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Abstract: This paper presents the mathematical modeling and experimental implementation of a
Buck converter with hysteresis control. The system is described using a state-space model. Theoretical
and simulation studies show that the zero hysteresis control leads to an equilibrium point with the
implication of an infinite commutation frequency, while the use of a constant hysteresis band induces
a limit cycle with a finite switching frequency. There exists a tradeoff between voltage output ripple
and transistor switching frequency. An experimental prototype for the Buck power converter is
built, and theoretical results are verified experimentally. In general terms, the Buck converter with
the hysteresis control shows a robust control with respect to load variations, with undesired high
switching frequency taking place for a very narrow hysteresis band, which is solved by tuning the
hysteresis band properly.

Keywords: bifurcation; buck power converter; chaos; hysteresis control; nonlinear dynamics; switch-
ing frequency

1. Introduction

The Buck converter is a system of variable structure [1] widely used in different
technological applications [2], such as power sources for computer processors [3], battery
charger modules [4], power supply of photovoltaic and inverter arrays [5,6], and a wide
range of applications in automotive technology [7,8] to drive low voltage loads. However,
this power converter presents nonlinear effects that must be studied to improve the system
performance [9–11].

The application of hysteresis to the control loop increases complexity and provides
similarity to other systems. For example, in mechanical systems, the hysteresis behavior
can induce oscillations, impacting its precision and stability [12], while hysteresis can be
applied to water temperature control [13]. In [14], the control with hysteresis [15,16] was
proposed to reduce the commutation frequency of actuators, while in [17,18] has been
recently applied by authors to address a regulation control problem in a boost power
converter. In [19], authors state that the commutation frequency has an inverse relation to
the amplitude of the hysteresis band.

Dynamic properties of a hysteresis model are presented in [20] for a piece-wise linear
circuit. Here, the model consists of the superposition of hysteresis operators, and authors
show the effect of hysteresis parameter values in both control performance and frequency
of the induced hysteresis cycle. In [21], the authors designed and implemented an electronic
converter to analyze photovoltaic and inverters arrays. Moreover, authors in [22] showed
that the insertion of a hysteresis control achieves transient states of low overshoot.

In [23], a new hysteresis control strategy is presented with output-capacitor-equivalent
series-resistance ripple compensation. When step load change occurs, the closed loop
feedback control adjusts the duty ratio. The results of the paper show that the proposed
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control scheme gains faster transient response speed and better steady-state operation than
traditional hysteresis without ripple compensation.

In [24], a photovoltaic (PV) stand-alone system using a dual inverter based double-
band hysteresis adaptive sliding-mode control (ASMC) is presented. Moreover, an adaptive
hysteresis band is used to adopt the desired dual inverter switching frequency. Furthermore,
dual inverter switching technique is employed to generate multilevel inverters output
voltage. The effectiveness of the control scheme is verified under steady/transient states
and load disturbance.

On the other hand, digital signal processing (DSP) provides greater flexibility than ana-
log designs [25]. Some advantages are that the straightforward implementation of nonlinear
controllers, quasi-sliding mode control (QSMC), and advanced control techniques [26].
However, quantization and discretization can cause periodic bands [27], chaotic behavior,
oscillations, subharmonics, and limit cycles [28]. Additionally, the time delays in the output
of the controllers can produce instability [29]. Thus, the performance of a well-designed
discretized quasi-sliding mode control (DQSMC) may be affected when executed by a
digital controller [30] due to the finite sampling frequency.

In [31], the authors presented research related to bifurcation in second-order sys-
tems using pulse-width modulation (PWM) and zero average of the error dynamics [32].
Similarly, Burgos [33] presented the study of nonlinear phenomena present in the Buck
converter when it is controlled by the side-pulse PWM; the control surface is made to
comply with the requirement of zero in the error dynamics. Additionally, bifurcation
diagrams have been drawn theoretically and experimentally to show the existence of chaos
and its control through the fixed point induction control (FPIC) technique, allowing chaotic
dynamics in the power converter to be avoided [34,35].

All these works justify the development of a more detailed study about different
dynamic effects present in the Buck converter. The hysteresis control technique is widely
used to control systems with slow dynamics such as temperature or liquid level. Hence,
studying a simple control strategy, such as hysteresis control to drive the power transistor,
allows a better understanding of induced nonlinear dynamics and effects of high switching
frequencies driving such electronic power converters.

This study aims at characterizing nonlinear dynamics and the existence of limit cycles
induced by the hysteresis control. Therefore, this paper describes the Buck power converter
controlled by a constant hysteresis band using a piece-wise mathematical model. Some
contributions of this work include the following:

1. The constant hysteresis control is applied to a nonlinear and fast dynamic power
converter system.

2. A mathematical model is derived and used to characterize the nonlinear dynamics
induced by the hysteresis control.

3. A cost-effective voltage control strategy is implemented using few analog electronic
components.

2. Materials and Methods
2.1. Model of the Buck converter

Let us consider the circuit of a Buck power converter presented in Figure 1. This circuit
includes a voltage source connected by a switch S to a filter LC and a load R [36]. In detail,
the voltage source provides the input voltage Vin [V], S is an ideal switch, D is a diode,
L [H] is an inductor, C [F] is a capacitor, and R [Ω] is the power converter resistive load.
Note that, depending on the application area, the power converter load R could present
different features and responses, from linear to nonlinear and resistive to inductive loads,
e.g., electronic modules, direct current (DC) motors, etc. The diode D provides a path for
the inductor current iL when the switch S changes its state from closed to open, while the
diode remains in reverse bias when the switch S is closed. This electrical circuit is also
known as a step-down converter due to the output voltage vC being lower than the input
voltage Vin. Considering that the Buck converter includes two components capable of
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storing energy, for modeling purposes, the state variable is defined as x= [vC, iL]. Herein,
the term vC [V] is the capacitor voltage and the term iL [A] is the inductor current.

Figure 1. Electrical circuit of a Buck converter.

According to the status of the switch and diode, three topologies can be obtained,
as shown in Figure 2 [37]. In particular, Figure 2a shows the first topology in continuous
conduction mode (CCM) with positive inductor current iL > 0, which occurs when the
switch S is closed, yielding a positive current through the inductor. Hence, the resultant
circuit is reduced to the source with the input voltage Vin, an inductor L in series with the
source, a shunt capacitor C, and a shunt-load resistance R.

Additionally, Figure 2b shows the second topology evolving in CCM with iL > 0,
which occurs when the switch S is open. Then, the inductor current continues to flow
through the diode in forward bias until the inductor current becomes zero. The resultant
circuit is reduced to three shunt elements composed of an inductor L, a capacitor C, and a
resistance R. Finally, the third topology is shown in Figure 2c evolving in discontinuous
conduction mode (DCM) with iL = 0, which is formed when the switch S is open and
the inductor current is zero, due to the diode D being deactivated or in reverse bias. The
remaining RC circuit discharges the capacitor voltage through the resistive load R.

(a) (b) (c)

Figure 2. Topology of the equivalent circuits for a: (a) continuous conduction mode, (b) continuous conduction mode with the diode
in forward bias, and (c) discontinuous conduction mode with the diode in reverse bias.

Under the assumption of an ideal switch S and diode D, the Buck converter is a
discontinuous system that can be described using a piecewise smooth mathematical model,
whose vector field presents discontinuities. The mathematical model for the circuit working
in a CCM, as in Figure 2a, is given by:

[
dvC
dt
diL
dt

]
=

[
− 1

RC
1
C

− 1
L 0

][
vC
iL

]
+

[
0

Vin
L

]
f or S = 1 & iL > 0 (1)

where S= 1 denotes the CCM for the switch S in state ON, and the positive current in the
inductor.

On the other hand, the mathematical model when the circuit operates in a CCM as in
Figure 2b, corresponding to u= 0 in (1), is described as:
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[
dvC
dt
diL
dt

]
=

[
− 1

RC
1
C

− 1
L 0

][
vC
iL

]
f or S = 0 & iL > 0 (2)

Finally, the mathematical model when the circuit works in a DCM and the diode is
not conducting, as shown in Figure 2c, is described as:

dvC
dt = − 1

RC vC f or S = 0 & iL = 0 (3)

Hence, as the reader can realize, the operation of the Buck converter is mainly driven by
the status of the switch S and system parameters, e.g., load parameter R, leading to a time
response resultant from the combination of the three operative modes described in Figure 2.
Thus, the response would eventually combine the three topologies given by Equations (1)–(3).

2.2. Buck Converter Voltage Control with Constant Hysteresis

Assuming that Vre f is the voltage reference for the output of Buck power converter
to feed an electric resistive load R, the control problem is to find in real time the right
switching pattern u ∈ {0, 1} to drive the switch S and ensure that the voltage output vC
reaches the target voltage Vre f , ensuring a suitable voltage supply to the electronic load R,
even in the presence of disturbances.

The closed-loop error to solve the voltage control problem is defined as:

e = Vre f − vs, (4)

where vs = a.vC is the output voltage measured by a sensor, with a > 0 as a positive sensor
gain.

In this study, instead of choosing a linear controller combined with a PWM signal, we
are interested in applying a discontinuous controller to assess the Buck converter response
and performance. Thus, the control pattern u is computed using a hysteresis logic H(e, ξ),
where e is the error and ξ is the hysteresis amplitude parameter.

u = H(e, ξ), (5)

where H is the hysteresis function, whose discontinuous behavior and memory feature
are shown in Figure 3. Here, Figure 3a describes the nonlinear law in the error space,
illustrating how the control transition occurs from 0 to 1 and vice versa. Note that such a
control logic is determined for the hysteresis amplitude parameter, namely ξ. For numerical
simulations purposes, Figure 3b represents the hysteresis control logic as a state machine,
illustrating the memory property and the error dynamics conditions to make the control
state transitions, defined as u = 1 and u = 0.

(a) (b)

Figure 3. Hysteresis function: (a) hysteresis loop as a function of tracking error; (b) state machine to
describe the control transition as a function of error dynamics, hysteresis amplitude parameter and
control state.
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Schematics of the closed-loop control for the Buck converter using the hysteresis
control is shown in Figure 4. The driver module corresponds to the interface gate circuit
between the electronic controller and the power stage, whose function is to enable/disable
the power transistor acting as the switch S. More in detail, the voltage output vC in the
Buck converter load R is measured using a resistive divider as sensor, which provides
the feedback signal vR = a.vC, to the voltage hysteresis controller. The tracking error e is
computed by comparing the desired voltage Vre f to the actual measured voltage vs. Then,
based on the error information and hysteresis amplitude ξ [V], the hysteresis control law
chooses the right control state value, u = 0 or u = 1, to trigger the power transistor in the
Buck converter.

Considering that a logic signal u cannot enable/disable the power transistor, a suitable
gate interface circuit is included in the module driver, as shown in Figure 4. Note that the
scalar gain a is the sensor gain used to measure the voltage output, and through this sensor
gain, a is possible to scale the Buck converter output using the same control architecture,
allowing a wider range to be regulateds for voltage output.

Figure 4. Schematics of the closed-loop control system for the Buck converter using a constant
hysteresis control.

The following sections are dedicated to theoretically and experimentally analyzing
the control performance in both transient and steady-state operations. Moreover, con-
sidering the hysteresis amplitude parameter, two control operations are analyzed: the
first corresponds to the case with zero hysteresis control, and the second with constant
hysteresis control.

2.3. Physical Considerations

The hysteresis control must drive the Buck converter switch S to regulate the voltage
output and meet the load application requirement. Figure 4 shows the Buck converter
working with a closed-loop controller, leading to the study of a simple and interesting
automatic control system. This control is used to regulate the output voltage vc at a desired

scaled reference voltage
Vre f

a by setting the switch state in real time, independent of external
disturbances such as load variations or changes in internal system parameters. Thus, the
system is configured in a closed-loop circuit to self-regulate its behavior while rejecting
eventual disturbances.

The constant hysteresis control includes the particular case of the zero hysteresis con-
trol [38], which corresponds to the well known bang–bang [39] or on–off control reported
in the previous literature. Thus, in this paper, both zero hysteresis and constant hysteresis
controls are analyzed.

2.4. System Parameters for Simulation

Numerical simulations of the Buck converter are performed considering the model
parameters shown in Table 1. Numerical solutions are obtained using a theoretical solution
obtained for the system of Equations (1)–(3).
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Table 1. Buck converter system parameter.

Parameter Description Value

Vin Input voltage 20 V
Vre f Reference voltage 15 V

R Resistance 22 Ω
C Capacitance 1000 µf
L Inductance 7 mH

Xo Initial conditions 0 V ; 0 A
ξ Hysteresis band 0 V
dt Time discrete steps 1× 10−6 s
to Initial simulation time 0.0 s
t f Final simulation time 0.4 s

2.5. Model Simulations and Numerical Methods

To improve the accuracy of numerical simulations, the numerical bisection method
described in Appendix A is implemented to handle the boundary crossing, detecting the
switching event and capturing the initial conditions for the following state trajectory, when
the system switches between solutions. Thus, when the trajectory crosses the boundary
surface vC = Vre f , the algorithm is enabled to find the right time value when the crossing
takes place.

For instance, Figure 5a shows the evolution of the resultant switched trajectory when
simulations are run using constant sampling time. Here, the trajectory is enlarged to show
a common numerical simulation issue for piece-wise smooth systems due to the switching
boundary conditions. Note that the trajectory diverges to greater oscillations, and the
hypothesis of the unstable point is false due to this behavior being induced by error propa-
gation during numerical simulations. Indeed, the bisection numerical method is applied
at each switching of the system to manage the system transition properly and ensure the
proper computation of trajectory boundary conditions for the next piece of the solution.
Then, numerical error propagation is avoided between solution pieces and its transitions,
leading to a more accurate complete simulation of system dynamics. Therefore, the ap-
plication of this numerical algorithm allows improving the time-continuous numerical
simulation, leading to a more accurate trajectory, as shown in Figure 5b. Hence, numerical
simulations are reliable to obtain the correct hypothesis about the system dynamics.

For the sake of completeness, Figure 6a,b shows the convergence and evolution of
the bisection algorithm for one event detection to find the numerical solution for the time
value and voltage value, as the time converges to the solution. Note that derivation of the
time solution for the Buck converter evolution is out of scope in this paper.

2.6. Nonlinear Dynamics for the Zero Hysteresis Control

Schematics of the feedback control applied to the Buck converter with a zero-hysteresis
band are shown in Figure 7. Hence, the closed-loop system presents two strong non-
linearities: the first is inherent in the Buck converter due to its variable structure character-
istic of working with a diode D and a switch S; and the second is added by the nonlinear
nature of the hysteresis control. In particular, Figure 7a shows the block diagram for the
zero hysteresis control with ξ = 0, while Figure 7b shows the zero hysteresis control
as a function of the output voltage vC (for a = 1). The control generates a binary signal
defined as u = 0 and u = 1 depending on the error sign. Thus, when the output voltage
vC is under the reference voltage Vre f , the system must be energized with a signal u = 1.
When the controller increases, the output voltage overcomes the reference voltage Vre f , the
power transistor must be turned off using a signal u = 0. The system will be maintained
indefinitely, making the transition of states, increasing and decreasing the output voltage,
while switching states from ON to OFF and vice versa. Ideal conditions will lead to an
infinite switching frequency with zero ripple; however, the experimental output voltage
presents ripples, as shown in following section, due to physical constraints and the dynamic
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behavior of electronic devices, which can actuate at high (finite) switching frequency with
joule power losses.

(a) (b)

Figure 5. Application of the numerical method to solve an accuracy error on switching boundary: (a)
state trajectory without the numerical algorithm and (b) state trajectory with the numerical algorithm.

(a) (b)

Figure 6. Bisection numerical method results: one example to show evolution and convergence of
numerical solution: (a) boltage value convergence to vC = 15 and (b) time solution evolution.

(a) (b)

Figure 7. Hysteresis control applied to the Buck converter (a) block diagram with the zero hysteresis
control and (b) switching state for the zero hysteresis control (ξ = 0 V).

2.6.1. Steady- and Transient-State Simulations

Simulations are performed to obtain the dynamic behavior in various operating con-
ditions when the zero-hysteresis strategy controls the system. The simulation is performed
with the parameters of the circuit obtained in the laboratory to contrast the results with the
implemented circuit. This test aims to identify the dynamic behavior of the system during
the steady- and transient-state operation. The result of the simulation is shown in Figure 8,
where Figure 8a shows the phase diagram and Figure 8b shows the temporal evolution
diagram.
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(a) (b)

Figure 8. Dynamic behavior in steady- and transient-state operations: (a) phase diagram and (b)
temporal evolution.

The system presents during the transient state a large overshoot in a short period of
time associated with the natural oscillation frequency of the LC filter. This phenomenon
is not desirable for applications, and the signal must be regulated by eliminating the
overshoot present during the transient state. In the steady-state operation, the system
converges quickly to an equilibrium point, showing good system regulation. Note that the
undesired overshoot found in the Buck converter with zero hysteresis controller, can be
improved by adding a reference governor [40] to the set point, avoiding sudden transitions
of reference signal Vre f .

2.6.2. Regulation for Different Voltage Set Points

This study aims at showing the regulation capability when the chosen required volt-
age is low (5 V) or high (25 V) with respect to the input voltage (30 V), implying the
switching of the system in two opposite regions in the phase portrait, where trajectories are
switched with different vector field intensity, according to the switch S state, combining
two topologies for u = 1 and for u = 0 in CCM. From simulation results, as shown in
Figures 9a,b, it is clear that transient evolution of the resultant trajectory (merged orbit)
presents an asymmetric and damped ripple due to the non-smooth nature and intensity of
the vector field. Here, Figure 9a shows the simulation for a low reference voltage Vre f= 5
V, and Figure 9b shows the simulation for a high reference voltage Vre f = 25 V.

(a) (b)

Figure 9. Asymmetry in the phase plane for (a) low reference voltage Vre f = 5 V and (b) high
reference voltage Vre f = 25 V.

This nonlinear event generates asymmetry in the ripple of the voltage signal and can
affect the DC voltage regulation (mean value) during the transient operation. The time
evolution is also shown in Figure 10a,b, where it is evident that the greater overshoot and
ripple occurs, when the set regulation point is shown to be much lower with respect to



Computation 2021, 9, 112 9 of 22

supply voltage Vin. From an application viewpoint, this observation suggests, for example,

that the ratio 1
4 <

Vre f
Vin

< 1, should be taken into account to avoid undesired overshoots
and ripples. Of course, more sophisticated control strategies for power converters can
better address the overshoot problem and ripple asymmetry. Note that considering the
reference voltage Vre f=

Vin
2 for vector fields with equivalent intensity, the resultant voltage

trajectory exhibits an equal distributed ripple, as shown in Figure 11a.

(a) (b)

Figure 10. Temporal dynamics of (a) low reference voltage Vre f = 5 V and (b) high reference voltage
Vre f = 25 V.

During the transient-state operation, the hysteresis control generates a variable com-
mutation pattern, and the closed-loop system converges to the resultant equilibrium point
driven by the set point Vre f as given by Equation (6). Then, the switching frequency in-
creases as shown in Figure 11b, where simulation allows inferring that the system has a
fixed point with an infinite switching frequency.[

v∗C
i∗L

]
=

[
Vre f
Vre f

R

]
(6)

(a) (b)

Figure 11. Dynamics when considering symmetric vector fields with Vre f = 15 V: (a) phase diagram
and (b) temporal evolution of switching pattern for switch S.

2.7. Nonlinear Dynamics for the Constant Hysteresis Control

As expected, the application of a hysteresis control to regulate the Buck converter voltage
output according to schematics in Figure 12 allows controlling the output voltage with a
reduced switching frequency and induced oscillations around the required voltage Vre f .
Thus, Figures 12a,b show the diagram with the constant and hysteresis control and the
switching state for the constant hysteresis control, respectively. Such induced oscillations can
be characterized as stable 1T−periodic orbits that can evolve in CCM mode (see Figure 13a)
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with iL > 0, involving two topologies (Equations (1) and (2)). Furthermore, it can evolve in
DCM mode with iL ≥ 0 (see Figure 13b) combining three topologies (Equations (1)–(3)). Both
types are observed via numerical simulations and verified experimentally, as shown below.

(a) (b)

Figure 12. Hysteresis control applied to the Buck converter (a) block diagram with the constant
hysteresis control and (b) switching state for the constant hysteresis control (ξ > 0).

(a) (b)

Figure 13. 1T-periodic orbits with the constant hysteresis control: (a) 1T-periodic orbit in CCM mode
(iL > 0), combining two solution pieces for S = 1 and S = 0; and (b) 1T-periodic orbit in DCM
(iL ≥ 0), combining three solution pieces for S = 1, S = 0 in CCM and for iL = 0.

The time evolution for a typical trajectory for the Buck converter driven with constant
hysteresis is shown in Figure 14, where Figure 14a shows the phase portrait and Figure
14b shows the time evolution. For this simulation case, the system converges to the stable
1T-periodic orbit in CCM, of course with a finite switching frequency. Note that, similar to
the case of zero hysteresis control, the Buck converter presents a strong transient behavior
and asymmetry in the ripple when different voltage targets are required, as shown in
Figure 15. Here, the simulation includes two trajectories with different initial conditions,
both inner and outer, with respect to the limit cycle, to show the trajectory convergence to
the stable 1T-periodic orbit in CCM.

Figures 15a,b shows that switching frequency and ripple can vary as a function of
the control parameter hysteresis amplitude ξ. Moreover, they can also vary as a function
of other system parameters and a required voltage Vre f . As an example, to illustrate the
effect of hysteresis parameter on the output voltage, Figure 16 shows the phase portrait for
different values of ξ, where it is evident the presence of a Grazing bifurcation at ξ ≈ 0.83;
whereby increasing ξ the CCM 1T-periodic orbit is transformed into a 1T-periodic orbit in
DCM with iL = 0.

Moreover, Figure 17a shows the mean value µ and variance σ2 as a function ξ parame-
ter, where it is clear how the mean value increases and is greater than the required voltage
Vre f = 12 V, due to the ripple effect. Moreover, Figure 17b shows that the variation rate
presents a discontinuity that is linked to the Grazing bifurcation point at ξ ≈ 0.83, which
means that the 1T-periodic orbit in the CCM model turns into a 1T-periodic orbit in the
DCM with iL ≥= 0.
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(a) (b)

Figure 14. Voltage control using the constant hysteresis control for ξ = 0.2 V: (a) phase portrait and
(b) time evolution.

(a) (b)

Figure 15. Voltage control using the constant hysteresis control for ξ = 0.2 V: (a) phase portrait and
(b) time evolution.

Ripple variations could be solved using an adaptive hysteresis control and obtaining
a symmetric regulation of voltage ripple due to system variations. This allows obtaining
similar ripple for a wide range of operative conditions.

Figure 16. Phase portrait varying the hysteresis control parameter ξ. Increasing parameter ξ a
Grazing bifurcation appears to transform the CCM 1T-periodic orbit into a 1T-periodic orbit in
DCM with iL ≥ 0.
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(a) (b)

Figure 17. Regulation indexes mean and variance when hysteresis parameter ξ is varied: (a) mean
values and (b) variance.

3. Experimental Results
3.1. Experimental Implementation of the Zero Hysteresis Control

The diode and the transistor are described as ideal switches in the mathematical
model derived for the Buck converter. Furthermore, the resistive load, the inductor, and
the capacitor are taken as pure impedance without considering the existence of internal
parasitic impedance. Experimentally, the operating condition with zero hysteresis control
cannot be obtained because electronic components such as MOSFET transistors and diodes
have physical limitations inherent to their functioning. Hence, the time response, activation
times and some physical parameters were not considered to avoid a complex model.
Therefore, these approximations generate non-correspondence with model simulations in
some operating conditions, as shown below. The parameters considered in the tests are
presented in Table 2, where a = 1/3 is the gain of the sensor.

Table 2. Parameters of the Buck converter with the zero-hysteresis control for the experimental test.

Parameter Description Value

Vin Input voltage 30 V
Vre f Reference voltage −− V

a Constant of the sensor 1/3
R Load resistance −− Ω
C Capacitance 299 µf
L Inductance 10.6 mH

RinL Resistance of the inductor 0.4 Ω

Figure 18 shows the experimental prototype and test bench, and Figure 19 shows the
control circuit and the Buck converter used in the experimental prototype. The switching
element corresponds to a MOSFET P-channel transistor (IRF9630). The control rule with
the zero hysteresis strategy is implemented with analog electronics.
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Figure 18. Test bench and experimental prototype for the Buck Converter with Hysteresis Control.

Figure 19. Electronic circuit of the Buck converter with zero hysteresis control.

Comparison of Experimental Observation with Simulations

A simulation was carried out with a load disturbance, and the trajectories are observed
in Figure 20. Figure 20a shows the evolution of the trajectory in the phase plane for an
initial load of 8 Ω and a final value of 4 Ω. The attractor of the equilibrium point, after a
transient behavior, tends to stay in the vertical line vc = 5 V, thus obtaining the desired
regulation. A temporal dynamic operation is presented when the load step occurs as
illustrated in Figure 20b, generating the transient state and increasing the inductor current
iL, while the output voltage tends to regulate at the reference voltage Vre f = 5 V. This
transient occurs because the system moves to a new energy state and this energy level
transition causes a dynamic transient in the state variables. Thus, the control with zero
hysteresis rejects the disturbances in the load and allows the desired output to be obtained.



Computation 2021, 9, 112 14 of 22

(a) (b)

Figure 20. Dynamics with load perturbations: (a) phase plane and (b) temporal response.

3.2. Steady- and Transient-State Operation

A first result is obtained when the parameters are configured with the values Vre f = 5
V, the load R = 8.5 Ω, and the input voltage Vin = 30 V. Figure 21a shows the phase
diagram of the real behavior of the Buck converter with the zero hysteresis control, and
Figure 21b shows the temporal evolution obtained by simulation. In addition, Figure 21c
shows the phase diagram obtained with the experimental test and Figure 21d shows the
temporal evolution obtained with the experimental test.

(a) (b)

(c) (d)

Figure 21. Numerical simulation vs. experimental results in the steady- and transient-state operations
with ξ = 0 V and vc = 5 V: (a) experimental phase diagram, (b) experimental temporal evolution, (c)
theoretical phase diagram, and (d) theoretical temporal response.

The dynamic behavior obtained in the experimental test presents a similar qualitative
and quantitative behavior in comparison with the responses obtained in the simulation
test. In the experiment, the voltage presents an overshoot of 12 V and the commutation
frequency in the steady-state operation corresponds to 2.5 kHz, showing the existence of a
limit cycle as a consequence of the natural hysteresis of the system. This is a phenomenon
presented when the current is lower than 1.5 A and the reference voltage is lower than
15 V. For other values outside this range, the system enters into chaos, where different
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switching frequencies up to 50 kHz are presented for some parameters of the operation.
In addition, these conditions are presented due to the high switching frequencies of the
transistor, generating overheating and deterioration and reducing the life cycle.

3.2.1. Load Disturbance

In order to detail the response of the system, when the load is disturbed and to contrast
the dynamic behavior obtained by simulation, the system is configured with the voltage
reference Vre f = 14.53 V, a first load R1 = 31.8 Ω, a second load R2 = 8.5 Ω, and the output
voltage vc = 14.35 V. For this purpose, the initial load is 31.8 Ω and changes to 8.5 Ω.
The phase and temporal evolution diagrams of the state variables are shown in Figure 22,
where the transient phenomenon is plotted.

Transient behavior is presented under the regulation voltage when the load increases,
which implies that the load is not subjected to voltages that exceed the regulation value.
On the other hand, when an initial load of 8.5 Ω is disturbed to 31.8 Ω, the voltage is
above the regulation value, and this can be harmful to the load connected to the system.
The disturbance of the load can be extended, in the case that there are several shunt loads
connected to the system and some of them present a fault, which would mean an alteration
in the quality of the wave for the other loads.

Figure 22 shows the numerical simulations and experimental results when the load
increases and decreases. In this figure, ripple is shown in the state variables when the load
is changed, which is related to the change in the commutation frequency of the switch when
the load is varied. This ripple has a proportional dependence in relation to the load with
which the system operates. A simulation is performed with the parameters corresponding
to Table 1, to detail both disturbances: load increasing and load decreasing.

(a) (b)

(c) (d)

Figure 22. Comparison of simulation and experiment of the zero hysteresis control when the load
increases and decreases, and the reference voltage is Vre f = 14.53 V for a (a) simulated phase diagram,
(b) simulated temporal evolution, (c) experimental phase diagram, and (d) experimental temporal
evolution.
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3.2.2. Chaos with the Zero Hysteresis Control

Experimental testing showed that some operation conditions lead the system to
present chaotic behavior. For example, to obtain this behavior, the circuit was configured
with the following values Vre f = 20 V and R = 25 Ω. For this configuration, Figure
23a clearly shows the voltage output and current signals with variable ripple, and in
Figure 23b, these same signals are shown but taking into account only their AC component.
Such chaotic behavior has low variable ripple because it is not possible to implement a
zero hysteresis band; in turn, a residual hysteresis takes place due to physical limitations
and internal parasitic effects of electronic components. This undesired behavior can be
enhanced by using more technological electronic components.

(a) (b)

Figure 23. Experimental chaotic dynamics with the zero hysteresis control due to existence of residual
hysteresis created by physical limitations and internal parasitic effects of electronic components: (a)
DC voltage output and inductor currrent and (b) AC signals showing the variable ripple on voltage
and current.

Another example of the chaotic evolution with a small ripple is shown in Figure 24a,
using a greater target voltage Vre f = 26 V. Here, the phase diagram shows the voltage ripple.
Certainly, the chaotic attractor evolves in a small region around vC = 26.3 V, due to the
controller response, with voltage variations of 300 mV and current variations of 200 mA.
Figure 24b shows the voltage signal vc and the gate voltage control to enable the MOSFET
transistor labeled as pulse control Pc, which also shows how the energizing time or pulse
width presents variations, in turn creating an asymmetric ripple on state variables.

(a) (b)

Figure 24. Experimental dynamic behavior with residual zero hysteresis control ξ ' 0 V, plotting (a)
phase diagram and (b) temporal evolution.

Concerning the zero hysteresis control for reference voltages lower than 10 V, there are
acceptable commutation frequencies as shown previously in the order of 2.5 kHz. However,
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when the system operates for desired regulation values greater than 15 V, e.g., Vre f = 26 V, a
chaotic regime occurs, as shown in Figure 24a. Furthermore, it is shown that for the system
with the zero hysteresis control, a chaotic behavior takes place with large commutation
frequencies, for this case f = 45.45 kHz as shown in Figure 24b. This high switching is
undesired because the MOSFET transistor can be overhead due to energy losses and can be
damaged. This behavior is not observed via simulations due to the fact the model assumes
ideal physical behavior for system parameters and electronic components.

Below, some examples of real orbits in CCM are presented created with the following
parameters: R = 5.5 Ω and Vre f= 12 V. Figure 25a,b shows the results. Furthermore,
Figure 25c,d shows the real dynamics obtained from the experimental prototype. In
addition, it is observed that the overshoot obtained with the simulation is 16.97% and with
the experiment is 15.94%, with a regulation error less than 5%.

(a) (b)

(c) (d)

Figure 25. Experimental validation of voltage control using the constant hysteresis control for ξ = 0.2
V, converging to 1T-periodic orbit in CCM: (a) phase portrait, (b) time evolution for simulation
results, (c) phase portrait, and (d) time evolution for experimental results.

3.3. Experimental Validation of the Constant Hysteresis Control

In an electronic converter, the load, the output voltage, and the hysteresis band have
to be varied in order to make the system operate in DCM. Thus, a simulation is carried out
by changing these parameters in order to detail the dynamics and validate the simulation
with the real behavior of the system. The values of the parameters used in the test are
Vre f= 20 V and R = 79.5 Ω.

The dynamics illustrated in Figure 26a,b are obtained through simulations, in which
the system slides by iL = 0 A, because the diode and the transistor are inactive. In DCM,
the voltage across the capacitor is reduced until it reaches the lower band of the hysteresis
activating the switch, and then the inductor is energized, as reflected in the increase in
current iL. In CCM, the capacitor starts to be charged, generating an increase in the output
voltage until it reaches the upper hysteresis band again.

Figure 26c,d shows the real dynamics captured with the experimental prototype. From
the qualitative point of view, the similarity is acceptable. However, a detailed comparison
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obtains that the value between the model and the real dynamics of the system presents
some inconsistencies, especially during the time that the current remains at zero.

(a) (b)

(c) (d)

Figure 26. Experimental validation of voltage control using the constant hysteresis control for ξ = 1
V, converging to 1T-periodic orbit in DCM: (a) phase portrait, (b) time evolution for simulation
results, (c) phase portrait, and (d) time evolution for experimental results.

It is recommended to use a small hysteresis to obtain good tracking performance
while ensuring a low switching frequency (2.5 kHz), as shown in Figure 27. In this
case, the experimental prototype is configured to regulate the output voltage to 12 V. by
imposing the target Vre f = 12 V. Note that the commutation frequency of the switch
during the steady-state operation with the zero hysteresis control is around f c = 2.5
kHz, as shown in Figure 27. Because of the alteration of the operating conditions, the
vector field induces a different type of ripple and the switching frequency tends to change.
Indeed, the experimental test showed that the switching frequency is not constant for high
reference values approaching the supply source E, leading to small cycles responsible for
output ripple.

Note that the obtained results allow new learning regarding practical considerations
and lessons to continue designing and improving power converters. For example, the
undesired overshoot found in the Buck converter with hysteresis controller can be improved
by adding a reference governor [40] to avoid sudden transitions in the set point. This
improvement, combined with more advanced control techniques, and a better experimental
prototype will lead to a better-controlled DC–DC power converter and it will be explored
in future research.
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(a) (b)

Figure 27. Experimental validation of voltage control using the constant hysteresis control with low
value, e.g., ξ = 0.05 V, and required voltage is Vre f = 12 V: (a) phase portrait and (b) time evolution.

4. Conclusions

This paper presented the mathematical modeling and experimental implementation
of a Buck converter with hysteresis control. Mathematical model description, the hystere-
sis control, and the experimental implementation using analog electronic devices were
presented.

Two control configurations were explored—zero hysteresis and constant hysteresis—
and numerical simulations were implemented using a bisection method to properly handle
the initial condition on the switching boundaries to drive the model solution transitions.

The Buck converter with the zero hysteresis control presents a stable fixed point
with the implication of an infinite commutation frequency, phenomena that cannot be
validated experimentally due to physical constraints of electronic components, parasitic
resistance, and internal dynamics. Although the experimental test was carried out with
available commercial components, the results such as dynamic evolution, the voltage,
and current ripples would be similar to those obtained with currently used components.
Furthermore, fast switching components (transistor, diode, and operational amplifiers) can
lead to obtaining a better regulation with low steady-state error and low-size LC filter.

A constant hysteresis control was successfully applied and validated experimentally to
mitigate the high switching and joule loss issues caused by the zero hysteresis control. Some
1T-periodic orbits were also predicted and validated experimentally. The output ripple is
proportional to the hysteresis band amplitude parameter, while the switching frequency is
inversely proportional, leading to a tradeoff when tuning the control parameter ξ to choose
appropriately between output voltage ripple and switching frequency. Some working
conditions varying the target voltage lead to an output voltage with ripple polarization.
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Appendix A. Bisection Numerical Method

The bisection method is a procedure to find a solution numerically, namely a root in
mathematical applications. Given a monotonic function f (t) for t ∈ [Ti, T f ], the problem is
to numerically find the time solution t = tr ∈ [Ti, T f ] such that f (tr) = Vre f , as described
in Figure A1.

Figure A1. Graphical description for bisection numerical method.

To reach the existent solution in the time interval [t1, t2] = [Ti, T f ], the algorithm at
each k − th iteration computes the time mean value tm = 0.5(t1 + t2), bisects the time
interval, and computes a new interval, where the root exists, to continue the search in the
next iteration. The algorithm is iterated unil the convergence criteria |( f (tm)−Vre f )| < ε
is satisfied, leading to finding the root for the time solution, e.g., tr = tm ∈ [t1, t2]. In some
versions, to avoid long loops, the evolution of dtmk = tmk − tm[k−1] is also considered
to detect the convergence. The version of the algorithm used in this paper to apply the
bisection numerical method is described as follows:

Algorithm A1 Bisection numerical Method

1: t1← {Ti} Time interval initial value
2: t2← {Tf = Ti + Ts} Time interval corresponds to Ts, the Time simulation step
3: Vref ← {xc} Reference value to reach and find the time value (solution)
4: ε← {1E− 15} Tolerance criteria for convergence
5: error← {1} error as initial value
6: while |error| > ε do
7: tm = (t1 + t2)/2
8: x1 = f (t1)
9: xm = f (tm)

10: error = xm−Vre f
11: if (x1−Vre f ) ∗ (xm−Vre f ) < 0 then
12: t2 = tm
13: else
14: t1 = tm
15: end
16: return tr = tm
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