the boundary conditions

u(0) = 0, and u→ 0 as x → ∞. (6)

The problem (1), (5) and (6) is clearly singular in origin and is defined on an unbounded
domain. We must mention from the beginning that our numerical experiments performed with
LGRC and Chebfun together with the truncation of the domain did not produce satisfactory results.
In these conditions, we have resorted to the mapped ChC method.

In order to implement this method, we use the algebraic map

x := c
1 + s
1− s

, s ∈ [−1, 1], x ∈ [0,+∞), c ∈ R, c > 0, (7)

which, for each c, transforms the interval [−1, 1] into the half line, and its inverse. The scal-
ing parameter c is free to be tuned for optimal accuracy.

The mapping (7) has been introduced in [31] where its practical effects have been
discussed. The author observed that the convergence of the Chebyshev expansion is
governed by the closeness of the singularities of the function being expanded to the
expansion region. The major effect of such mapping is to allow us to move the singularities
further away from the expansion region. The mapping may also weaken the effect of the
singularities by modifying the strength of the singularity as well as moving it. The value of
the scaling parameter c used in our computation was chosen essentially by trial and error
along with the drift with respect to this parameter.
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In order to write down any second order differential equation in independent variable
s, we need the following derivatives:

u′(x) = u′(s) 1
x′s

, x′s =
2c

(1−s)2 ,

u′′(x) = u′′(s) 1
(x′s)

2 − u′(s) x′′s
(x′x)

3 .
(8)

Now, it is easy to write the differential equation for u(s) and to attach to this new
equation the homogeneous Dirichlet boundary conditions u(±1) = 0. As usual, we imple-
ment these conditions by deleting the first and the last rows and columns of the collocation
matrix attached to the left-hand side of Equation (1)–(5). This is the most simplified version
of removing technique of the independent boundary conditions introduced in [23]. With
(8), the following MATLAB code solves this problem:

% approximation order and parameter l
N=1600; l=1;
% number of displayed eigenvalues
Ne=50;
c=2; % scaling factor
% Chebyshev differentiation matrices (Weideman & Reddy)
[st,D]=chebdif(N,2);
% N-2 kept nodes; 1 and N are removed nodes
k=2:N-1; s=st(k);
% enforced boundary conditions in differentiation matrices
D2=D(k,k,2); D1=D(k,k,1);
% collocation matrix of the system
A=-diag((1-x).^4)*D2/(4*(c^2))+diag((1-x).^3)*D1/(2*(c^2))+...

diag(l*(l+1)*((1-x).^2)./(((1+x).^2)*(c*2))-(1-x)./(c*(1+x)));
% computed and sorted eigenpairs
[U,S]=eig(A); S=diag(S); [t,o]=sort(S); S=S(o); U=U(:,o);
disp(S(1:Ne))
% Chebyshev coefficients of the first four eigenvectors by FCT
Ucoeff=fcgltran(U(:,1:4),1);

With respect to this code, we mention that we have introduced the boundary condi-
tions in the mapped formulation by deleting the first and the last rows and columns in the
differentiation matrices. It means that the first and the last nodes are removed as in the
removing technique of independent boundary conditions introduced in [23].

The first four vectors of the problem are displayed in Figure 7. It is clear that they
satisfy both boundary conditions, but, in the right neighborhood of origin, they have a
totally different behavior from the eigenvectors of regular problems, i.e., they vanish out
on continuous portions and not in discrete points. However, they clearly approximate
square-integrable eigenfunctions and thus confirm some theoretical results proved in [12].

Their Chebyshev coefficients obtained using FCT (fast Chebyshev transform—see [32]
for details) are displayed in Figure 8. They decrease sharply and smoothly to some limits,
followed by a wide rounding-off plateau. For the first vector (the rightmost one), this limit
is around 10−13. It increases with the index of the vector.

Roughly, this means that we cannot hope for a better approximation than something
of the order 10−13 when computing the first eigenvector.

When N := 2048, mapped ChC has found λ0 = −6.250 000 000 166 379 · 10−2, which
is a very good approximation of −1/16. The largest negative eigenvalue has been λ66 =
−7.781 274 290 453 744 · 10−7 and the next eigenvalue, the smallest positive has been com-
puted as λ67 = 4.989 176 511 418 589 · 10−7. In order to suggest how the mapped ChC
method simulates the notion of continuous spectrum, we will provide in Table 2 some
significant eigenvalues.
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Figure 7. The first four eigenvectors for the hydrogen atom eigenproblems (1), (5), and (6) with l := 1
computed by mapped ChC with scaling factor c := 2 and N := 512.

500 1000 1500

Modes

10
-16

10
-14

10
-12

10
-10

10
-8

10
-5

10
-2

u
1

500 1000 1500

Modes

10
-16

10
-14

10
-12

10
-10

10
-8

10
-5

10
-2

u
2

500 1000 1500

Modes

10
-16

10
-14

10
-12

10
-10

10
-8

10
-5

10
-2

u
3

500 1000 1500

Modes

10
-16

10
-14

10
-12

10
-10

10
-8

10
-5

10
-2

u
4

Figure 8. The coefficients of the first four eigenvectors for hydrogen atom eigenproblems (1), (5),
and (6) with l := 1 computed by mapped ChC with scaling factor c := 2 and N := 1600.

Table 2. High index eigenvalues of hydrogen atom eigenproblems (1), (5), and (6).

j λj by Mapped ChC

70 3.346 710 010 488 799 · 10−4

80 2.246 853 675 452 558 · 10−3

90 6.551 029 735 506 819 · 10−3

100 1.474 442 763 764 248 · 10−2

110 2.890 880 952 550 005 · 10−2

120 5.183 912 194 697 291 · 10−2
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Figure 9. The absolute drift with respect to N of the first 50 negative eigenvalues of the hydrogen
atom eigenproblems (1), (5), and (6) computed by mapped ChC with scaling factor c := 2 and
N1 := 1600 and N1 := 2048 (red line). The green circled line signifies the drift of eigenvalues
computed by mapped ChC using N := 2048 with respect to the exact eigenvalues λn = −1/(2n + 4)2,
n = 0, 1, 2, . . . , 50 corresponding to l := 1.

It is very important to note that the absolute drift with respect to N (including that to
the exact eigenvalues) is of the order of 10−11, for the first two values, and increases to an
order better than 10−4 for the fifty eigenvalue (see Figure 9).

In the monograph [12] (Sect. 18), it is proved that, if the potential q(x) is continuous
and has the asymptotic behavior q(x) = A

x + O
(

1
x2

)
as x → ∞, for λ > 0, the spectrum is

continuous and the eigenfunctions are not square-integrable and for λ < 0 the spectrum
is discrete and the eigenfunctions are square-integrable. The numerical results gathered
around this problem plainly confirm this analytical result.

Actually, the eigenvector corresponding to the first positive eigenvalue (the sixty-
seventh one) is depicted in Figure 10a. It is hard to believe that this could approximate a
square-integrable eigenfunction. In Figure 10b, we displayed the Chebyshev coefficients
of the corresponding eigenvector. The oscillations of these coefficients mimic the steep
oscillations of the eigenvector.

For the real scaling factor c, we have to mention that, in case of eigenvalue problems, it
can be adjusted only on the mathematical basis. Thus, it can be tuned in order to:

• improve the decaying rate of the coefficients of spectral expansions.
• find as orthogonal as possible eigenvectors to an eigenproblem;

At the end of this section, we must mention that, even for a large order N, i.e.,
N = 2048, the elapsed time did not exceed a few seconds. In fact, it reached 7.076174 s. It is
also very important to emphasize that the existence of singularity forced us to work with
such a high order of approximation in order to ensure a 10−10 error in the computation of
the first eigenvalues.
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Figure 10. (a) The eigenvector corresponding to the first positive eigenvalue of hydrogen atom
eigenproblems (1), (5), and (6) computed by mapped ChC with scaling factor c := 2 and N := 2024,
l := 1. (left panel). (b) In the right panel, in a log-linear plot, we display the Chebyshev coefficients
of this eigenvector.

4.2.2. Potential with a Coulomb Type Decay

Let’s consider now the Schrödinger Equation (1) equipped with the singular potential (9)

q(x) := −1− 5 exp(−2x)
x

+
l(l + 1)

x2 , l ∈ R. (9)

and supplied with boundary conditions (6).
Some eigenvalues computed by the mapped ChC method when c := 2 and N := 512

are compared in Table 3 with their counterparts computed by LGRC and perturbation
methods. If, for the first eigenvalues, the coincidence is excellent, the same does not
happen for higher indices. This is why in Figure 11 in a log-linear plot we illustrate the
absolute drift in the case of the ChC method. Consequently, we can firmly state that the
eigenvalues calculated with ChC are the most correct. For example, the tenth eigenvalue is
estimated with better accuracy than of the order 10−10. It is also clear from this figure that,
in the second case, i.e., N1 := 760 and N2 := 1024, the drift oscillates less than in the first
case reported.

Table 3. The first five eigenvalues and the tenth one of the Schrödinger problem (1)–(6) when the
potential has a Coulomb-type decay (9), computed by three different methods.

j λj Computed by LGRC in [8] λj According to [30] λj by Mapped ChC

1 −0.061 681 846 633 3 −0.061681846633 −0.06168184663316705
2 −0.0274980999429 −0.027498099943 −0.02749809994382280
3 −0.0155015616910 −0.015501561691 −0.01550156169420540
4 −0.0099354968508 −0.009935496851 −0.009935496853885005
5 −0.0069067013822 −0.006906701382 −0.006906701375461869

10 −0.001963685230 −0.001736111111 −0.002059879612641054
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Figure 11. The absolute drift with respect to N of the first 25 eigenvalues for the Schrödinger problems
(1)–(6) with Coulomb-type decay potential (9), computed by mapped ChC with scaling factor c := 2;
red dotted line for the case N1 := 512 and N2 := 1024 and green circled line for the case N1 := 760
and N2 := 1024.

4.3. A Singular Schrödinger Eigenproblem on the Real Line—the Anharmonic Oscillator

Let’s consider now the Equation (1) on the real line with the potential

q(x) := x2 +
νx2

1 + µx2 , (10)

where µ and ν are real parameters. This is a more general (anharmonic) oscillator than the
simpler harmonic one.

Two behavioral boundary conditions requiring the boundedness of the solutions at large
distance, i.e., x → ±∞ are attached to this equation. Actually, we impose the conditions

u(x)→ 0 as x → ±∞. (11)

We have to observe that these conditions are automatically satisfied in spectral collo-
cation based on Laguerre, Hermite, and sinc functions.

SiC with N := 500 and scaling factor h := 0.1 have been used in order to produce the
following results. The fist four eigenvectors of Schrödinger eigenproblems (1)–(11) with
potential (10) are displayed in Figure 12a. Their coefficients are illustrated in panel b of the
same figure. These coefficients symmetrically decrease to approximations of at least 10−12

which means a reasonable accuracy of the method.
We also have computed some high-lying eigenvalues namely λ100, λ150 and λ200,

for ν := 1 and µ := 500. They have respectively the numerical values

199.001994801512, 301.001995781805, and 403.001995224433.

They are five-digit approximation for the corresponding harmonic oscillator eigenval-
ues λn = 2n− 1, n = 1, 2, . . . .

In [33], the author solved this problem numerically for general ν and µ. He used a
very elegant variational argument of Ritz type, based on Hermite functions, and observed
that, for large µ and fixed ν, the eigenvalues of this problem approximate those of the
harmonic oscillator. We have confirmed this observation even for higher index eigenvalues.
In the panel (a) of Figure 13, we display the relative drift of the first 200 eigenvalues of
the problem. It is clear that approximately the first 70 eigenvalues are calculated with
an accuracy better than 10−12. Eigenvalues with an index up to 150 remain at the same
accuracy as N ≈ 500. Above this index, the accuracy decreases to 10−3.
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Figure 12. (a) Zoom in the first four eigenvectors computed by SiC for the Schrödinger eigenproblems
(1)–(11) with potential (10). (b) The sinc coefficients for these vectors. We mention that the figure in
panel (a) has the same legend as that in panel b).

Actually, over the years, a lot of literature has gathered on this problem. Low order
eigenvalues have accurately computed, using Runge–Kutta type methods, for instance
in [34,35]. In [36], the author used Hermite collocation in order to find only the first eigen-
values for some Schrödinger eigenproblem. With respect to the departure from orthogonality,
i.e., the distance from zero of the scalar product of two eigenvectors, we display in panel b
of Figure 13, in a log linear plot, the absolute values of the of the scalar products of u1 and
uj, j = 2, . . . , 200. It is again remarkable that this departure is less than 10−15, i.e., close to
the machine precision.

50 100 150 200

a) Modes

10-16

10-12

10-10

10-5

10-3

100

R
e

la
ti
v
e

 d
ri
ft

 w
it
h

 r
e

s
p

e
c
t 

to
 N

50 100 150 200

b) Modes

10-19

10-18

10-17

10-16

10-15

O
rt

h
o

g
o

n
a

lit
y
 e

rr
o

rs

Figure 13. (a) The relative drift of the first 200 eigenvalues of problems (1)–(11) with potential (10),
N1 := 500 and N2 := 400-red dotted line and N1 := 300 and N2 := 400-green line. (b) In the right
panel, we display the orthogonality errors (deficiency) of the first eigenvector of the same problem
with respect to the subsequent 199 of it.

It is of some importance to justify our choice for SiC. Unlike all other methods of
spectral collocation, where the differentiation matrices are highly non-normal, in SiC, these
matrices are symmetric or skew-symmetric for even respectively odd values of cut-off



Computation 2021, 9, 2 16 of 19

parameter N. In addition, this is an important numerical advantage (see, for instance, our
contribution [7]). For instance, in the MATLAB code below, we use the routine eigs instead
of eig, which would have been more expensive and slower.

The following very simple MATLAB code has been used:

N=500; % order of approximation
h=0.1; % spacing (scaling factor)
[x,D]=sincdif(N,2,h); D2=D(:,:,2); % 2nd SiC differentiation
nu=1;mu=500; % parameter of the problem
A=-D2+diag((x.^2)+nu*(x.^2)./(1+mu*(x.^2)));% the matrix
[V,D] = eigs(A,250,0); D=diag(D); % call MATLAB code eigs
[t,o]=sort(real(D)); D=D(o); V=V(:,o); % sort eigenvalues

This code is fairly similar to that from Section 4.2.1 with two differences. First,
the Chebyshev differentiation matrices are replaced by sinc differentiation matrices and
then the boundary conditions are absent. More exactly, the discrete sinc functions, on
which the unknown solution is expanded, are defined by

Sk(x, h) :=
sin

[
π
h (x− xk)

]
π
h (x− xk)

, k = 1, 2, . . . , N, (12)

and satisfy the boundary conditions (11). In (12), the nodes xk are equidistant with spacing
h and symmetric with respect to the origin.

The elapsed time required by SiC in order to solve this problem has equaled 0.06 s.

4.4. The Sixth Order Hamiltonian

Let’s consider now the Equation (1) on the real line with the unbounded potential

q(x) := x2 + x4 + x6, x ∈ R, (13)

supplied with the usual boundary conditions (11). This new problem is more challenging
than the quartic oscillator. In this context, it is considered in [37] in a more general context.
We have solved this problem by SiC as well as by Chebfun. In order to solve by SiC,
we have used the MATLAB code from Section 4.3 and in the latter case we have used a
MATLAB code similar to that from Section 4.1.1. Some selected eigenvalues are reported in
Table 4.

The first nine decimals coincide and the relative drift of the first fifteen eigenvalues,
computed by SiC, is depicted in panel c of Figure 14. It justifies us to say that these
eigenvalues are calculated with better accuracy than 10−9. Panel b in the same figure shows
that the first eigenvector is fairly orthogonal to the subsequent 499 of it. Actually, the first
four eigenvectors are depicted in the first panel of Figure 14.

Table 4. Some eigenvalues of the Schrödinger problem (13) computed by three different methods.

j λj Computed by SiC λj Computed by Chebfun λj According to [37]

1 1.614894082519128 1.614894082034435 1.614894082
2 5.656437055315719 5.656437054973924 5.656437055
3 11.10735333624499 11.10735333558713 11.107353336
4 17.63777127629981 17.63777127440524 17.637771274
5 25.06867056261367 25.06867056267325 25.068670563
10 72.86143412258504 72.86143412284709 72.861434123
15 134.5961005333089 134.5961005333434 134.596100534
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Figure 14. (a) The first four eigenvectors of problem (13) computed with N := 500 and scaling factor
h := 0.1; (b) the orthogonality errors (deficiency) of the first eigenvector of the same problem with
respect to the subsequent 499 of it; (c) the relative drift of the first 15 eigenvalues of problem (13)
N1 := 500 and N2 := 400-red dotted line and N1 := 300 and N2 := 400-green line.

It is worth mentioning that, working with Chebfun, we have truncated the real axis
to a finite symmetric interval [−X, X]. The computation of eigenvalues is stable with
respect to the length X. The values reported in the second column of Table 4 have been
computed with X := 5. In this situation, the first four eigenvectors have been represented
by Chebyshev polynomials of degree 150.

The elapsed time in computing the first fifteen eigenvalues and all outcomes from
Figure 14 by SiC equals 0.40 s. The elapsed time working with Chebfun equals 0.75 s.
This means that the numerical process involved by Chebfun in choosing an optimal
resolution is a little bit slower than a direct application of a spectral method with an apriori
imposed resolution.

5. Concluding Remarks and Open Problems

A direct and global comparison between classical spectral methods and Chebfun
in solving eigenvalue problems is almost impossible to conduct. We divided this into
two stages.

First, for regular problems on finite domains, we have performed computations for
various approximation orders N and then we have computed the relative or absolute drift
of eigenvalues of interest. In this way, we have obtained these values with the desired
accuracy. Typically, this accuracy is of the order of at least 10−10. Through the construction
of Chebfun, this process is not applicable. In this case, the order of approximation is
established automatically, but we are sure that the eigenvalues correspond to the smoothest
eigenvectors, i.e., computed to the machine precision. The elapsed times have been of the
order of a few seconds for ChC with a small plus for Chebfun.

For problems formulated on unbounded domains, on one hand, we have worked
with mapped ChC or SiC. For both methods working with different approximation orders
and then calculating the relative drift, we can ensure a certain accuracy. The elapsed time
remains on the order of seconds or less. On the other hand, Chebfun can only work by
truncating the domain in such a way that the singularity, at infinity or at the finite distance,
is isolated.

As an absolute novelty, with respect to Chebfun, we have established the accuracy of
the results by estimating the drift with respect to the length of the computation interval.



Computation 2021, 9, 2 18 of 19

In this way, we avoided the empirical truncation of the domain as is often the case. In our
opinion, the way Chebfun operates in this situation is not fully established. However,
in this case, the elapsed time can reach the order of some seconds.

Moreover, using the above mentioned absolute or relative drift, in terms of some
parameters, we have ensured the numerical stability of the numerical process and can
eliminate (numerically) spurious eigenvalues.

In other words, we have obtained automatically and precisely the accuracy at which a
specified set of eigenvalues is computed.

However, approaching these problems whenever possible in parallel, with Chebfun as
well as with the classical spectral methods, one can get greater confidence in the accuracy
of numerical results.

The departure of orthogonality of a set of eigenvectors provides another useful hint
for the accuracy of the numerical process.

In some examples, we have managed to correctly identify sets of multiple (triples)
and high indices’ eigenvalues and even suggested the numerical meaning of the notion of
continuous spectrum. This second issue obviously remains an open one.

All in all, we can say that Chebfun as well as classical spectral methods, in various
forms, produce more accurate and comprehensive outcomes when solving singular as well
as regular eigenproblems than classical non-spectral methods such as shooting, f. d., f. e.
m., etc. In addition to the latter, both studied methods compute a large (as desired) set of
eigenfunctions (eigenvectors) and give an indication of the accuracy of this calculation.
However, there remains at least an open problem, namely that of establishing (possibly
automatically) the scaling factor.

A final word of caution we think is appropriate. Unfortunately, we cannot offer an
exact recipe on a method that must be applied for a particular problem. Only a careful
approach with different methods can lead to the optimal method.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

c scaling factor for unbounded domains
f. e. m. finite element method
f. d. finite difference method
GPS generalized pseudospectral method
SL Sturm–Liouville eigenproblem
ChC Chebyshev collocation
LGRC Laguerre–Gauss–Radau Collocation
SiC sinc collocation
MATSLISE Matlab package for SL and Schrödinger equations
MEP multiparameter eigenvalue problem
N the order of approximation of spectral method (cutting-off parameter)
SLEDGE SL Estimates Determined by Global Errors
SLEIGN FORTRAN package for numerical solution to SL eigenproblem
SLDRIVER interactive package for the previous packages
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