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Abstract: Robotics navigation and perception for forest management are challenging due to the
existence of many obstacles to detect and avoid and the sharp illumination changes. Advanced
perception systems are needed because they can enable the development of robotic and machinery
solutions to accomplish a smarter, more precise, and sustainable forestry. This article presents a
state-of-the-art review about unimodal and multimodal perception in forests, detailing the current
developed work about perception using a single type of sensors (unimodal) and by combining data
from different kinds of sensors (multimodal). This work also makes a comparison between existing
perception datasets in the literature and presents a new multimodal dataset, composed by images
and laser scanning data, as a contribution for this research field. Lastly, a critical analysis of the works
collected is conducted by identifying strengths and research trends in this domain.

Keywords: forestry; forest perception; multimodal perception; sensor fusion

1. Introduction

In robotics, perception is the ability of a system to identify and interpret sensory infor-
mation to achieve a better understanding and enhance its awareness on the surrounding
environment. This article formally reviews the state-of-the-art about unimodal percep-
tion (using a single type of sensors) and multimodal perception (combining data from
distinct kinds of sensors) in forestry environments. These types of perception are also
relevant for agricultural purposes, but this work is only focused in the forestry domain.
Therefore, this article covers scientific works tested in the woods and/or in the forests.
Both of these terms represent forestry environments. In the woods, 25–60% of the land is
covered by trees, and in forests, the tree canopy covers 60–100% of the land (https://www.
reconnectwithnature.org/news-events/the-buzz/what-the-difference-woods-vs-forest, ac-
cessed on 6 October 2021). For simplicity, throughout this article, we refer to the forestry
environments using the term “forests”.

Over the years, several advances in perception systems have appeared, giving a posi-
tive impact in the forestry domain. These systems, combined with robotics, enabled the
improvement, in terms of precision and intelligence, of several tasks and operations that
were performed in forest a long time ago. Some years back, such operations were per-
formed without thinking about the forest sustainability and were performed with obvious
limitations. In forestry, perception is of utmost importance, as it is required for detecting
trees, stems, bushes, and rocks [1], and measuring certain parameters of valuable vegeta-
tion whilst ignoring nonvaluable plants [2]. Such tasks have an inherent difficulty because
of illumination changes caused by tree-derived shading. With this in mind, this article
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presents an overview of the recent scientific developments about multimodal perception
in forests for several purposes: species detection, disease detection, structural measure-
ment, biomass and carbon dynamics assessment, and monitoring through autonomous
navigation. The addition of cutting-edge technology to these and other operations not
only leads to a smarter and more precise forestry but also helps to prevent and deal with
natural disasters such as wildfires, which were estimated to have affected the lives of over
6.2 million people since 1998 [3].

The selection of works about perception systems for forestry was performed based on
the current state-of-the-art of this domain; therefore, the majority of the cited works are from
the past 10 years. The main focus of this review was the production of a scientific survey;
therefore, articles published in journals and conferences were preferred. The literature
databases that were used to search for scientific information were: Scopus, ScienceDirect,
IEEE Xplore, SpringerLink, and Google Schoolar.

To perform this search, the following keywords were used: forests, sensor fusion, mul-
timodal perception, images, lidar, radar, and navigation. These keywords were combined
to form the following search strings: “forests AND images”, “forests AND lidar”, “forests”
AND “sensor fusion” AND “multimodal perception”, “forests AND images AND lidar
AND radar”, and “forests AND navigation”.

The contributions of this work are the following:

• A review of perception methods and datasets for multimodal systems and applications;
• A publicly available dataset with multimodal perception data.

The rest of this article is structured as follows. Section 2 presents a review of unimodal
and multimodal perception methods for forestry. In Section 3, our dataset and other
perception datasets found in the literature are presented and detailed. Section 4 ends
this article, drawing the main conclusions about the forestry unimodal and multimodal
perception domains.

2. Unimodal and Multimodal Perception in Forestry

This section presents a literature review of scientific works about unimodal (using
only images or LiDAR data) and multimodal perception in forestry.

2.1. Vision-Based Perception

Over the years, several works have appeared whose main goal was to use only vision-
based data for performing forestry-related tasks. With this in mind, in this section, works
related to vision-based perception in forest areas are covered.

The use of images to inspect forestry environments can have multiple purposes:
disease detection in vegetation, vegetation inventory reports, vegetation health monitoring,
detection of forest obstacles for safe autonomous or semiautonomous navigation and for
assessing the structure, and mapping of the forest land, among others.

Health monitoring and disease detection in trees are a frequent topic in forest contexts
that can be performed using only cameras. In [4], a study about the detection of pine wilt
disease was conducted. The authors used a Unmanned Aerial Vehicle (UAV) equipped with
a camera to gather aerial images for further processing. The UAV captured several images
during three consecutive months that would form a dataset for training four different
Deep Learning (DL) object detection methods—Faster R-CNN ResNet50, Faster R-CNN
ResNet101, YOLOv3 DarkNet53, and YOLOv3 MobileNet—to diagnose such a disease.
The authors claimed that the four methods achieved similar precision, but YOLOv3-
based models were lighter and faster than Faster R-CNN variations. In [5], another study
about disease detection in pinus trees was made. In this work, the authors also used
UAV-based images to detect the disease; however, they developed a method that combines
Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN) with
an AdaBoost classifier. The GAN was used to extend the diseased samples of the dataset; the
CNN was used to remove existent noise for the recognition task such as roads, rocks, and
soils; and the role of AdaBoost classifier was to distinguish diseased trees from healthy ones
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and to identify shadows in the images. The proposed method attained better recognition
performance than several well-known methods, such as support vector machines, AlexNet,
VGG, and Inception-V3. Another work where UAVs were used to capture aerial images
for the further identification of sick trees was proposed in [6]. In this work, the authors
wanted to detect sick fir trees, and for that, they started by obtaining a Digital Surface
Model (DSM) from the aerial images, on top of which an algorithm developed by them was
run to detect treetops. Then, the detected tree crowns were classified using five DL models:
AlexNet, SqueezeNet, VGG, ResNet, and DenseNet. The obtained results showed that the
proposed tree crown detection algorithm achieved on average best matching and counting
of treetops. In terms of treetop classification, DenseNet, ResNet, and VGG were the DL
models presenting more stability in their detection results. In [7], the authors presented an
approach for diagnosing forest health based on the detection of dead trees in aerial images.
In this work, the authors used their own aerial images datasets and used eight fine-tuned
variations of a DL method called Mask R-CNN to produce dead tree detections, resulting
in the best variation achieving a mean average precision of about 54%. The purpose of the
detections was to serve as an indicator of environmental changes and even an alert for the
possibility of forest fires occurrence. A study about monitoring trees’ health was made
in [8], where the authors collected aerial images using a UAV and performed individual tree
identification by using a k-means method to perform tree segmentation, followed by the
use of histogram of oriented gradients to localise the treetops. Afterwards, the images went
through a multipyramid feature extraction step where important features were extracted
to further identify the health of the trees. The results showed that the proposed method
performed better than other state-of-the-art methods.

The production of inventory reports and the assessment of forest structure and its
characterisation are important issues that can tell about the productivity of the forest
land. In [9], the authors used a CNN called RetinaNet to detect palm trees in aerial
images, achieving 89% and 77% precision in the validation and test dataset, respectively.
The authors also presented a similar work in [10], where they went even deeper regarding
the inventory report of palm trees, attaining a very high number of accounted palms with a
confidence score above 50%. In [11], the authors used a photogrammetric technique called
Structure from Motion (SfM) to generate point clouds from which some forest parameters
were extrapolated such as tree positions, Diameter at Breast Height (DBH), and stem curves
(curves that define the stem diameter at different heights). The image capture was made
in two locations of Austria and in two locations of Slovakia, performing Terrestrial Laser
Scanning (TLS) measurements that were used as ground-truth for the SfM parameters
estimation. The results show that SfM is an accurate solution for forest inventory purposes
and for measuring forest parameters, not falling far behind TLS. Another work where an
SfM-based strategy was used to obtain forest plot characteristics such as tree positions,
DBH, tree height, and tree density was presented in [12]. In this work, the authors combined
the image acquisition with a type of differential Global Navigation Satellite System (GNSS)
technology, which is different from the common method of simply using photogrammetry
to reconstruct the 3D point cloud of a scene; instead, their method is capable of extracting
directly real geographical coordinates of the points. The results showed minimal differences
in the positioning accuracy (between 0.162 and 0.201 m), on the trunk DBH measurements
(between 3.07% and 4.51%), and on tree height measurements (between 11.26% and 11.91%).
In [13], the authors also used SfM to make 3D reconstruction from aerial data collected
using a UAV. They applied a watershed segmentation methods along with local maxima
to detect individual trees, and after, tree heights were calculated using DSMs and digital
terrain models. The tree detection procedure was carried out with a maximum 6% error,
and the tree height estimation error was around 1 and 0.7 m for the pinus and eucalyptus
stands, respectively. While it is import to quantify some forest parameters such as DBH,
tree height, and tree position, the measurement of tree crowns must not be underestimated,
as it is quite difficult to assess this measure manually, and it provides a comprehension
about the stand timber volume. For this, the authors in [14] made a study on methods for
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the detection and extraction of tree crowns from UAV-based images and further crown
measurement. They used three DL models, namely Faster R-CNN, YOLOv3, and Single-
Shot MultiBox Detector (SSD). In terms of detection, the three models behaved similarly;
however, in terms of crown width estimation (computed directly from the generated
bounding boxes of the methods), SSD was the method that presented the lowest error.

Commonly, forestry inventory is estimated by detecting the trees. Several works
proposed this approach as a way of assessing quantitatively the forest yield, forest biomass,
and carbon dynamics from high-resolution remote sensing or UAV-based imagery [15–22].
The inventory from a certain ecosystem can also be estimated by mapping it through
satellite images, as was made in [23] for a mangrove ecosystem. The authors used a pixel-
based random forest classifier that resulted in a mangrove map with an overall accuracy of
93%. This work demonstrated that the production of detailed ecosystem maps can have a
high impact for monitoring and manage natural resources.

Autonomous navigation in forests is a relevant challenge. For this issue, it is fun-
damental that all obstacles in the forests are detected to avoid hazardous situations and
damages. In [24], the authors installed a camera on a forwarder (a forestry vehicle that
transports logs) and developed an algorithm that, using the images, detects trees and
measures the distance to them. They trained an Artificial Neural Network (ANN) and a K-
Nearest Neighbours (KNN) to perform the detections. After detecting the trees, a distance
measurement process is executed, that is based on the intrinsic and extrinsic parameters
of the camera, and other parameters related to the vehicle. Then, if the distance is be-
low a proximity threshold, the vehicle is stopped, and it waits for a command from the
operator before returning to operation. Similar work was presented in [25], where the
authors developed an autonomous navigation and obstacle avoidance system for a robotic
mower with a mounted camera. The obstacles and landmarks were detected using a CNN.
Autonomous navigation in forests can also happen in the air with UAVs, as was shown
in [26], where the authors developed a UAV-based system capable of following footpaths
in the forest terrain. The CNN-based perception system detected the footpaths followed
by a decision-making system that calculated the deviation angle of UAV’s motion vector
from the desired path, and if the angle did not exceed 80 degrees, the UAV would move
forward; otherwise, it would turn left or right depending on the sign of the angle. In [27],
the authors also used a UAV to develop an autonomous flight system using monocular
vision in forest environments. The system is an enhanced version of an existing algorithm
for rovers. The proposed method is capable of computing the distance to obstacles, cal-
culating the angle to the nearest obstacle, and applying the correct yaw–velocity pair to
manoeuvre the UAV to avoid the obstacles. A similar work was developed in [28], where
the authors proposed a DL-based system for obstacle avoidance in forests. The system was
tested in a simulated and in a real environment: in the simulated environment, the UAV
concluded 85% of the test flights without collisions, and in the real environment, the UAV
concluded all test flights without collisions. Other studies focused on detecting tree trunks
in street images using Deep Learning methods [29,30], in dense forests using visible and
thermal imagery combined with Deep Learning [31], and even on the detection of stumps
in harvested forests [32] to enhance the surrounding awareness of the operators and to
endow machines with intelligent object avoidance systems.

Table 1 shows a summary of works related with vision-based perception in forests,
where studies are presented by categories, by the type of processing needed, and the
number of works found with impact in each category.

Table 1. Summary of the collect works about vision-based perception.

Category Processing Type Works

Health and diseases Offline [4–8]
Inventory and structure Offline [9–23]

Navigation Online [24–32]
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The aim of the “Health and diseases” category is to monitor the health of forest lands
and detect the existence of diseases that affect forest trees, destroying some forest cultures
and ecosystems. Data from this category are most of the times processed offline—the data
are collected in the field and are processed later. For this category, only five works were
presented, since the way of acquiring the data for such purpose is quite similar (the majority
use UAVs or satellite imagery) and their processing is mostly targeted at the detection of
sick or death trees in aerial images. The category of “Inventory and structure” is based on
remote sensing to produce inventory reports about forest content, such as biomass volume,
and to study the structure of forests using plot-level parameters to assess its growth and
yield. The data of this category are also processed offline, and 15 works were collected
for this category. Most of these works are focused on detecting and counting treetops
in high-resolution and UAV images, and some of them are focused on measuring some
parameters of forest trees, such as DBH, height, tree density, and size of the crown. Lastly,
the “Navigation” category is mostly about works focused on detecting trees, in visible and
thermal images, and also measuring the distance to them to perform avoidance manoeuvres.
Other studies focused on following footpaths with decision making systems capable of
deciding which route to choose. Such works are the foundations needed to attain fully
or semiautonomous navigation in forests, hence the importance of the works in this area.
The works of this category are all characterised by online data processing, otherwise the
aerial or terrestrial vehicles, which rely on the visual perception, would crash and serious
damage would happen to their hardware.

Another perspective taken from the collected works over vision-based perception
in forests is about the nature of their perception systems, i.e., whether the systems are
terrestrial or airborne. Of the 28 works, eight are of terrestrial nature, and 20 of aerial
nature. These numbers may indicate that the domain of terrestrial-based perception is still
under development, and more research is needed, since advanced ground-level perception
can enable the development of technological solutions for harvesting biomass, and cleaning
and planting operations, which in turn can help to tackle environmental issues, such as
greenhouse effect, global warming, and even wildfires.

2.2. LiDAR Perception

This section is about forest perception using Light Detection And Ranging (LiDAR)
technology. In this domain, the literature is divided into two main areas: LiDAR-based
perception for estimating forestry inventory and structure, and for achieving autonomous
navigation and other operations in forests.

Regarding the forest structure and inventory assessment domain, several works are
focused on the development of methods to precisely perform tree detection and segmen-
tation on LiDAR-based point clouds. In [33], the authors base their work in low-density
full-waveform airborne laser scanning data for Individual Tree Detection (ITD), and tree
species classification using a random forest classifier whose input was the extracted features
from the detected trees. This work covered three tree species and, in the end, the results
were compared with the ones obtained from the discrete return laser scanning data. In [34],
a benchmark of eight ITD techniques was made over a dataset made by Canopy Height
Models (CHMs) obtained from Airborne Laser Scanning (ALS). Additionally, an automated
tree-matching procedure was presented that was capable of linking each detection results
to the reference tree. The method proved to work in an efficient manner. In [35], the authors
presented an ITD method based on the watershed algorithm for further computing several
tree-related variables. Deep Learning is another way of performing ITD, as was shown
in some works [36,37] where distinct DL methods were used, such as, Faster R-CNN,
3D-FCN, K-D Tree, and PointNet. Other works focused on Individual Tree Crown (ITC)
detection and segmentation (or delineation) as the one presented in [38]. In this work,
the authors developed a framework that receives LiDAR-derived CHMs and 3D point
cloud data and generates estimations of tree parameters such as tree height, mean crown
width, and Above-Ground Biomass (AGB). The authors concluded that their framework is
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very accurate at ITC delineation, even in dense forestry areas. For the task of ITC, some
works also used Deep Learning. In [39], the method PointNet [40] was used, and the
authors presented a method that started by turning the point clouds containing the trees
into voxels; then, the voxels were the input samples for training PointNet to detect the
tree crowns; lastly, with the segmentation results provided by PointNet, a height-related
gradient information was used to distinguish the boundaries of each tree crown. Over the
years, novel tree segmentation methods have appeared: gradient orientation clustering [41],
graph-cut variations [42], region-based segmentation [43], mean-shift segmentation [44],
and layer stacking [45]. The majority of works based on the use of LiDAR in forests are
aimed at estimating and assessing forestry parameters and biomass. Some are focused
on computing DBH [46–49], others want to measure AGB [47,48,50–57], Leaf Area In-
dex (LAI) [58–60], canopy height [47–49,54,61–68], tree crown diameter for estimating
biomass and volume [69], basal area and tree density [52,70], land cover classification [71],
and above-ground carbon density using an ITC segmentation that locates trees in the CHM,
measures their heights and their crowns widths, and computes the biomass [72].

Autonomous navigation and automated tasks in forests are still a challenge due to the
unstructured nature of such environment and to the unavailability and/or degradation
of GNSS signals [2,3]. In [73], the authors claimed to solve such localisation problem
in sparse forests, where the GNSS signals can be sporadically detected. They proposed
a method that fuses GNSS information with a LiDAR-based odometry solution, which
uses tree trunks as a feature input for a scan matching algorithm to estimate the relative
movement of the aerial robot used in this work. The method employs a robust adaptive
unscented Kalman filter, and, for motion control, the authors implemented an obstacle
avoidance system based on a probabilistic planner. In [74], an autonomous rubber-tapping
ground robot was presented. The robot achieves autonomous navigation by collecting a
sparse point cloud of tree trunks using a low-cost LiDAR and gyroscope; the center points
of the trees are acquired; then, the points are connected to form a line that serves as the
robot’s navigation path. Additionally, a fuzzy controller was used to analyse the heading
and lateral errors while the robot performed certain operations: straight-line walking in a
row at a fixed lateral distance, stopping at certain points, turning from a row to another,
and gathering specific information regarding row spacing, plant spacing, and tree diameter.
In [75], the authors presented a point cloud-based collision-free navigation system for
UAVs. The system collects the point cloud using a LiDAR, converts it to an occupation
map that is the input for a random tree to generate path candidates. They used a modified
version of Covariant Hamiltonian Optimisation for Motion Planning objective function
to choose the best candidate, whose trajectory is in turn the input of a model predictive
controller. The authors’ strategy was tested in four different simulated environments, and
the results showed that their method is more successful and has a “shorter goal-reaching
distance” than the ground-truth ones. Most of the time, the problem of navigation and
localisation in forests can be resolved by using Simultaneous Localisation and Mapping
(SLAM) algorithms [2]. SLAM normally combines the data from a perception sensor, such
as a camera, a LiDAR, or both, with the data from a Inertial Navigation System (INS).
The authors in [76] developed a GNSS/INS/LiDAR-based SLAM method to perform highly
precise stem mapping. The heading angles and velocities were extracted from GNSS/INS,
enhancing the positioning accuracy of the SLAM method. In [77], the authors also used
an INS and LiDAR-based SLAM method to attain a stable and a long-term navigation
solution. They assessed the performance of two different approaches: making SLAM
with only a LiDAR and making SLAM with a LiDAR and an Inertial Measurement Unit
(IMU). They concluded that the positioning error improved when the second approach
(LiDAR+IMU-based SLAM) was in use. Similarly, in [78], the goal was stem mapping
and to accomplish that the authors combined GNSS+IMU with a LiDAR, mounted on
a terrestrial vehicle, and performed SLAM. They concluded that the addition of LiDAR
contributed to an improvement of 38% compared to the traditional approach of only using
GNSS+IMU. In [79], the authors proposed a SLAM method called sparse SLAM (sSLAM)
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whose main application is in forests and for sparse point clouds. They tested their method
on the field with a LiDAR and a GNSS-mounted on a harvester and compared their method
with LeGO-LOAM. The results showed that sSLAM generates a lighter point cloud, incurs
a lower GNSS parallel error, and has more consistency than LeGO-LOAM. Lastly, in [80],
the authors proposed a new approach to match point clouds to tree maps using Delaunay
triangulation. They tested their method with a dataset corresponding to a 200 m path,
travelled by a harvester with a LiDAR and a GNSS mounted on it. Initially, the tree trunks
are extracted from the map, resulting in a sparser map that is triangulated; then, a local
submap of the harvester is registered, triangulated, and matched using triangular similarity
maximisation, estimating the harvester’s position.

Table 2 presents a summary of the works that were aforementioned and that are
related to LiDAR-based perception in forests, where the category, processing type, and
number of works found are highlighted.

Table 2. Summary of the collect works about LiDAR-based perception.

Category Processing Type Works

Inventory and structure Offline [33–39,41–72]
Navigation Online [73–80]

The majority of works are focused on perceiving the forest structure and estimating
its inventory, and drawing conclusions about the forest carbon stock and vegetation yield
from it. With respect to navigation purposes, more research is needed, as only eight works
were found to be interesting for the study at hand. Additionally, a detail to be mentioned is
that the majority of works (around 30) were made on aerial systems (including spaceborne
ones), showing the predominance of the aerial systems in forestry, similarly to the domain
of vision-based perception.

2.3. Multimodal Perception

In this section, the domain of forest multimodal perception is addressed, and the
works that meet the formal search are presented.

Multimodal perception combines data from different kinds of sensors through a sen-
sor fusion approach to attain richer, more robust, and more accurate perception systems.
In this sense, multimodal sensing is likely to present a superior performance compara-
tively to unimodal sensing, demonstrating the relevance of this type of sensing for the
forestry domain.

One of the main applications of multimodal perception systems in forests is the
classification of vegetation and tree species distinction. Fusing aerial-visible and hyper-
multispectral images with LiDAR data is the most common practice for classifying forestry
vegetation. In [81], the authors proposed a data fusion system that combined aerial hyper-
spectral images with aerial LiDAR data to distinguish 23 classes, including 19 tree species,
shadows, snags, and grassy areas. The authors tested three classifiers: support vector
machines, Gaussian maximum likelihood with leave-one-out-covariance, and k-nearest
neighbours. The results showed that the best classifier was support vector machines;
the system benefited with the addition of LiDAR, improving the classification accura-
cies in almost all classes; and the system attained accuracies over 90% for some classes.
In [82], the authors studied sensor fusion approaches to perform species classification.
Initially, the trees were detected in the CHM derived from the ALS data, and then the
detected trees were distinguished among four classes by use of different combinations of
23 features provided by ALS data and coloured orthoimages. Seven classification methods
were studied: decision trees, discriminant analyses, support vector machines, k-nearest
neighbours, ensemble classifiers, neural networks, and random forests. Again, the use of
ALS-based features proved to improve the overall accuracy. The authors recommended
to use quadratic support vector machines for tree species classification, as this performed
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better than the other methods. A similar work was produced in [83], where the authors
proposed a method that at first performed ITC in a LiDAR-derived CHM, followed by
a hyperspectral extraction in each segmented tree for further classification through two
classifiers: random forests and a multiclass classifier. In this study, seven tree species
were classified. The authors compared the use of all 118 bands against the use of only 20
optimal bands (obtained by minimum noise fraction transformation) in the classification
performance. The results showed that using only 20 bands is beneficial, as it increases the
overall accuracy of the two classifiers, and that the multiclass classifier is more robust with
high-dimensional datasets composed by small sample sizes. Another similar study was
made in [84]. In this work, the authors presented a classification algorithm for tree species
classification based on CNNs. Firstly, the algorithm performs ITD by using the local maxi-
mum method over a LiDAR-derived CHM; then, the trees are cropped from aerial images
into patches that are classified by a ResNet50 CNN into one of seven classes. A comparison
among the CNN from the algorithm with a traditional method (random forest) and two
CNNs (ResNet18 and DenseNet121) was made, resulting in ResNet50 outperforming the
other methods. In addition, a study regarding the resolution of the patches was made,
where it was concluded that the biggest tested patch size generated better results. A study
involving the classification of land use and land cover was made in [85], where the authors
used a combination of satellite images with satellite Radio Detection And Ranging (RaDAR).
In [86], the authors presented a study about the classification of the vertical structure of
the forest. They fused the information of aerial orthophotos (an orthophoto is an aerial
photograph or satellite imagery geometrically corrected (orthorectified) such that the scale
is uniform (https://en.wikipedia.org/w/index.php?title=Orthophoto&oldid=1020970836,
accessed on 6 October 2021)) with aerial LiDAR data and used an ANN to produce the
classifications. In [87], the authors also used CNNs but instead of classifying trees, they
wanted to detect them in fused data composed by aerial images and an ALS-derived DSM.
They concatenated a DSM with a Normalised Difference Vegetation Index (NDVI) and with
a concatenation of red, green, and near-infrared features. Their goal was to use a single
CNN to process such combination of data, and for that, they used AlexNet. The results
showed that the input data pair NDVI-DSM achieved the best results. With respect to tree
detection, in 2005, a work about the detection of obstacles behind foliage using LiDAR and
RaDAR [88] was published. The detection of occluded obstacles in forests is a major issue,
as it is important that mobile platforms avoid crashing into other objects while traversing
the forest. With this in mind, the authors in [88] were capable of detecting a tree trunk
behind a maximum foliage thickness of 2.5 m. Some works related to detection in forests
are focused on detecting terrain surfaces by means of LiDAR and vision-based data [89],
while others, that also used LiDAR data combined with images, are focused on detecting
roads instead [90].

There are application areas where multimodal perception is crucial. The estimation
of biomass is an important process that can help predict the forest yield and its carbon
cycle. Such assessment can be made by means of combined LiDAR data and multispectral
imagery [91]; combined multispectral imagery and RaDAR imagery [92] and combined
inventory data, multispectral imagery and RaDAR imagery [93]. Moreover, the estimation
of the vegetation or canopy height is also a field where multimodal perception takes an
important role. This kind of estimation can be made by combining aerial photogrammetry
with LiDAR-derived point clouds [94] and by combining LiDAR data with multispectral
optical data [95]. Other applications are aimed at: autonomous navigation in forests
using sensor fusion of GNSS, IMUs, LiDAR, and cameras [96,97]; mapping the forest
using a LiDAR and a camera mounted on a ground vehicle, and by means of a SLAM
approach [98]; characterising the root and canopy structure of the forest by combination of
LiDAR-derived point clouds at ground-level with Ground Penetrating RaDAR (GPR) [99];
and measuring forest structure parameters, such as average height, canopy openness, AGB,
tree density, basal area and number of species, by combining spaceborne RaDAR images
with multispectral images [100].

https://en.wikipedia.org/w/index.php?title=Orthophoto&oldid=1020970836
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2.4. Perception in Other Contexts

Multimodal or unimodal perception also plays an important role in other contexts.
Digital and precision agriculture, military robotics and disaster robotics are some of the
areas where robots can be combined with advanced perception systems to enhance the
knowledge of the robots about their surroundings in several tasks.

In agriculture, the introduction of digital and automated solutions in recent years
potentiated the appearance of precision agriculture procedures that can be applied in
farmer’s cultures, increasing the production yield and decreasing the environmental im-
pact of using fertilisers. With precision agriculture, the fertiliser application is performed
at the right time, at the right place and with the right amount, fulfilling the crop needs.
With this in mind, several scientific works have appeared in recent years. The majority
of them are about autonomous harvesting where the fruit or vegetable must be detected
and/or segmented prior to its picking [101–109]. The detection of vegetables or fruits are
also important to count them and estimate the production yield [110–113]. Similarly to
forestry contexts, some works are about disease detection and monitoring [114,115], and
others are focused on detection woody trunks, weeds, and general obstacles in crops for
navigation [116–119], operation purposes [120,121], and cleaning tasks [122,123]. Another
application of perception systems in precision agriculture is characterising, monitoring,
and phenotyping vegetative cultures using stereo vision [124,125], point clouds [126,127],
satellite imagery [128], low-altitude aerial images [129], or multispectral imagery [130].
Along with these advances in terms of perception, several robotic platforms have appeared:
for harvesting [101,102,104–106], for precise spraying [131], for plant counting [132], and for
general agricultural tasks [133–136]. A topic that is being increasingly studied in the agri-
cultural sector is localisation and consequent autonomous navigation in crops. To achieved
this, the robots can rely on topological maps for path planning [137,138], ground-based
sensing [119,135,136], aerial-based sensing [139,140], and simulated sensing [141].

Regarding the military and disaster robotics domains, both share some of the percep-
tion issues that exist in forestry and agricultural, such as, illumination changes, occlusions,
and possible dust and fog. Several scientific advances have been made in these domains.
With respect to the occurrence of disastrous events, some scientific solutions have appeared
that use UAVs with cameras to perform surveillance of shipwreck survivors at sea [142],
to search for people after an avalanche [143], and to detect objects and people in buildings
after calamity events [144–147]. Other developments have been achieved related with
inspecting bridges after disasters [148], rescuing people using a mobile robot similar to a
crane [149], and scouting and counting of fallen distribution line poles [150]. In a military
context, perception takes an important role as it helps to detect airports, airplanes, and ships
from satellite images [151,152] and even from RaDAR images [153]. Some autonomous and
semiautonomous systems have appeared that travelled by air [154,155] or by land [156]
relying on vision sensors and/or LiDARs. Additionally work has been conducted in
specific areas namely, opening doors using a robotic arm and 3D vision for unmanned
ground vehicle [157], detecting obstacles in adverse conditions (fog, smoke, rain, snow,
and camouflage) using a ultra wide-band RaDAR [158] or a spectral laser [159,160], fusing
camera and LiDAR data to recognise and follow soldiers [161], avoiding obstacles using
a 2D LiDAR [162], autonomously following roads and trails using a visual perception
algorithm [163], and even multitarget detection and tracking for intruders [164].

2.5. Discussion

Normally, vision sensing is more beneficial than LiDAR, by the fact that each image
datum comprises at maximum four values—red, green, blue, and possibly depth—whereas
each LiDAR datum can only have two possible values, which are distance and intensity.
Even so, for perception applications in forests, the combination of vision sensor(s) with
LiDAR(s) is the favourite approach due to the existence of sharp illumination changes
that can compromise the performance of cameras. Thus, even if the cameras temporarily
failed, the system could continue operating using LiDAR-based perception. A relevant
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detail is that, when using multimodal data, it is expected that the diverse nature of the
measurements incurs uncorrelated errors, interference, and noise. The expected conse-
quence is that multimodal sensing is likely to be superior to unimodal sensing. It is hoped
that an adequate data fusion technique improves the quality of the final perception with
uncorrelated limitations. When compared to several sensors with different natures to a
set of high-quality sensors of the same nature, multimodal is likely to have limitations in
distinct situations instead of having persistent noise and interference measured with high
accuracy. Admittedly, multimodal data come from diverse sensors that make the overall
system more expensive.

Table 3 shows the most innovative and disruptive works regarding the categories
mentioned in Sections 2.1–2.3.

Table 3. Best works in terms of innovation in each category.

Category Work Objective Perception Type Platforms

Health and diseases [5] Disease detection Unimodal UAV
[6] Disease detection Unimodal UAV

Inventory and structure
[11] Inventory characterisation Unimodal Handheld
[38] Biomass parameters Unimodal Airborne
[93] Biomass estimation Multimodal Spaceborne

Navigation
[28] Autonomous flight Unimodal UAV
[74] Autonomous rubber-tapping Unimodal Caterpillar robot
[97] Autonomous navigation Multimodal Quadruped robot

Species classification [81] Vegetation classification Multimodal Spaceborne, airborne
[82] Vegetation classification Multimodal Airborne

In the category “Health and diseases”, the two works that are clearly highlighted
were about performing disease detection in trees using only aerial images captured from
UAVs. The work developed in [5] focused on detecting diseases in pinus trees using
deep learning models to remove the noisy background from the UAV images (such as
soils, roads, and rocks), followed by disease recognition using the AdaBoost algorithm.
The authors went even further, and to expand their training dataset, they used a GAN.
After the study, they concluded that their method achieved superior results compared
to the state-of-the-art methods. The novelty of this article is related to the fact that the
proposed method not only recognises diseased trees but also other forestry objects, which
can be used to assess other forest parameters, such as LAI and rockiness of the forest terrain.
The use of GAN to augment the dataset is a relevant point as well. The other work of this
category was aimed at identifying sick fir trees [6]. The authors’ proposed method differs
from the common methods by combining DSM, for detecting treetops, with UAV images,
to classify the detected treetops. For the classification, the authors made a benchmark
involving 10 deep learning classifiers. Their method achieved better results compared to
three state-of-the-art methods.

Three works from the category “Inventory and structure” are of great relevance.
The work proposed in [11] was aimed at using SfM, and by means of a handheld camera,
to measure some inventory characteristics (tree positions and DBH). Then, the point cloud
resulting from terrestrial SfM was evaluated using a TLS-based point cloud, which proved
that the SfM method is an accurate solution for deriving inventory parameters from image-
based point clouds, which is an important breakthrough, as this type of work is normally
performed by means of aerial or terrestrial LiDAR data. A similar work was proposed
in [38], where the authors wanted to obtain biomass attributes, such as tree height, mean
crown width, and AGB, but in this work, aerial LiDAR data were used. To achieve that,
they proposed a method that performs ITC detection over a CHM derived from a LiDAR
point cloud. The authors claim that their method is very accurate and efficient even in
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dense forests, where traditional methods tend to present a limited performance, hence
the mentioning of this work in Table 3. The last work to be mentioned in this category
was about estimating biomass using a spaceborne multimodal approach [93]. The authors
used a combination of in-field inventory data reports, with satellite images and satellite
RaDAR to estimate and map forest biomass. The features were extracted from the data and
serve as an input to two different estimation models. The interesting aspect of this article is
the combination of forest inventory reports with remote sensing data to attain a low cost
method with a high level of reliability and efficiency.

Within the “Navigation” category, there are three relevant works that were considered
in Table 3. One is focused on performing autonomous flight with a UAV using only vision
sensing [28]. In this work, the authors developed an aerial system that uses a vision-
based DL method to detect obstacles and then performs evasion manoeuvres. The results
of this work are surprising and are the reason why this work was chosen; out of 100
flights carried out in a simulated environment, the rate of success was 85%, while in a real
environment the rate of success was 100% for 10 flights. Another surprising work was
developed in [74]. The aim of this work was to perform rubber-tapping autonomously.
For that, the authors used a caterpillar robot with a gyroscope and a LiDAR mounted on it.
The robotic system was capable of walking along one row at a fixed lateral distance and
then turning from one row into another, while performing rubber-tapping automatically.
Moreover, the system collected forest information and mapped the forest during the
operation. These developments constitute a tremendous breakthrough, as this is one of
the first works to implement an autonomous system for performing a forestry operation
without human interaction. Back in 2010, another work was published, and it was about
autonomous navigation using a quadruped robot with a sensing system composed by
a LiDAR, a stereo camera, GNSS receiver, and an IMU [97]. The robot was tested in a
forest environment, and it managed to successfully complete 23 out of 26 autonomous runs
and even managed to travel more than 130 m in one of them.

The last category covered in this review is “Species classification”. In this category,
two works based on multimodal sensing for classification of vegetation were considered.
In one of them, the authors combined hyperspectral images with LiDAR data to distinguish
23 classes, of which, 21 were vegetative, and benchmarked three classifiers [81]. In the
other work, the authors developed a method that performs ITD over an ALS-derived CHM,
and then the detected tree crowns were classified into four classes. The classification was
performed by combining 23 features from ALS data and orthoimages [82]. These two works
were selected by the fact that they covered a considerable amount of classes to identify,
made several combinations of multimodal features to serve as an input for classification,
and benchmarked the state-of-the-art methods to classify forestry vegetation.

Figure 1 presents a year distribution of the works that were studied and reviewed in
this article.

From Figure 1, it is easily concluded that the majority of works (around 70%) are
from 2017 onwards. This not only means that there is a growing interest in developing
technology for forestry, but also that in the last four years, there have been technological
developments with higher impact in the forestry domain.

The categories presented in Sections 2.1–2.3 are detailed in Figure 2 according to their
coverage in this article.

Undoubtedly, the category with greater presence in this article (more than 50%)
is “Inventory and structure”. Such dominance of this category over the others can be
explained by the fact that the type of works that the category embraces are mostly about
forest characterisation by extracting vegetation parameters and biomass estimation (using
vision and/or LiDAR), which are the most common work lines to estimate important
socioeconomic variables, such as, forest yield, carbon stock, and wildfire risk. The second
category with most coverage in this article is “Navigation”. This information denotes
that an increasing search is being made for automation systems capable of navigating and
performing autonomous tasks in forests. This is crucial, and it is expected that in upcoming



Computation 2021, 9, 127 12 of 23

years a larger number of autonomous robotic solutions may appear, since the lack of
manpower is a constant issue in forestry, for both manual and machine work. The third
category is “Species classification/detection”, and it is part of a relevant application domain
that allows one to detect intrusive species and avoid future implications in the biodynamics
of forestry areas.

Figure 1. Year distribution of the reviewed articles.

Figure 2. Category distribution of the reviewed articles.

Another aspect that must be discussed in this article is the applicability and adequacy
of sensor platforms to perform specific forestry operations. Table 4 presents an overview of
different sensor platform types and their details regarding area coverage, data resolution,
and whether a certain platform is at real-time operations or not.
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Table 4. Overview of sensor platform types. This table was adapted from [1].

Sensor Platform Area Coverage Spatial Resolution Real-Time Operation

Spacecraft Global Low No
Aircraft Regional Medium No

UAV Local High/Very High Maybe
Ground-Based Site Very High Yes

From Table 4, one can verify that the sensor platforms that should be used for collecting
data from large forest areas are the airborne ones (spacecraft, aircraft, and UAVs), as they
can cover more terrain than ground vehicles and in less time. Ground vehicles and UAVs
are the platforms to be employed to achieve highly precise data and for real-time operation.
However, ground vehicles are mostly preferred over UAVs since they typically have more
energy autonomy and support much more payloads. Such characteristics are ideal to
perform forestry tasks, which usually involve spending several hours in the terrain and
carrying large amounts of weight. Nonetheless, ground vehicles/robots require advanced
perception systems. To develop and test these systems, more datasets are needed.

3. Perception Datasets for Forestry

The existence of sufficient data is crucial for further developing multimodal perception
in forests. Therefore, this section introduces our dataset as a contribution of this paper and
also emphasises existing datasets within this field.

3.1. Proposed Dataset

The proposed dataset in this work is called QuintaRei Forest Multimodal Dataset
(QuintaReiFMD) and was acquired in an eucalyptus forest located in Valongo (Portugal)
using a robotic platform named AgRob V16, which is presented in Figure 3.

Figure 3. Lateral view of the ground mobile robotic platform AgRob V16 with the sensors annotated.

The dataset is available in the Robot Operating System (ROS) format, it is made up
by nine rosbags, and it includes visible, thermal, and depth images, and even point clouds.
The dataset was recorded during the navigation of the robot (manually controlled using
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a remote controller) in the forest, in plane and also steep terrains, at a maximum velocity
of 0.5 m/s. These data were collected by means of different sensors mounted on the
front of AgRob V16: a ZED stereo camera (https://www.stereolabs.com/zed, accessed
on 24 September 2021), pointing forward, mounted 96 cm above ground and tilted by
10 degrees, was used to acquire visible and depth images; a FLIR M232 camera (https:
//www.flir.eu/products/m232, accessed on 24 September 2021), pointing forward and
mounted 70 cm above ground with no tilt, was used to capture thermal images; a OAK-D
camera (https://store.opencv.ai/products/oak-d, accessed on 24 September 2021), point-
ing to the left of the robot, mounted 96 cm above ground and tilted by 10 degrees, was used
to collect visible and depth images; and a Velodyne Puck LiDAR (https://velodynelidar.
com/products/puck, accessed on 24 September 2021), mounted 100 cm above ground, was
used to acquire point clouds. These sensors are also presented in Figure 3 with coloured
annotations. The dataset is publicly available at https://doi.org/10.5281/zenodo.5045354
(accessed on 24 September 2021), and a partial description of the same is presented in
Table 5, where the data types, data resolution, frame rate, Field Of View (FOV), and number
of messages associated to each sensor are detailed.

Table 5. Partial description of the dataset acquired by the sensors mounted on AgRob V16: FOV, data types, data resolution,
frame rate, and total number of messages related to each sensor.

Sensor FOV (Hº × Vº × Dº) Frame Rate (Hz) Data type Resolution (W × H px) Number of Messages

ZED 90 × 60 × 100 2.67 Visible image 1280 × 720 6133
Depth image 1280 × 720 3045

OAK-D 72 × 50 × 83 5.20 Visible image 1280 × 720 5105
Depth image 1280 × 720 4811

FLIR 24 × 18 27.87 Thermal image 640 × 512 34,375

Velodyne 360 × 30 10.37 Point cloud - 12,154

3.2. Publicly Available Datasets in the Literature

Other publicly available datasets were found in the literature. In [34], the authors built
a unimodal dataset made of laser scanning data (available at https://www.newfor.net/
download-newfor-single-tree-detection-benchmark-dataset, accessed on 24 September
2021) to perform a tree detection benchmark. In [165], the authors constructed a dataset of
low-viewpoint coloured and depth images (available at https://doi.org/10.5281/zenodo.
3690210, accessed on 24 September 2021) to enhance the intelligence of smaller robots, possi-
bly achieving autonomous navigation in forests. In [31], the authors built a dataset of man-
ually annotated visible and thermal images (available at https://doi.org/10.5281/zenodo.
5213824, accessed on 24 September 2021) to perform trunk detection to enhance robot
awareness in the forest. In [166], the authors presented a multimodal dataset of laser scans,
colour and grey images (available at http://autonomy.cs.sfu.ca/sfu-mountain-dataset,
accessed on 24 September 2021), whose data correspond to eight hours of trail naviga-
tion. In [167], the authors produced a dataset composed by colour images (available at
https://etsin.fairdata.fi/dataset/06926f4b-b36a-4d6e-873c-aa3e7d84ab49, accessed on 24
September 2021) for forestry operations in general. Lastly, in [168], the authors proposed
two multimodal datasets made of laser scans and thermal images (available as DS_AG_34
and DS_AG_35 at https://doi.org/10.5281/zenodo.5357238, accessed accessed on 12 Octo-
ber 2021) for forestry robotics, and they used the datasets to perform a SLAM benchmark.
Table 6 summarises and describes the aforementioned datasets and our dataset. All datasets
were acquired at ground-level.

https://www.stereolabs.com/zed
https://www.flir.eu/products/m232
https://www.flir.eu/products/m232
https://store.opencv.ai/products/oak-d
https://velodynelidar.com/products/puck
https://velodynelidar.com/products/puck
https://doi.org/10.5281/zenodo.5045354
https://www.newfor.net/download-newfor-single-tree-detection-benchmark-dataset
https://www.newfor.net/download-newfor-single-tree-detection-benchmark-dataset
https://doi.org/10.5281/zenodo.3690210
https://doi.org/10.5281/zenodo.3690210
https://doi.org/10.5281/zenodo.5213824
https://doi.org/10.5281/zenodo.5213824
http://autonomy.cs.sfu.ca/sfu-mountain-dataset
https://etsin.fairdata.fi/dataset/06926f4b-b36a-4d6e-873c-aa3e7d84ab49
https://etsin.fairdata.fi/dataset/06926f4b-b36a-4d6e-873c-aa3e7d84ab49
https://doi.org/10.5281/zenodo.5357238
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Table 6. Summary of works presenting perception datasets in forests and our dataset, as well
as their characteristics.

Reference Perception Data Data Format

Eysn et al. [34] Laser scans LAS, TIFF, SHP
Niu et al. [165] Colour and depth images PNG, CSV
da Silva et al. [31] Visible and thermal images JPG, XML
Bruce et al. [166] Laser scans; colour and monochrome images ROS
Ali et al. [167] Colour images ROS
Reis et al. [168] Laser scans; thermal images ROS
QuintaReiFMD Laser scans; visible, thermal, and depth images ROS

From Table 6, it can be seen that our dataset complements other existing datasets, as it
contains laser scans and three different image types (more than any other) all together,
enabling the development of more forestry applications, possibly in real-time, during day
and night, using multimodal data.

4. Conclusions

The perception in forests is of utmost interest, since the combination of perception
systems with robotics and machinery can enable a smarter, more precise, and more sustain-
able forestry. In this sense, this work presents a formal review of several scientific articles
of forestry applications and operations by perceiving the forest environment.

This work reviewed unimodal and multimodal perception in forest environment.
Additionally, this work contributes for the enrichment of multimodal data in forests by
providing a public dataset composed by LiDAR data and three different types of imagery:
visible, thermal, and depth. This dataset is more complete than any other as it includes
four different types of sensor data (refer to Table 6).

Regarding unimodal sensing, the most common sensors are vision and LiDAR. Multi-
modal sensing takes advantage of a set of data coming from vision, LiDAR, and RaDAR.
The most common usages for perception are divided into categories, such as health and
diseases, inventory, and navigation.

Processing can be performed online, in real-time, onboard a given vehicle, or offline to
reach conclusions after the mission that collected the data. With the literature review made
in this article, the perception trends in forestry environments can be detailed. Vision-based
perception is mainly used along with aerial vehicles and in offline tasks such as detecting
diseases in vegetation and assessing the forest yield from its inventory; LiDAR-based per-
ception is mostly used along with aerial vehicles (sometimes even spaceborne), and its data
are most of the times processed offline for biomass estimation and structure measurement
purposes; the multimodal perception is specially focused on offline operations, such as
detecting and distinguishing vegetation species from aerial imagery and laser scanning
systems, estimation of biomass using multispectral and hyperspectral images with LiDAR
and RaDAR data, and measuring the forest canopy.

In the next years, the perception trends in forest should be focused on ground-based
systems to perform forestry operations in real-time relying on visual perception and LiDAR
perception alone and/or on a fusion of these two. Advances in these topics can enable
further technological developments in forestry, including fully unmanned navigation
for monitoring, and to perform operations such as cleaning, pruning, fertilising, and
planting autonomously.
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Abbreviations
The following abbreviations are used in this manuscript:

AGB Above-Ground Biomass
ALS Airborne Laser Scanning
ANN Artificial Neural Network
CHM Canopy Height Model
CNN Convolutional Neural Network
DBH Diameter at Breast Height
DL Deep Learning
DSM Digital Surface Model
FOV Field Of View
GAN Generative Adversarial Network
GNSS Global Navigation Satellite Systems
GPR Ground Penetrating RaDAR
IMU Inertial Measurement Unit
INS Inertial Navigation System
ITC Individual Tree Crown
ITD Individual Tree Detection
KNN K-Nearest Neighbours
LAI Leaf Area Index
LiDAR Light Detection And Ranging
NDVI Normalised Difference Vegetation Index
QuintaReiFMD QuintaRei Forest Multimodal Dataset
RaDAR Radio Detection And Ranging
ROS Robot Operating System
SfM Structure from Motion
SLAM Simultaneous Localisation and Mapping
SSD Single-Shot MultiBox Detector
TLS Terrestrial Laser Scanning
UAV Unmanned Aerial Vehicle
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