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Abstract: In the current work, we have investigated the flow past a semi-infinite porous solid media,
after presenting a similarity transformation, governing equations mapped to a system of non-linear
PDE. The flow of a dusty fluid and heat transfer through a porous medium have few applications,
viz., the polymer processing unit of a geophysical, allied area, and chemical engineering plant.
Further, we had the option to get an exact analytical solution for the velocity to the equation that
is non-linear. The highlight of the current work is the flow of hybrid dusty nanofluid due to Darcy
porous media through linear thermal radiation with the assistance of an analytical process. The
hybrid dusty nanofluid has significant features improving the heat transfer process and is extensively
developed in manufacturing industrial uses. It was found that the basic similarity equations admit
two phases for both stretching/shrinking surfaces. The existence of computation on velocity and
temperature profile is presented graphically for different estimations of various physical parameters.

Keywords: Darcy-Brinkman number; hybrid nanofluid; dusty fluid

1. Introduction

The boundary layer flow is studied on continuous moving solid surfaces. Dusty
fluid flows have become increasingly important in recent years. Petroleum transportation,
wastewater treatment, combustion, and power plant piping are only a few examples.
Furthermore, since crude oil is recovered from the pores of reservoir rocks, fluid flow
through porous media has become a significant subject. The dusty fluid is a combination
of micrometer-sized particles into a base fluid. The latest technical advances necessitate a
different revolt in the field of a dusty fluid. The flow happens in numerous engineering
and innovative processes. Applications over a wide range of science and design controls,
particularly in the expulsion of a polymer in a dissolve turning measure; the expulsion
from biting the dust is usually drawn and simultaneously reached out into a stretched
sheet, and the boundary layer along with material behavior conveyors, the aerodynamic
expulsion extrusion of glass blowing, paper manufacture, plastic sheets, and the boundary
layer along with a fluid film are considered in the reduction method.

The desired fluid mechanical properties as a result of such a method would be primar-
ily determined by two factors: the cooling fluid utilized and the rate of stretching. Fluids
with non-Newtonian properties that are electrically leading can be used as cooling liquids
because the flow and heat transfer can be controlled externally. The level of stretching
is crucial because quick stretching induces rapid solidification. Regarding these applica-
tions, Sakiadis [1] first talked about boundary layer flow over an insistent, dense surface
affected at a consistent speed. Crane [2] stretched out the Sakiadis concern to a stretching
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sheet and originated a closed-form particular solution. From that point forward, several
authors [3–10] generalized the stretching flow problem in different directions, resulting
in numerous references. One way to develop the thermal conductivity of conventional
coolants is to add nano-sized particles. Furthermore, the nanofluid is referred to as a com-
bination of nano-sized particles, which dissipates extra heat because of its higher thermal
conductivity, leading to better device thermal efficiency.

In view of these possibilities, the impact of mass transfer and energy properties
concerning the air stream and water surface was investigated by Gu et al. [11]. The thermal
conductivity and dynamic viscosity using hybrid nanofluid were calculated experimentally
by Esfe et al. [12]. Mahabaleshwar et al. [13–16] extended his work with heat transfer
within the sight of radiation and heat source/sink effects subsequently over the stretching
sheet. Nanofluids across a stretching sheet with cross-diffusion impacts of hydromagnetics
were investigated by Reddy and Chamkha [17]. Natural convection in a porous media
saturated with nanofluid across a non-isothermal vertical plate investigated by Gorla and
Chamkha [18]. Further, an extensive and substantial survey of hybrid nanofluids can be
perused in the new analysis, see [19–22]. The equation is widely used in the study of porous
media with high porosity. The effective viscosity is the dynamic viscosity that is related
with the brinkman term. The magnitude of the viscosity ratio has been studied in the past
with different results by Mahabaleshwar et al. [23,24]. The Darcy–Brinkman conditions
validity has additionally been explored, especially when it derives solid–fluid interfaces
in relation to boundary conditions at the Nield [25]. The research, which addresses the
Navier–Stokes conditions instead of the Darcy equation, yields a connection concerning
the permeability of the normal exhibit structure and the porosity, showing that the Darcy
equation is effective for flow across normal construction across the entire porosity range.
Linear stability analysis is used to investigate bio-thermal convection in suspension of
gyrotactic microorganisms in a porous media using the Darcy–Brinkman model [26–30]

The main aim of this analysis is to use a proposed convergent analytical technique to
examine the features of a hybrid nanofluid due to a Darcy porous medium using nonlinear
thermal radiation. An effective resolution is different due to the non-linear nature as well
as outline essence of the query. As a consequence, an analytical description of the proposed
method is obtained. The governing PDEs are converted into nonlinear ODEs. As a result,
the present research will look at the quantitative relationships concerning the wall impacts
and the Darcy Brinkman equation in greater detail. To assess the association between flow
and temperature, an inventory of equivalent coefficients among the movement aspects,
as well as real proportions of the perception model, were calculated. The specifics are
described using tables and graphs.

2. Physical Model and Solution

Consider the flow and heat transfer of an incompressible hybrid nanofluid due to a
stretching/shrinking sheet in a two-dimensional boundary layer. The velocity of the sheets
is assumed to be linear, i.e., uw(x) = cx, with c < 0 for a shrinking sheet and c > 0 for a
stretching sheet. The stretching/shrinking sheet is parallel to the y = 0 plane. The flow is
produced because of the stretching/shrinking sheet affected by the concurrent utilizations
of two equivalents and contrary forces along the x-plane (see Figure 1).
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Figure 1. Physical model for stretching/shrinking boundary.

The governing equations for the boundary layer approximations are:

2.1. Fluid Phase

∂u
∂x

+
∂v
∂y

= 0, (1)

ρhn f

φ2

(
u

∂u
∂x

+ v
∂u
∂y

)
= µe f f

∂2u
∂y2 + KN(up − u)−

µhn f

k
u− σhn f B2

0Sin2(τ)u, (2)

(ρCρ)hn f

(
u

∂T
∂x

+ v
∂T
∂y

)
= κhn f

∂2T
∂y2 +

ρpCm

τT
(Tp − T) +

ρp

τv
(up − u)2 − ∂qr

∂y
, (3)

2.2. Dust Phase

∂up

∂x
+

∂vp

∂y
= 0, (4)

up
∂up

∂x
+ vp

∂up

∂y
=

K
m
(u− up), (5)

ρpCm

(
up

∂Tp

∂x
+ vp

∂Tp

∂y

)
=

ρpCm

τT
(T − Tp). (6)

where µe f f is the effective dynamic viscosity, K is the Stokes drag constant, N is the number
density of dusty particle, B0 is the magnetic field, cm f is the specific heat of dust particles,
cp f is the specific heat of fluid particles, l is the mass concentration of the particle, κn f is
the thermal conductivity of the nanofluid, µ f is the limiting viscosity of fluid, µhn f is the
effective viscosity of hybrid nanofluid, ρ f is the density of fluid fraction, ρs is the density of
solid fraction, ρhn f is the effective density of the hybrid nanofluid, and τv is the relaxation
time of the dust particle.

The fluid and dust particle B.C’s are given by.

v = vw, u = uw(x) = cx, T = Tw(x) = T∞ + bx2 at y = 0,
vp → v, u→ 0, up → 0, Tp → T∞, T → T∞ as y→ ∞.

}
(7)
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The radiative heat flux is stated as follows (see Mahabaleshwar et al. [31–34]) using
the Rosseland [35] approximation.

qr = −
4 σ∗

3k∗
∂T4

∂y
, (8)

The difference of temperature expressed as linearity function in the fourth power of
temperature is an assumption. The Taylor’s series expansion of the term T∞ with the value
T4 is presented as below; see Mahabaleshwar et al. [36,37]

T4 = T
4

∞ + 4 T
3

∞(T − T∞) + 6 T
2

∞ (T − T∞)2 + ..... (9)

Ignoring higher-order terms of (T − T∞) in the exceeding expression absent from the
first degree, T4 can be estimated by:

T4 ∼= −3 T4
∞ + 4T3

∞ T. (10)

By employing Equations (8) and (10) substitute in Equation (3) moderates to

(ρCρ)hn f

(
u

∂T
∂x

+ v
∂T
∂y

)
= κhn f

(
1 +

16σ∗T3
∞

3k∗κn f

)
∂2T
∂y2 +

ρpCm

τT
(Tp − T) +

ρp

τv
(up − u)2.

(11)
Here, the Stefan–Boltzmann constant is σ*, the absorption coefficient is k*, and radiative

heat flux is qr. The following is the term for the hybrid nanofluid density, viscosity, thermal
conductivity, and specific heat. Anusha et al. [26]

µhn f
µ f

= 1
(1−ϕ1)

2.5(1−ϕ2)
2.5

ρhn f
ρ f

= (1− ϕ2)
(

1− ϕ1 + ϕ1
ρs1
ρ f

)
+ ϕ2

(
ρs2
ρ f

)
(ρCP)hn f
(ρCP) f

= (1− ϕ2)

(
1− ϕ1 + ϕ1

(ρCp)s1
(ρCp) f

)
+ ϕ2

(ρCp)s2
(ρCP) f

,

σhn f
σf

=
σs2+2σb f +2ϕ2(σs2−σf )
σs2+2σb f−ϕ2(σs2−σf )

where σb f = σf
σs1+2σf +2ϕ1(σs1−σf )
σs1+2σf−ϕ1(σs1−σf )

κhn f
κ f

=
κs2+2κb f +2ϕ2(κs2−κ f )
κs2+2κb f−ϕ2(κs2−κ f )

where κb f = κ f
κs1+2κ f +2ϕ1(κs1−κ f )
κs1+2κ f−ϕ1(κs1−κ f )

.




(12)

The following are the reduced equations obtained using the similarity transformation:

η = y
[
|c|
ν f

] 1
2 , u = |c| x fη(η), up = |c| x Fη(η), v = −

√
|c| ν f f (η),

vp = −
√
|c| ν f F(η), θ(η) = T−T∞

Tw−T∞
, Θ(η) =

Tp−T∞
Tw−T∞

.
(13)

As a consequence, vw = −
√
|c| ν f Vc is the wall mass transfer velocity. The governing

equations of motion are then reduced to form.

2.3. Fluid Phase

Λ fηηη(η) + ε2(φ) fηη f − ε2(φ) fη
2 + lβ

(
Fη − fη

)
−ε3(φ)Q Sin2(τ) fη − ε1(φ) Ω fη = 0,

(14)

(
ε5(φ) +

4
3 Rd

)
θηη + (Pr ε4(φ))

(
f θη − 2 fηθ

)
+ lγPrβT(Θ− θ)

+lβvPrEc
(

Fη − fη

)
= 0

(15)
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2.4. Dust Phase

Fη
2 − FFη + βv

(
Fη − fη

)
= 0, (16)

2FηΘ− FΘη + βT(Θ− θ) = 0. (17)

here
ε1(φ) =

µhn f

µ f
=

1

(1− φ1)
2.5(1− φ2)

2.5 ,

ε1(φ) =
µhn f

µ f
=

1

(1− φ1)
2.5(1− φ2)

2.5 ,

ε2(φ) =
ρhn f

ρ f
= (1− φ2)

(
1− φ1 + φ1

ρs1

ρ f

)
+ φ2

(
ρs2

ρ f

)
,

ε3(φ) =
σhn f
σf

=
σs2+2σb f +2φ2(σs2−σf )
σs2+2σb f−φ2(σs2−σf )

where

σb f = σf
σs1+2σf +2φ1(σs1−σf )
σs1+2σf−φ1(σs1−σf )

ε4(φ) =
(ρCP)hn f

(ρCP) f
= (1− φ2)

(
1− φ1 + φ1

(
ρCp

)
s1(

ρCp
)

f

)
+ φ2

(
ρCp

)
s2

(ρCP) f
,

ε5(φ) =
κhn f
κ f

=
κs2+2κb f +2φ2(κs2−κ f )
κs2+2κb f−φ2(κs2−κ f )

where

κb f = κ f
κs1+2κ f +2φ1(κs1−κ f )
κs1+2κ f−φ1(κs1−κ f )

.

The comparative reduced boundary constraints will take the accompanying structure,

f = Vc, fη = D, θ = 1 at η = 0,
fη → 0, Fη → 0, F = f , θ → 0, Θ→ 0 as η → ∞.

}
(18)

Chandrasekhar’s number is Q =
σf B2

0
ρ f |c|

; the density of the particle phase stands for the

ρp = Nm; the mass concentration of the dusty particle is l =
ρp
ρ ; the Prandtl number

is Pr =
ν f (ρCp) f

κ f
; the mass transfer strength at the sheet, as determined by the wall mass

transfer parameter, is Vc; the specific heat parameter is γ = cm
cp

; the velocity fluid particle

interaction parameter is βv = 1
|c|τv

; and the temperature’s fluid-interaction parameter is

βT = 1
|c|τT

, the Eckert number is Ec = c2

bcp
. Furthermore, D is set to such an extent that

D = 1 represents the stretching sheet and D = −1 represents the shrinking sheet.

3. Fluid and Dust Phase Flow Fields

The highlights of the solution’s boundary layer estimate are recovered by the accurate
solution of exponential form.

f (η) = Vc + D
1− exp[−λη]

λ
, F(η) = Vc + D

1− α exp[−λη]

λ
, (19)

where λ must be strictly positive to match the physical boundary conditions in (18); for α,
which describes the stretching velocity of dust particles, no such restriction is needed. Both
λ and α are real numbers, and at this phase they are unknown. It is easy to demonstrate
that the exact solutions satisfy all of the boundary conditions in (18) and (19). The following



Computation 2021, 9, 118 6 of 14

step is to satisfy the fluid and dust momentum equations given in (14). As a consequence,
the fluid phase’s momentum equation yields the following relation.

−ΛVcλ3 +
(
ε2(φ) V2

c −Λβ−ΛD
)
λ2+(

2ε2(φ) VcD + ε2(φ) Vcβ + Γ1(φ) VcΩ + lVcβ + ε3(φ) Q sin2(τ)V
)
λ

+ε2(φ) D + ε2(φ) VcDβ + ε3(φ) Q sin2(τ) + ε3(φ) Q sin2(τ)β
+Γ1(φ) DΩ + Γ1(φ) βΩ + LβD = 0.

(20)

Solutions are determined by using the cubic formula

λ = − B
3A
− 2

1
3 (−B− 3AC)

(3AR)
+

1

3× 2
1
3 A

R

A = ΛVc, B = ε2(φ) V2
c −Λβ−ΛD,

C = 2ε2(φ) VcD + ε2(φ) Vcβ + Γ1(φ) VcΩ + lVcβ + ε3(φ) Q sin2(τ)Vc,
E = ε2(φ) D + ε2(φ) VcDβ + ε3(φ) Q sin2(τ) + ε3(φ) Q sin2(τ)β

+Γ1(φ) DΩ + Γ1(φ) βΩ + LβD,

R =

[
−2B3 − 27A2E− 9ABC−

√
4(−B2 − 3AC)2 − (−2B3 − 27A2E− 9ABC)2

] 1
3
.

When substituting Equation (19) into Equation (16), the momentum equation for the
dust phase is obtained, this is as follows:

βv − (D + βv + Vcλ)α = 0. (21)

When Equation (21) is substituted for α,

α =
βv

D + βv + Vcλ
, (22)

Furthermore, once the values of λ and α have been determined, the wall shears can
be conveniently measured using the formulations:

fηη (0) = − D λ, Fηη(0) = − D αλ. (23)

4. Results and Discussion

The flow of the unique/numerous two-phase dust fluid and temperature solutions due
to a stretching/shrinking sheet with the effect of a heat source and heat sink is investigated
in the current work. The current segment’s main aim is to investigate the graphical effects
of different relevant constraints to temperature profiles and velocity for two distinctive
nano fluids. The presence of mass flow transfer constraint is represented by Vc, the Eckert
number is Ec, particle parameter is l, Ω is the Darcy porous medium, βv is the interface
parameter for velocity, Pr is the Prandtle number, γ is the specific heat parameter, Λ is
the Brinkmann ratio, the fluid particle interaction parameter of temperature is βT , and
Chandrasekhar’s number is Q.

Figure 2a–d demonstrates the solution domain λ versus mass transpiration Vc for the
varying fluid particle interaction parameter βv, when considering the stretching surface
with l = 0 and l = 1 for different values of the Chandrasekhar’s number Q. The solution
domain λ is a monotonically increasing function of mass transpiration Vc. Figure 3a–d
portrays the solution domain λ as function of mass transpiration Vc in the case of a
shrinking surface. For different values of the Chandrasekhar’s number Q, l = 0 and l = 1
for the differing interaction parameter βv. The estimations of λ consistent with velocities
are monotonically increasing, though the wall suction velocities show both increase and
decrease. Figure 4 describes the impact of the stretching sheet on the velocity profile of
both nanofluid and dust phases. The physical velocity field of hybrid nanofluid and dust
phase will be reduced as the thickness of the momentum boundary layer is also condensed,
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for the mass flow suction case; there is only a unique solution exit. Figure 5a,b displays
the transverse velocity for both two levels in USB. The figure shows that in branch 1, the
velocity of the hybrid nanofluid phase is more than the dusty phase, and in branch 2,
the velocity of the hybrid nanofluid phase is less than the dusty phase. Chandrasekhar’s
number Q increases as the velocity profile decreases.
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Figure 5. Influence of fluid velocity (a) fη and (b) Fη particle velocity for the stretching surface with dual solution.

Figure 6a–d depicts the impact of the stretching sheet on the velocity profile of both
fluid and dust fluid. The suction case is illustrated in Figure 6a,b; it is demonstrated that as
the suction increases, the velocity profiles of fluid and dust fluid increase. The injection
case is shown in Figure 7c,d; as the injection value increases the fluid and dust phases
of the velocity profile increase. However, as the injection value increases, the opposite
behavior occurs. Subsequently, the magnetic field performances decrease the boundary
layer development because of expanding the Lorentz force; the physical validity of this
behavior is disputed. Figure 7 portrays the velocity profile under different values of
Brinkman numeral; it is observed that Brinkman number increments as velocity profiles are
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also increased. Figure 8 represents the effect of Darcy number exhibits for both fluid and
dusty nanofluids. It is revealed that as the Darcy number Ω increases, the hybrid nanofluid
decreases. Since the porosity parameter increases in velocity, as a result, the boundary layer
thickness is reduced.
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5. Conclusions

In this analytical study, the energy and transfer of momentum of an MHD flow
of a hybrid dusty fluid due to a stretching/shrinking sheet are investigated; a set of
nonlinear ODEs is attained after applying the appropriate similarity transformations. Also,
Darcy–Brinkman ratio and radiation were taken into account and were solved with an
analytical method.

• Darcy–Brinkman ratio and radiation were taken into account and were solved by
analytical method.

• The velocity profile for two phases reduces when Darcy’s number increases.
• As the Brinkman number increases, the thickness of the momentum boundary layer

increases.
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• The set of physical parameters under consideration determines if branch 1 or branch 2
arrangements are cooler, which would be important through the cooling method.
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Nomenclature

Symbols Descriptions S. I. Units
B0 Magnetic field (Tesla)
d stretching/shrinking constant (wm−2)
k thermal conductivity (m2s−1)
k* absorption constant (m−2)
M magnetic parameter (w S Kg−1)
N density number (-)
P pressure (-)
P dimensionless pressure (-)
T temperature (K)
Vw mass flux (ms−1)
Vc suction/injection velocity (-)
Vc > 0 suction velocity (-)
Vc < 0 injection velocity (-)
u, v velocities (m s-1)
Greek letters
α constant (-)
βv interaction parameter (-)
βT Fluid particle for temperature (-)
Λ Brinkmann ratio (-)
Ω Darcy model (-)
µ f limiting viscosity of fluid (-)
µe f f effective dynamic viscosity (N s m−2)
η similarity variable (-)
σ electrical conductivity (S m−1)
σ∗ Stefan-Boltzmann (Wm−2K−4)
τ inclined angle (-)
τv relaxation time (-)
Subscript
S1 density of solid fraction of hybrid nanofluid
S2 density of solid fraction of hybrid nanofluid
P solid particles
w wall temperature
∞ ambient fluid
f parameter of base fluid
hnf parameter of hybrid nanofluid
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