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Abstract: A standard canonical Markov Chain Monte Carlo method implemented with a single-
macrospin movement Metropolis dynamics was conducted to study the hysteretic properties of
an ensemble of independent and non-interacting magnetic nanoparticles with uniaxial magneto-
crystalline anisotropy randomly distributed. In our model, the acceptance-rate algorithm allows
accepting new updates at a constant rate by means of a self-adaptive mechanism of the amplitude of
Néel rotation of magnetic moments. The influence of this proposal upon the magnetic properties of
our system is explored by analyzing the behavior of the magnetization versus field isotherms for a
wide range of acceptance rates. Our results allows reproduction of the occurrence of both blocked
and superparamagnetic states for high and low acceptance-rate values respectively, from which
a link with the measurement time is inferred. Finally, the interplay between acceptance rate with
temperature in hysteresis curves and the time evolution of the saturation processes is also presented
and discussed.

Keywords: Markov chain Monte Carlo; Metropolis–Hastings algorithm; acceptance rate; magnetic
nanoparticle; uniaxial magnetic-crystalline anisotropy; hysteresis loops; superparamagnetism

1. Introduction

The theoretical study of magnetic nanoparticle systems dates to the pioneering work
of E. C. Stoner and E. P. Wohlfarth. (1948) [1], L. Néel (1949) [2] and W. J. Brown (1963) [3].
These works set the starting point for current developments and applications in the field of
magnetic fluids, which include magnetic resonance imaging, magnetic hyperthermia for
cancer treatment, among others. [4–7].

Due to the mathematical complexity of systems composed of many particles, it is
necessary to implement numerical simulations carried out by computer, through algorithms
and simulation methods to recreate their behaviors. For magnetic nanoparticle systems,
the stochastic differential Landau–Lifshitz–Gilbert (LLG) [8,9] equation or the respective
Fokker–Planck (FP) [10] equation, are usually integrated to reproduce the movement of
magnetic moments and the appropriate probability distribution. On the other hand, some
authors prefer to use Monte Carlo (MC) simulations based on Metropolis–Hastings (MH)
dynamics for this purpose [11,12]. Monte Carlo methods, as is well established, can be
based on sampling of discrete events or on Markov chains. This latter is known as Markov
chain Monte Carlo (MCMC), from which the MH algorithm is the most popular MCMC
method to generate Markov chains according to a certain proposal probability distribution.
In a classical physical system of magnetic moments in contact with a thermal reservoir,
such a distribution is given by the Maxwell-Boltzmann statistics. The MCMC method,
which uses the Bayesian inversion approach, has been demonstrated to be a powerful tool
to estimate unknown observables according to a prior knowledge as it can be found in
several reported works [13–17].
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Any of these methods is really feasible; however, the MC technique differs from LG or
FP in that it lacks a time variable in real units, which may in principle generate limitations
when one wishes to tackle kinetic or dynamic properties.

In the search for MC algorithms that allow the inclusion and reproduction of dynamic
quantities, some interesting proposals have emerged; among them is the one by P. V.
Melenev et al. (2012) [18]. In their work, authors propose that the evolution of the magnetic
moments is carried out using the conventional Metropolis–Hastings algorithm, additionally,
special rules are imposed on the rotations that they can perform to recreate metastable
states that allow access to magnetic properties such as hysteresis. They propose, for
example, that the Monte Carlo step (MCS) takes the role of time (t) and that the rotations
(of a random nature) are obtained from angles taking values between 0 and δθ, being the
angular parameter δθ chosen ad hoc. Calibrating appropriately MCS and δθ they obtain
results comparable with the LLG (or FP) equation.

Another idea that also stands out is the one put forward by D. A. Dimitrov and G. M.
Wysin (1996) [19]. They use a model similar to Melenev but they force the algorithm to
accept and reject magnetic moment movements at a certain constant rate, which they call
the acceptance rate Γ. This control over rotations forces to δθ to be adjusted. The authors
state that in this way it is possible to sample the phase space at a uniform rate, simulating
dynamic properties, and be assertive that the Monte Carlo step can be viewed as a time
variable. To test these ideas, they obtain Zero Field Cooling (ZFC) and Field Cooling (FC)
curves, and calculate the blocking temperature for a system of Cobalt nanoparticles. As a
result, they show that their thoughts are like-minded with the experiment; moreover, they
obtain a transformation of MCS to t.

In summary, there is an alternative and promising method that can be directly com-
parable with LLG, FP and experimental results, which we believe should be thoroughly
studied. Therefore, this paper aims to build on this research to investigate the role of
the acceptance rate and how actually affects the properties of a magnetic nanoparticles
ensemble. We choose the magnetization and study its response in the presence of magnetic
fields at constant temperature. Curves are simulated and computed for different values of
Γ. The influence of this quantity on the behavior of the system is analyzed and we conclude
that the acceptance rate plays an important role in the relaxation processes.

Finally, we show that the model and computational method used can recreate the
dynamics of magnetic moments under Néel rotations (magnetic moment rotates internally
with respect to the mono-crystalline lattice, see Section 2.2). The method can be extended
to include Brownian motion present in realistic magnetic fluids. This can be done by
implementing translations and rotations of the particles in the presence of viscous media.
This is to develop a computational work focused on the calculation of the Specific Loss
Power (SLP) for biomedical applications in alternative cancer treatments using the magnetic
hyperthermia technique.

2. Materials and Methods
2.1. Magnetic Nanoparticle Model

A physical system composed of a set of spherical nanoparticles of equal size, suf-
ficiently spaced so that the interactions between them are negligible and uniformly dis-
tributed in a solid matrix in such a way that translations and rotations are forbidden, is
considered. Each particle (see Figure 1) is assumed to be a single-magnetic-domain with
uniaxial magneto-crystalline anisotropy; as a result, its properties can be characterized
through a magnetic moment ~µ and an easy axis n̂.
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Figure 1. Magnetic nanoparticle structure.

The magnitude of the magnetic moment µ is equal to the product of MS (saturation
magnetization of the single-domain) with Ω (nanoparticle volume). It is supposed that
thermal fluctuations do not change MS and neither dilate the particle. Likewise, the
direction of the easy axis is not affected by the thermal bath nor by internal or external
interactions, which means that its initial orientation remains unchanged at all times.

With respect to the foregoing, the simplest Hamiltonian governing the behavior of a
magnetic moment in the presence of an external magnetic field ~H is:

H = −Ke f f Ω
(
~µ · n̂

µ

)2
− µ0~µ · ~H, (1)

where the first term is the anisotropy potential energy that describes the interaction between
the magnetic moment and the easy magnetization axis, with Ke f f the effective magnetic
anisotropy constant. Surface and shape contribution to the anisotropy are neglected for
simplicity. The second term is the Zeeman potential energy and expresses the coupling
between the magnetic moment and the field. Temperature is included using the Metropolis
algorithm as indicated in Section 2.3.

2.2. Néel Relaxation

Due to the existence of uniaxial magnetic anisotropy, it is evident from Equation (1)
that the magnetic moment has two stable and energetically equal orientations (one of them
parallel to the easy axis and the other anti-parallel). These two orientations are separated
by an energy barrier equal to Ke f f Ω and for a given absolute temperature T, there is a
probability that the moment spontaneously changes from one direction to the other because
of thermal fluctuations. The average time for this change to occur is known as the Néel
relaxation time [20] and it is given by the expression:

τN = τ0 exp
(Ke f f Ω

kBT

)
, (2)

with τ0 a characteristic time of the magnetic solid that takes typical values of 10−9 s (or
less) [21] and Boltzmann’s constant kB. This equation is only valid for zero or very weak
external magnetic fields compared to the anisotropy interaction.

Suppose now that we want to measure the magnetization of a nanoparticle and that
the measurement takes a time τm to be completed. If the measurement time is greater
than the Néel time (i.e., τm > τN) the result is that the magnetic moment oscillates many
times during measurement and therefore the average magnetization is zero (see Figure 2a).
Conversely, if this time is smaller than the relaxation time (τm < τN) then the magnetic
moment will not oscillate, and it will remain in a blocked state causing the magnetization
of the nanoparticle remains well defined (see Figure 2b). The first situation is called
superparamagnetic state since the magnetization behaves like that of a paramagnet with
macroscopic magnetic moment. The second one is known as a blocked state because the
moment remains aligned along a given orientation.
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Figure 2. Representation of the superparamagnetic (a) and blocked (b) regimes under Néel relaxation.

2.3. Metropolis Algorithm Driven by Acceptance Rate

The Metropolis–Hastings algorithm is used to carry out magnetic moment movements
and updates along the phase space of the system. For this algorithm, a single Monte Carlo
step (MCS) is defined as the elapsed time to visit all the particles (N) in the system and to
attempt a new magnetic moment configuration (~µ′) from a previous one (~µ) for every single
magnetic moment, by forming in this way the Markov chain. In this scheme, a particle is
chosen at random, and the direction of its magnetic moment is perturbed to access a new
configuration. If the energy difference between microstates is ∆E ≤ 0 then the movement is
accepted, conversely, if ∆E > 0 the movement is accepted only with a Boltzmann transition
probability given by W = exp(−∆E/kBT) by comparison with a random number r ∈ [0, 1).
If r ≤ W the motion is accepted, otherwise is definitively rejected and a new random
particle is again selected. The goal of this algorithm, accordingly to a canonical ensemble
in contact with a thermal bath as is known in statistical physics, is to make the magnetic
moments obey a Boltzmann probability distribution given by:

ρ(X) = 1
Z

e−E(X)/kBT , (3)

with E being the eigenvalue of the Hamiltonian of the system (see Equation (1)), Z is
the partition function, which serves as normalizing factor, and the vector X in phase
space stands symbolically for the set of variables describing the degrees of freedom, e.g.,
X = (~µ1, ~µ2, . . . , ~µN). If any of the magnetic moments change from ~µ → ~µ′, a new mi-
crostate Y is generated. Thus, the probability density given by Equation (3) describes
the statistical weight with which the configuration or microstate X occurs in thermal
equilibrium [22].

Bayes theorem states that the posterior distribution is given by [15,23]:

π(~µ|~µ′) = π(~µ′|~µ)π0(~µ)∫
π(~µ′,~µ)π0(~µ)d~µ

. (4)

Here, π is a Lebesgue density, so π0(~µ) is the prior density. In our case, let Q(~µ′|~µ) or
Q(Y|X) be the proposal or instrumental density, i.e., a Markov transition density describing
how to go from state X to Y.

To sample phase space, we start from a current or initial state for the magnetic moment
~µ with any given random orientation. The trial movement is executed so that the new
orientation is close to the old one, with ~µ′ selected inside a cone whose main axis is along
~µ (see Figure 3). This update is achieved by means of a double random rotation matrix
R(θ, φ) (visit Appendix A.1) involving a polar angle θ ∈ [0, δθ] and an azimuthal one
φ ∈ [0, 2π), being δθ the cone aperture. Angles θ and φ are chosen randomly from uniform
distributions U(0, 1). Thus, ~µ′ = R(θ, φ)~µ and the way as the angles are chosen, makes the
Markov matrix Q to be symmetric, i.e., Q(~µ′|~µ) = Q(~µ|~µ′).

A sketch of the algorithm is given in Algorithm 1, where α is called the accep-
tance/rejection probability. With this election, the principle of detailed balance is ful-
filled and the ratio of transition probabilities π(~µ′|~µ)/π(~µ|~µ′) depends only on the energy
change ∆E.
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Algorithm 1 Metropolis–Hastings Algorithm.

Given the current state ~µ, then:

Generate θ ∼ U(0, δθ) and φ ∼ U(0, 2π); . Random Uniform Distribution.
Propose the new candidate ~µ′ ∼ Q(~µ′|~µ); . See Appendix A.1.
Calculate α = min{1, ρ(~µ′)

ρ(~µ)
Q(~µ|~µ′)
Q(~µ′ |~µ)}; . Acceptance/Rejection Probability.

Draw r ∼ U(0, 1); . Random Uniform Distribution.

if (r ≤ α) then
Accept ~µ′, set ~µ = ~µ′ and define the flag γ = 1;

else
Reject ~µ′, ~µ does not change and do γ = 0;

end if

Return ~µ and γ.

In discrete event-based Monte Carlo simulations on classical magnetic systems, new
orientations ~µ′ of the magnetic moments are chosen completely at random, i.e., θ ∈ [0, 2π]
instead of θ ∈ [0, δθ], and independent on the initial state ~µ. The consequence of this is that
the system always exhibits a superparamagnetic behavior regardless of the temperature
value, as Dimitrov and Wysin [19] warned in their paper, since the system can rapidly
escape from metastable states responsible for magnetic hysteresis. Please note that δθ is a
parameter that has not been specified so far, and it is the one responsible for controlling the
convergence rate of the algorithm and how the exploration of the phase space is performed.
If it is too small most of the moves will be accepted and vice versa.

Figure 3. Cone used to choose the random motion of the magnetic moment.

The undesired effect of having the system always in a superparamagnetic regime
can be overcome precisely through a proper handling of the δθ parameter. To do so we
try to reproduce a dynamic similar to that of the LLG framework (where the system
always evolves and explores likely microstates), by stating that δθ must be modified in
a self-adaptive manner such that the phase space is sampled at a constant rate. This is
achieved by including an additional acceptance rate Γθ , which is calculated by counting
the number of accepted movements in a large enough number of MC steps NMC. Γθ is thus
calculated and δθ is updated every single Monte Carlo step (MCS). Thus, the cone aperture
δθ is adjusted so that statistically Γθ remains constant as much as possible within certain
tolerance range during the simulation of any curve. For such purposes, it is imposed that
all the particles are selected and attempted to be perturbed so that a specific δθ influences
equally the behavior of the set (see Algorithm 2).
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Algorithm 2 Main Algorithm.

Set the initial conditions: magnetic field, temperature, magnetic moments orientations, the
easy axes orientations and so on.

Nacc = 0; . Total Accepted Movements.

for i ≤ N do
Run Metropolis algorithm and return γ value; . See Algorithm 1.
Nacc = Nacc + γ;

end for

Compute Γθ = Nacc
N × 100%; . Acceptation Rate.

Update δθ; . See Algorithm 3.
Compute the physical properties.

The self-adaptation process of δθ is as follows (see Algorithm 3): an initial value for Γθ

is chosen, namely a Γ0 corresponding to the target acceptance rate we pretend to achieve,
and then the acceptance rate is calculated after a Monte Carlo step. If Γθ > Γ0 + 2%, which
means more accepted movements (this happens when δθ is small), then δθ is increased
by 20% taking care that the maximum value of π is not exceeded. On the other hand, if
Γθ < Γ0 − 2%, which means less accepted movements (this happens when δθ is big), then
δθ is reduced by 20%. We can do this because Q is not uniquely determined and some
arbitrariness in the explicit choice of it remains.

Algorithm 3 Cone Aperture Update.

if (Γθ < Γ0 − 2) then
δθ = 0.8 δθ; . Reduce the cone aperture by 20%.

else if (Γθ > Γ0 + 2) then
δθ = 1.2 δθ; . Increase the cone aperture by 20%.

else
δθ does not change;

end if

δθ = min(π, δθ). . The cone aperture cannot exceed π.

With the election of such percentages, i.e., with 2% for the confidence interval of Γθ

and 20% for the increase/decrease of the cone aperture δθ, we managed to guarantee
Γθ ≈ const. For other percentages, in our tests, a stability in the acceptance rate was not
achieved. In Appendix A.2 we show the results of some tests and diagnostics over this
algorithm, including autocorrelation plots, effective sample size and thin size.

3. Results and Discussion

In our simulation we used a total number of N = 103 particles with magnetic
anisotropy constant Ke f f = 10 kJm−3 and radius of R = 7 nm. A saturation magneti-
zation per particle MS = 446 kAm−1 corresponding to magnetite [24] and M0 = NMS
for the ensemble were employed. Additionally, for all experiences the easy axes were
randomly oriented. Numerical experiments are explained and discussed below.

3.1. Magnetization, Acceptance Rate and Cone Aperture vs. Magnetic Field

This section explores the dependence of magnetization both as function of a time-
dependent field and the respective MCS dependence when a constant magnetic field
is applied. At the beginning of each time-dependent field experience, all the magnetic
moments are randomly oriented, and they are thermalized until saturation. To accomplish
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this initial state, 2000 MCS are required. For curves such as those shown in Figure 4, 200
points are used and a magnetic field in the z-direction is chosen according to the rule:

Hi = H0 cos
(

π

200NMC
i
)

, (5)

with H0 ≈ 40 kAm−1 (or 500 Oe) the field amplitude and the time variable i ∈ [0, 200]NMC
given in MCS units. This particular choice is made since the magnetic hysteresis cycles are
symmetrical and it is enough to calculate the upper branch, so a half oscillation in the field
is only necessary, whereas the lower branch is obtained by simultaneously reflecting the
first one with respect to the H (or x) and M (or y) axes. At each i-th time value, a constant
field is assumed, and the evolution is performed using the Metropolis algorithm. Half of
the total MCS, namely NMC/2, are used to thermalize the system at a given new field value
and the other half is used for data collection and averages calculation purposes. A total
number of NMC = 100 MCS was employed at every point per experiment.

Figure 4 shows the results for (a) the reduced magnetization M/M0, (b) the accep-
tance rate and (c) the cone aperture as a function of the reduced magnetic field H/H0 at
T = 100 K. Each point on the curve of magnetization is the result of averaging the magnetic
moments of the particles in the field-direction during data acquisition. The same averaging
process is performed for Γθ and δθ (see Section 2.3). All curves are in addition the result of
configurational averages performed over 100 independent numerical experiments.

As is observed in Figure 4a, the system exhibits hysteresis for values of Γθ above
20%, whereas for 10% of acceptance the system behaves as a superparamagnet. As the
acceptance rate increases above 20% both the coercivity and the squareness of the loop
increase. It is remarkable the degree of control on the acceptance rate Γθ above 20% as
can be observed in Figure 4b, which is constant for all the range of values of the external
field. Only for 10% of acceptance a noticeable variation is observed only at low fields. In
Section 3.2 we discuss this feature where both the temperature and the fact of having the
system in a superparamagnetic state are key factors to understand such phenomenology.

As concerns to Figure 4c, for higher values of Γθ , the angular parameter of the cone
aperture δθ is smaller. This fact means that the system remains confined at metastable states
as long as the movements are strongly bounded. This is clearly demonstrated by looking at
the cycle for Γθ = 90% where the hysteresis is the biggest one and the coercive force is also
the strongest one, which is a clear indicative of the high degree of metastability. Likewise,
the peaks observed for δθ are the ones where the switching fields take place. For such fields,
the cone aperture becomes greater as a physical mechanism to allow magnetization reversal.
In addition, remanence (at zero field) is due to the coupling of the magnetic moments
along that component of the easy axes favoring the direction of the applied field. On the
other hand, for low Γθ values, the aperture cone is greater, which means that between step
and step, the magnetic moments can rotate more freely, performing broader trajectories in
phase space and therefore they can easily escape from metastable states so the magnetic
moments remain in an alternating regime giving rise to a zero average magnetization (see
Section 2.2). As a result, no hysteresis is observed, and the superparamagnetic state is
finally established.



Computation 2021, 9, 124 8 of 15

−1 −1
2

0 1
2

1

H/H0

−1

−1
2

0

1
2

1

M
/
M

0

(a)

0

50

100

Γ
θ

(%
)

(b)

Γθ

10%

20%

30%

40%

50%

60%

70%

80%

90%

−1 −1
2

0 1
2

1

H/H0

0

90

180

δθ
(°

)

(c)

Figure 4. Reduced magnetization (a), acceptance rate (b) and cone aperture (c) as a function of the external magnetic field.

The progressive disappearance of coercivity as the acceptance rate decreases, is con-
sistent with a continuous transition from a blocked state to a superparamagnetic one. In
this sense, blocked states are characterized by small values of the cone aperture δθ, which
is in agreement with what is expected for a so-called “blocked” state. In contrast, at zero
coercivity (Γθ = 10%), the widest cone apertures are consistent to what is expected for a
“superparamagnetic” regime. Such a gradual disappearance of coercivity coincides with
typical observations of the behavior of M(H) curves as a function of the measurement
time τm, in which the state of the nanoparticle (superparamagnetic or blocked) depends
on the comparison between the measurement time and the Néel relaxation time τN (see
Section 2.2). Thus, at first glance, for a given system, our acceptance rate Γθ , which is
indeed a frequency of acceptance, seems to be related to the reciprocal of the measurement
time, i.e., Γθ ∼ 1/τm. This fact is endorsed by the Néel-Arrhenius relationship observed
between the remanence (Mr) and 1/Γθ for Γθ ≥ 30%, i.e., the expression Mr(t) = M0e−t/τN

is fulfilled by taking the variable t = 1/Γθ . We want to recall at this point that the maximum
number of MCS was kept constant. As we show below, very small values of Γθ imply a
high rate of rejections, and therefore phase space sampling is not so efficient, and averages
are not reliable.

Another interpretation could be in turn one for which the Γθ parameter goes propor-
tional to τN . i.e., Γθ ∼ τN and the measurement time τm refers to the number of MCS
used for data acquisition. Thus, if the MCS number is kept constant, as in our case, the
interplay between blocked and superparamagnetic states can be achieved by tuning τN or
equivalently Γθ . Thus, high values of Γθ give rise to the compliance of τm � τN favoring
the appearance of blocked states, as is effectively observed. Conversely, small values
of Γθ will favor the inequality τm � τN and superparamagnetic states will be observed.
In both scenarios, the role played by Γθ recovers the M(H) behavior observed in the
superparamagnetic theory.

Concerning the use of a constant field and the time dependence of the observables,
results are summarized in Figure 5. In this case, the time dependence in MCS units is
obtained for (a) the reduced magnetization, (b) the acceptance rate and (c) the cone aperture
angle at T = 100 K. In this case, the time evolution of the magnetization process was
obtained at a constant field of 200 kAm−1 (or 2500 Oe) starting from an initial configuration
of magnetic moments randomly distributed. Curves are in turn the configurational average
over 100 experiments statistically independent.
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Figure 5a shows the effect of the acceptance rate in the magnetization process under an
applied field. Concretely, for small values of Γθ , the system can easily reach the saturation
state within a small range of MCS. This behavior can be ascribed to the fact that more
microstates compatible with those where the alignment of the magnetic moments with the
field are generated as the cone aperture is increasingly wider. In particular, for Γθ up to 40%,
magnetization curves seem to overlap, and discrepancies in the magnetization mechanism,
are only observable for greater percentages. Moreover, the system progressively becomes
magnetically harder making the saturation state more difficult to reach as the acceptance
rate increases.

Figure 5b shows the time evolution of the Γθ parameter. In all cases, the system seems
to initiate its dynamics at Γ0 ≈ 50%, related to the random initial configuration of the
magnetic moments. Once the dynamics starts, Γθ evolves toward the expected values Γ0,
initially determined, reaching steady states within the first 20 MCS. Analogously, the time
evolution of the cone aperture angle δθ is shown in Figure 5c. Here, an initial value of
δθ = 45° was defined. In this case, convergence is also achieved but in a different fashion,
passing through a well-defined peak, dealing with the particular mechanism the system
follows in phase space during the magnetization process for every Γθ value considered.
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Figure 5. (a) Reduced magnetization, (b) acceptance rate and (c) cone aperture as a function of the Monte Carlo steps.

3.2. Superparamagnetic Behavior and Temperature Dependence

Figure 6 summarizes the circumstances under which both the blocked behavior (that
one characterized by open hysteresis loops drawn with solid lines) and the superparamag-
netic state (dashed lines with no hysteresis) take place at different temperatures. Results are
shown in Figure 6a–c for Γθ percentages of 10%, 50% and 90%, respectively. In Figure 6d,e
the corresponding behaviors of the acceptance rate and the cone aperture angle are respec-
tively plotted.

Temperature is a key factor in determining the behavior of acceptance rate and the
cone aperture. This is clearly demonstrated in Figure 6d,e. As temperature increases along
with its respective fluctuations, new microstates, which are not energetically favorable at
low temperatures, can now be achieved. An interesting feature occurs along the continuous
transition at some blocking temperature TB, which is dependent on the acceptance rate,
for which the system passes from a blocked state with a coercive force different from zero
to a superparamagnetic one. At this last stage, the high fluctuations in the orientations of
the magnetic moments at low fields, make that Γθ exhibits a peak and concomitantly δθ
reaches the maximum value (180°), which makes difficult, under the temperature and field
conditions, to equilibrate the desired value of Γθ . The appearance of the peak for Γθ , above
the target value Γ0, is due to the increment in the new movement acceptance because of
those new microstates achieved during the self-regulation process of δθ. Blocked states
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require comparatively small δθ values contrary to those of the superparamagnetic state
(see the comparison between continuous and dashed lines in Figure 6e).

−1 −1
2

0 1
2

1

H/H0

−1

−1
2

0

1
2

1

M
/
M

0

(a)

Γθ = 10%

−1 −1
2

0 1
2

1

H/H0

(b)

Γθ = 50%

−1 −1
2

0 1
2

1

H/H0

(c)

Γθ = 90%

−1 −1
2

0 1
2

1

H/H0

0

20

40

60

80

100

Γ
θ

(%
)

(d)

−1 −1
2

0 1
2

1

H/H0

0

90

180

δθ
(°

)

(e) T

20 K
100 K
100 K
400 K
100 K
2000 K

Figure 6. Reduced magnetization for percentages of acceptance of (a) 10%, (b) 50% and (c) 90%, (d) acceptance rate and
(e) cone aperture depending on the external field for different temperature values. At low temperatures magnetic hysteresis
(solid lines) is observed whereas for high enough temperatures a superparamagnetic behavior occurs (dashed lines).

More specifically, for low fields close to zero, the orientations energetically favorable
are those dictated by the easy anisotropy axes, which are doubly degenerated. Thus,
thermal fluctuations are the ones responsible for the moments to alternate not only along
such directions but also in between, giving rise to the excess of acceptance rate observed.
In consequence an average magnetization close to zero is obtained.

In contrast to the low-field scenario, at high fields (positive or negative) the most
likely and privileged orientations are those satisfying the alignment criterion between the
magnetic moments and the applied field. Thus, orientations energetically not favorable,
although thermally probable, represent a smaller population than those corresponding to
zero field. This is the reason an excess in the acceptance rate is not observed. Additionally,
we want to stress that our results also show that the superparamagnetic state is achieved
at different blocking temperatures depending on Γθ . This fact leads us to conclude that
the acceptance rate must be related to the measurement time τm involved in the following
expression for the blocking temperature (see Section 2.2):

TB =
Ke f f Ω

kB ln(τm/τ0)
. (6)

To validate the above reasoning, Figure 7 shows the M(H) curves for Γθ = 50% and
for some selected temperatures. As observed, some superparamagnetic states are possible
to reproduce with constant acceptance rate, i.e., sampling of the phase space occurs at
constant speed, except for the one at the highest temperature (400 K). On this basis we can
point out that when temperature is high enough the Boltzmann distribution makes any
orientation to null fields highly probable, and the acceptance rate increases. If temperature
increases indefinitely, all the microstates become equiprobable for any applied field, and
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the acceptance rate is expected to increase up to 100%. Such a limit case is inferred from
the Boltzmann probability distribution P(E) ∝ exp(−E/kBT) for T → ∞.
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Figure 7. (a) Reduced magnetization, (b) acceptance rate and (c) cone aperture as a function of the external magnetic field
for Γθ = 50%. Blocked and superparamagnetic behaviors are obtained depending on temperature.

4. Conclusions

In this work, we have implemented a novel algorithm, which allows reproducing both
the blocked and superparamagnetic states of a system of independent magnetic nanopar-
ticles with uniaxial magneto-crystalline anisotropy randomly distributed. The method
presented is based on the Markov chain Monte Carlo method with Metropolis–Hastings
algorithm for which the magnetic moments movements are proposed to be accepted at a
constant rate Γθ as phase space is sampled. Consequently, the aperture of the rotations in
the updates of the magnetic moments must be self-regulated. Isotherms of M(H) curves
show that a constant acceptance rate makes cone aperture of the rotations of the magnetic
moments must lie below certain upper bounds. The amplitude of such an aperture is the
responsible one for the occurrence of either blocked or superparamagnetic states.

For high values of Γθ , much more microstates must be accepted, so the upper bound for
δθ must decrease to satisfy the constant acceptance rate condition. In this case, exploration
of the phase space is slow, and it takes time for the system to find states of relaxation. In
contrast, for small values of Γθ , much more microstates are rejected, so the upper bound
for δθ must increase. In this case, exploration of the phase space is faster, and the system
relaxes more easily. Concomitantly, temperature plays a key role in these processes since it
helps to make more likely energetically unfavorable events. This causes an extra excess
in the acceptance rate and the cone aperture must be readjusted to equilibrate such an
unbalance. Additionally, our results allow also to show, from the set of isotherms in the
M(H) curves, that the election of a predefined acceptance rate can give rise to different
blocking temperatures. This fact leads us to conclude that the acceptance rate must be
related to the measurement time.

Finally, a Γθ value of 10% implies that most of the movements of the magnetic moments
are rejected so the exploration of the phase space to find representative microstates is not
efficient. In other words, importance sampling is incomplete to guarantee reliable averages
of observables. For this reason, we do not recommend using such small values of Γθ .
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Appendix A

Appendix A.1 Magnetic Moment Rotation

As mentioned in Section 2.3, the trial movement of the magnetic moment, named ~µ′,
is obtained by means of a double rotation R over ~µ, characterized first by a polar angle
θ ∈ [0, δθ] and followed by an azimuthal one φ ∈ [0, 2π), both of them of random nature.
Based on Figure 3, the polar angle rotation is sketched in Figure A1, where~ν is the result of
that first step.

Figure A1. Polar rotation of the magnetic moment. (a) the three-dimensional (3D) representation and
(b) the two-dimensional (2D) representation.

In the usual three-dimensional (3D) representation ~µ = (µx, µy, µz) and~ν=(νx, νy, νz)

or in two dimensions (2D) ~µ = (µxy, µz) and ~ν = (νxy, νz), with µxy =
√

µ2
x + µ2

y and

νxy =
√

ν2
x + ν2

y being the projections of ~µ y ~ν on the xy-plane respectively. Hence, ~ν is
given by the clockwise transformation rule:

~ν =

(
cos θ sin θ
− sin θ cos θ

)
~µ, (A1)

or
νxy = µxy cos θ + µz sin θ,

νz = −µxy sin θ + µz cos θ.
(A2)

Based on Figure A1a and returning to the 3D representation we have~ν = νxyµ̂xy + νz ẑ
with µ̂xy a unitary vector in the direction of ~µ in xy plane. By combining with the set of

https://github.com/jczapata1/magfluid3s-data/tree/main/Computation-MDPI-2021
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Equation (A2), we have the expression that allows us to calculate the rotation of the vector
~µ a polar angle θ:

~ν =


νxy
µxy

µx
νxy
µxy

µy

νz

. (A3)

Once the polar rotation is done, then the azimuthal rotation occurs for a given random
angle φ. This can be done using the Rodrigues rotation formula to rotate the vector ~ν
around ~µ an angle φ to finally obtain ~µ′ (see Figure 3):

~µ′ = ~ν cos(φ) + (µ̂×~ν) sin(φ) + (µ̂ ·~ν)[1− cos(φ)]µ̂, (A4)

note the unitary vector µ̂. Equations (A3) and (A4) summarize the transformation
~µ′ = R(θ, φ)~µ with R(θ, φ) the rotation matrix that is not explicitly specify.

Appendix A.2 Algorithm Testing and Diagnostics

Markov chain Monte Carlo samplers are known for their highly correlated draws
since every posterior sample is extracted from a previous one. To evaluate this issue in the
MH algorithm, we have computed the autocorrelation function for the magnetic moment
of a single particle, and we have also studied the effective sample size, or equivalently the
number of independent samples to be used to obtained reliable results. In addition, we
evaluate the thin sample size effect, which gives us an estimate of the interval time (in MCS
units) between two successive observations to guarantee statistical independence.

To do so, we compute the autocorrelation function ACF(k) between two magnetic
moment values µn and µn+k given a sequence {µi}n

i=1 of n elements for a single particle:

ACF(k) =
Cov[µn, µn+k]√

Var[µn]Var[µn+k]
, (A5)

where Cov is the autocovariance, Var is the variance, and k is the time interval between
two observations. Results of the ACF(k) for several acceptance rates and two different
values of the external applied field compatible with the M(H) curves of Figure 4a and a
particle with easy axis oriented 60°with respect to the field, are shown in Figure A2. Let
Test 1 be the experiment associated with an external field close to the saturation field, i.e.,
H ≈ H0, and let Test 2 be the experiment for another field, i.e., H < H0.
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Figure A2. (a,d,g) single particle reduced magnetization as a function of the Monte Carlo steps for
percentages of acceptance of 10% (orange), 50% (red) and 90% (black), respectively. (b,e,h) show the
autocorrelation function for the magnetic field H ≈ H0 and (c,f,i) for H < H0.
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Figures A2a,d,g show the dependence of the reduced magnetization with the Monte
Carlo steps. As is observed, magnetization is distributed around a well-defined mean
value. As we have already mentioned in Section 3, the half of the total number of Monte
Carlo steps has been considered for averaging purposes. These graphs confirm that such
an election is a good one and it could even be less.

Figures A2b,c show the results of the autocorrelation function for different k time
intervals between successive measurements and for an acceptance rate of 10%. The same
for Figures A2e,f with an acceptance rate of 50%, and Figures A2h,i with an acceptance rate
of 90%. Results for Γθ smaller than 50% show the onset of statistical independence from
around k = 10. Above this value the ACF(k) function goes to zero. In the case of Γθ = 90%
a higher value is needed. Thus, the values obtained suggest statistical independence every
20 samples or even below. This is a good estimate of the thinning process.

On the other hand, Figure A3 shows the results of the reduced magnetization as
a function of the reduced field for the same Γθ values from above. As is shown, two
scenarios have been considered. One without delay by taking the measurements every
single MCS, and the other one every 10 MCS. No differences are noticed. So, we can
conclude that despite the degree of correlation, this fact does not alter the value of our
observable, which is the magnetization. W. A. Link and M. J. Eaton (2012) [25] suggest
that doing a sequence thinning is often unnecessary and inefficient as it can reduce the
precision of the Markov chain.
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Figure A3. H-dependence of the reduced magnetization for percentages of acceptance of (a) 10%,
(b) 50% and (c) 90%. Results without delay (i.e., every 1 MCS, which means consecutive measure-
ments) are drawn with solid lines and those with a delay of 10 MCS with an x-marker.

Finally, from Figure A2 the effective sample size (ESS) can be computed as [26]:

ESS =
n

1 + 2 ∑k ACF(k)
. (A6)

Results for the tests yield values of ESS ≈ 50. This tells us that at least the half of
the total number of samples is suitable for the inference of the observables. Such a value
endorses our election for the cut-off time (50 MCS) and the total number of 100 MCS.
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