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Abstract: The modern changes in electric systems present new issues for control strategies. When
power converters and distributed energy resources are included in the micro-grid, its model is
more complex than the simplified representations used, sometimes losing essential data. This paper
proposes a unified fuzzy mathematics-based control method applied to the outer loop of a voltage
source converter (VSC) in both grid-connected and islanded modes to avoid using simplified models
in complex micro-grids and handle the uncertain and non-stationary behaviour of nonlinear systems.
The proposed control method is straightforwardly designed without simplifying the controlled
system. This paper explains the design of a fuzzy mathematics-based control method applied to
the outer-loop of a VSC, a crucial device for integrating renewable sources and storage devices in a
micro-grid. Simulation results validated the novel control strategy, demonstrating its capabilities for
real field applications.

Keywords: micro-grid; voltage source converter (VSC); fuzzy-logic control (FLC); outer-loop control

1. Introduction
1.1. Motivation

Micro-grids improve the reliability of electrical systems, supplying power to con-
nected or islanded networks incorporating distributed generation, and these contribute
to reducing pollution and integrating renewable energy resources [1]. However, there
are many technical challenges regarding the integration of micro-grids into conventional
distribution systems [2], including power flow control between the grid and the power
converter [3], power management [4], voltage and frequency stability in grid-islanded
mode [5–7], fault detection, and power quality, among others [8,9]. Most of the papers
in the leading scientific databases do not address the transitions between the micro-grid
operating modes; only one operation mode (connected or islanded from the main grid)
is normally analysed, considering specific priorities [1,10]. Power converter control is a
complex task due to the inherent nonlinearity. There is intensive research working toward
developing newer control strategies to ensure output voltage stability under variations
in load size, input voltage, and system parameters [11]. This paper aims to present the
possibility of using an FLC to control different micro-grid variables, such as voltage, fre-
quency, active power, and reactive power [12]. This paper contributes to demonstrating the
capabilities of artificial intelligence in the control modules of converters in micro-grids.

1.2. State-of-the-Art

Fuzzy mathematics-based control is an attractive method because its structure, con-
sisting of fuzzy sets and “if-then” rules, resembles how humans intuitively approach a
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control problem. This makes it easier for a designer to incorporate heuristic knowledge
of a system into the controller. Among the used control techniques, fuzzy mathematics-
based approaches have been widely used in distribution systems, mainly to deal with
the uncertainties originated through the inclusion of renewable and distributed energy
sources [13,14]. As an alternative, fuzzy-based control (FLC) was proposed to avoid
detailed modelling requirements but ensure high performance. One of the significant appli-
cations of fuzzy control methods in micro-grids is focused on the use of active disturbance
rejection control (ADRC) as a representative data-driven (or model-free) control algorithm
in order to exploit the advantages of data-driven control and fuzzy control [15,16].

Several applications are presented next: in [17,18], a general-purpose fuzzy controller
for dc–dc converters was analysed. Additionally, [19] analysed a fuzzy-based control
method for the maximum-power point tracking operation of a photo-voltaic system. A
review presented in [20] described FLC applied in converters to minimise the photo-voltaic
source output fluctuations, which produced undesirable effects in terms of harmonics
output, power factor, switching schemes, and power losses. Likewise, in [21] the authors
discussed the control of a three-phase, series, hybrid active filter connected to a photo-
voltaic system aimed to minimise the sags, swells, and harmonics caused due to nonlinear
power electronic loads. Similarly, the authors of [22] presented a rule-based nonlinear
control method to deal with power converters. Finally, FLC was applied in [23] to design
the outer loop of a converter only operating in grid-connected mode, using a single input
to describe the system behaviour.

The effective integration of distributed energy resources into micro-grids is usually
performed using power converters, where control strategies are required. The classical
proportional-integral approach (PI) has been frequently used [3,24]. Additionally, in the
case of grid-connected micro-grids, the Park’s dq-axes transformation is considered in the
control [25]. However, most previous approaches require simplified micro-grid models
and significant effort to tune each converter’s controller. Adequate performance is not
always guaranteed, especially in cases of multiple converter-connected distributed energy
resources [26,27].

1.3. Contributions

Fuzzy mathematics-based approaches have been widely used in electric systems by
different types of experts. The contribution presented in this paper is a novel strategy
focused on the control of grid-forming and grid-following converters, aimed at integrating
distributed energy resources into micro-grids using fuzzy logic. Specifically, this paper
presents a fuzzy-based outer-loop control method, as it is considered the most challenging
yet settable part of the internal control (zero level control) of a VSC. Additionally, a com-
parison of the proposed fuzzy-based control for the outer-loop of a VSC was performed by
considering a classical PI strategy based on Park’s dq-axes transformation.

In summary, the main contributions of the proposed approach are:
(a) A strategy for efficiently developing an adjustable controller based on expert

knowledge, represented by rules and memberships functions.
(b) A strategy that considers the complete system model, represented by rule-base

and inference systems.
(c) A broad operating range controller to deal with perturbations in nonlinear systems.
(d) A control method that overcomes uncertainties associated with system parame-

ter estimation.
(e) A faster control method than conventional approaches.
(f) A compressible strategy for quickly developing a well-performing controller for

grid-forming and grid-following converters in micro-grid applications.
The fuzzy mathematics-based outer-loop controller has been proposed to replace

the PI controller. As its main advantages, the former avoids using the mathematical
converter model, adequately works with inaccurate inputs, and is robust. However, the



Computation 2021, 9, 134 3 of 16

designed controller requires substantial computational effort due to complex and heuristic
decision-making processes.

Finally, the fuzzy mathematics-based controller is robust as it reduces the complex-
ity of the traditional control design and handles nonlinear systems, avoiding extensive
mathematical modelling requirements.

1.4. Paper Organization

This paper is organised as follows: Section 2 presents the basic theoretical aspects of
VSC and FLC; Section 3 presents the proposed methodology to design the outer-loop FLC;
in Section 4, the testing scenarios, results, and analysis are addressed. Finally, the most
important conclusions are highlighted in Section 5.

2. Fundamental Background
2.1. VSC Control

A micro-grid is a small-scale grid, which includes distributed generation, storage
devices, and loads. Power converters are a fundamental part of micro-grids, and depending
on the operating mode, these have different control objectives. In grid-connected mode,
active (P) and reactive (Q) power management is controlled, while during grid-islanded
mode, the interest is focused on control voltage (v) and frequency ( f ) [28,29].

VSCs are normally used to integrate distributed energy resources into the network.
The zero-level controller is aimed to modify the pulses of IGBTs, and in this way, to obtain
a desired value of the controlled variables [30]. In grid-connected mode, the controlled
variables are P and Q for distributed resources, while in grid-islanded mode, it is oriented
to control v and f . Typically, the zero-level control method includes a phase-locked loop,
a current control (inner-loop), pulse width modulation (PWM), and a power control or a
voltage and frequency control (outer-loop) [3,9].

Outer-loop defines the reference currents in the direct and quadrature axis for the
inner-loop. Therefore, the outer-loop is in charge of interest variable management according
to the micro-grid operating mode [3,31].

Figure 1 shows the basic structure of a VSC in grid-connected or grid-islanded modes,
according to the position of S1, S2, and S3.

Figure 1. Scheme of VSC control considering microgrid operating modes.

2.2. General Structure of the Fuzzy-Based Control Method

As presented in Section 1, fuzzy mathematics has been widely applied in control
systems because it provides a formal and straightforward methodology to represent,
manipulate and include human expert heuristic knowledge to solve several engineering
problems [32,33].
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The FLC considered in this paper has the structure shown in Figure 2; it contains two
inputs (x) and one output y, in a MISO structure (multiple input single output). Initially,
FLC requires a fuzzification stage which is defined as a mapping from the acquired variables
(input space) to a fuzzy representation (fuzzy sets); these sets are defined in a range between
the maximum and minimum values allowed by each variable (universe of discourse). They
require an inference mechanism to perform a nonlinear mapping from the input to the
output spaces. This process involves all membership functions, fuzzy logical operators,
and rules. Finally, a defuzzification process performs fuzzy control actions and delivers
them as actions to be applied to the output system (actuators) [34,35].

Fuzzification
Inference 

Mechanism
Defuzzification

x y

Figure 2. Structure of the proposed fuzzy logic based control.

3. Proposed Methodology

The methodology proposed to design the FLC for a VSC outer-loop controller is pre-
sented in Figure 3. This proposal is divided into three stages, which starts by analysing the
system operation modes and ends by defining the control strategy. FLC allows considering
a complete system model without using linear representations to calculate the control
constants. Additionally, it allows us to consider uncertainties when the system model is
not available, as the controller design is based on expert knowledge. The opposite case
occurs in several control techniques that require at least linear system representations in
controller design.

In this section, steps and design considerations of the fuzzy controller are presented.

3.1. Stage 1. Expert Analysis of the VSC Outer-Loop Control

In complex systems, typically the detailed mathematical model is harder to define.
However, fuzzy mathematics allows the integration of expert knowledge in the model and,
in that way, approximates the real system.

Consequently, this stage is oriented to analyse the expert knowledge about VSC
functioning and how associate it with the control method’s purpose. It contains three steps,
which are described in the following:

3.1.1. Step 1.1. Analysis of Micro-Grid Behaviour According to the Operation Mode

Micro-grids have two operating modes: connected and islanded from the power grid.
A micro-grid has to operate in both modes to supply load adequately [36].

Energy storage devices are kept idle or charged during the grid-connected mode,
depending on their charging status. Available distributed sources supply the loads, and
the main power grid provides the deficit. In surpluses from distributed sources, this energy
is stored or delivered to the main power grid.

During grid-islanded mode, the micro-grid contains distributed generators, storage
devices, and loads, working separately from the main power grid.

In either micro-grid operating mode, storage devices must compensate for a deficiency
in case of a power shortage.
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Step 3.5 Selection of the 
Defuzification Method.

Figure 3. Proposed methodological approach.

3.1.2. Step 1.2. Analysis of Apparent Power Behaviour. Grid-Connected Mode

Control objectives of this operating mode are oriented to deliver the maximum power
generated by renewable sources. In the case of storage devices, these are charged when the
system has surpluses from local renewable sources. Consequently, the interests controlled
are P and Q.

3.1.3. Step 1.3. Analysis of Voltage and Frequency Behaviour. Grid-Islanded Mode

Control objectives of this operating mode are oriented to maintain adequate operating
conditions. Consequently, the controlled variables are v and f .

3.2. Stage 2. Control Method Input/Output Identification

The objective at this stage is to identify a correlation between the input and the output
variables. In this case, the VSC is an interface element in charge of power management and
grid efficiency improvement. Thus, grid operation depends on these converters’ capacity
to guarantee the assigned control objectives [9]. However, controller outputs are limited by
the number of actuators that allow the necessary actions to set reference values for P, Q, v
and f .

The process of control input/output identification is composed of two steps:

3.2.1. Step 2.1. Identification of Input/Output Correlation in Grid-Following Converters

Grid-following converters adequately operate if there is a reference of voltage and
frequency at the micro-grid. The proposed inputs for outer-loop based FLC in a grid-
following converter are P and Q. Quadrature and direct axis currents in the converter
(id,q) are proposed as FLC outputs. In Figure 4, a graphical representation of the proposed
outer-loop is presented.
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Figure 4. Outer-loop control based on fuzzy logic for grid-following converters.

3.2.2. Step 2.2. Identification of input/output correlation in grid-forming converters

Grid-forming converters operate in grid-islanded mode and work as an AC voltage
source with a defined voltage and frequency. This system remains disconnected from the
main grid; however, the converter sets micro-grid voltage and frequency references in case
of a grid failure. In this case, references imposed by a grid-forming converter are used for
the remaining converters, which operates as grid-following converters.

Based on previous reports, v and f are selected as inputs of the outer-loop based FLC.
Additionally, as in the previous case, the converter currents in quadrature and direct axis
(id,q) are proposed as FLC outputs. In Figure 5, a graphical representation of the proposed
outer-loop is presented.
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3.3. Stage 3. Design of the FL Based Outer-Loop Control

This stage is oriented to the design of the proposed FL-based outer-loop control. It is
divided into five main steps, as shown in Figure 3.

The control objective is power management in grid-connected mode, considering
direct and quadrature axis currents as controlled variables. The micro-grid voltage and
frequency are controlled in grid-islanded mode, using direct and quadrature axis currents
as controlled variables.

3.3.1. Step 3.1. Selection of the Fuzzy Logic Inference Mechanism

Fuzzy approaches are applied in complex nonlinear systems with unknown or poorly
known mathematical models. There are two different types of fuzzy systems, Mamdani
and Takagi–Sugeno–Kang (TSK); the premise of both systems’ rules is the same, but the
consequent in Mamdani needs a defuzzification step. This paper selects the Mamdani
type by using linguistic variables to define the system’s behaviour, considering the input
and output relationships. Additionally, a precise system mathematical description is not
required during the control design, and knowledge can be heuristically obtained [34,37].

3.3.2. Step 3.2. Definition of the Universe of Discourse and the Linguistic Variables

The universe of the discourse range is determined from the maximum and minimum
physically allowed values of actuators and sensors and the nominal values of the input
and output control method parameters. In grid-connected mode, the controller input
value varies according to P and Q delivered from the renewable source to the network. In
grid-isolated mode, it depends on the allowed operating ranges of v and f .

Membership functions require the definition of linguistic variables that describe the
probable values at each operating mode. The number of linguistic variables is related to
the control method sensitivity and depends on the expert knowledge. In this case, as the
input–output correlation is proportional, the same linguistic variables are chosen for inputs
and outputs.

Figure 4. Outer-loop control based on fuzzy logic for grid-following converters.

3.2.2. Step 2.2. Identification of Input/Output Correlation in Grid-Forming Converters

Grid-forming converters operate in grid-islanded mode and work as an AC voltage
source with a defined voltage and frequency. This system remains disconnected from the
main grid; however, the converter sets micro-grid voltage and frequency references in case
of a grid failure. In this case, references imposed by a grid-forming converter are used for
the remaining converters, which operates as grid-following converters.

Based on previous reports, v and f are selected as inputs of the outer-loop based FLC.
Additionally, as in the previous case, the converter currents in quadrature and direct axis
(id,q) are proposed as FLC outputs. In Figure 5, a graphical representation of the proposed
outer-loop is presented.
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3.3. Stage 3. Design of the FL Based Outer-Loop Control

This stage is oriented to the design of the proposed FL-based outer-loop control. It is
divided into five main steps, as shown in Figure 3.

The control objective is power management in grid-connected mode, considering
direct and quadrature axis currents as controlled variables. The micro-grid voltage and
frequency are controlled in grid-islanded mode, using direct and quadrature axis currents
as controlled variables.

3.3.1. Step 3.1. Selection of the Fuzzy Logic Inference Mechanism

Fuzzy approaches are applied in complex nonlinear systems with unknown or poorly
known mathematical models. There are two different types of fuzzy systems, Mamdani
and Takagi–Sugeno–Kang (TSK); the premise of both systems’ rules is the same, but the
consequent in Mamdani needs a defuzzification step. This paper selects the Mamdani
type by using linguistic variables to define the system’s behaviour, considering the input
and output relationships. Additionally, a precise system mathematical description is not
required during the control design, and knowledge can be heuristically obtained [34,37].

3.3.2. Step 3.2. Definition of the Universe of Discourse and the Linguistic Variables

The universe of the discourse range is determined from the maximum and minimum
physically allowed values of actuators and sensors and the nominal values of the input
and output control method parameters. In grid-connected mode, the controller input
value varies according to P and Q delivered from the renewable source to the network. In
grid-isolated mode, it depends on the allowed operating ranges of v and f .

Membership functions require the definition of linguistic variables that describe the
probable values at each operating mode. The number of linguistic variables is related to
the control method sensitivity and depends on the expert knowledge. In this case, as the
input–output correlation is proportional, the same linguistic variables are chosen for inputs
and outputs.
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Ranges for linguistic variables are defined symmetrically from the zero-edge since
no additional emphasis on any specific value is required. Finally, these functions have
an intersection, which represents partial truth, to describe approximate reasoning. In
this document, the interception point between membership functions is established as
the intermediate point of the defined rank aimed to have a smooth intercept between the
linguistic values and to avoid sudden changes, as in the whole truth problems.

3.3.3. Step 3.3. Selection of Membership Functions

Membership functions are chosen based on expert knowledge. However, the number
of inputs and outputs required by the control method and the number of obtained rules
can impair the computational effort.

The selection of membership functions varies depending on the system’s behaviour;
e.g., Gaussian and sigmoid functions are frequently used in processes with exponential
changes. However, these two functions require a much longer processing time. Contrarily,
linear functions such as trapezoidal and triangular types, significantly reduce the pro-
cessing time and represent the proportion between the variation of input values and the
corresponding degrees of certainty. Nevertheless, trapezoidal functions provide some
degree of freedom for several values, corresponding to the degree of certainty in the
membership function’s upper base. The used membership functions are not limited to
these basic functions, as they can be optimised considering the control method behaviour.
Membership function structure can be modified from a better fit, initially considering the
system’s behaviour in the face of the control method actions obtained and the allowed
error. However, this requires detailed knowledge of the system to translate this behaviour
into the proposed functions.

3.3.4. Step 3.4. Construction of the Rule-Based Inference System

In grid-islanded mode, system behaviour is analysed to define the grid-forming
converter FLC’s knowledge base. In this case, it is observed that the system maintains
voltage and frequency around the rated values, as defined in the control objective. For this
reason, the inference system development is oriented to monitoring the error behaviour
and the rate of change (derivative) of voltage and frequency. Analysis of the monitored
variables establishes rules that define the behaviour.

System behaviour analysis is carried out in grid-connected mode to obtain a knowl-
edge base used in the grid-following converter FLC. The power error behaviour is analysed
by considering the variation in currents in the quadrature and direct axis. The relationship
between powers and currents is linear and proportional. In this case, linguistic values
with higher weights are chosen in case of small input changes; then, the system can be
quickly brought to a new reference value during slight input variations. This characteristic
is defined due to the frequent change perceived in renewable generation sources.

3.3.5. Step 3.5. Selection of the Defuzzification Method

Linguistic variables are converted back into numerical variables in the defuzzification
stage, as the fuzzy controller output is based on the membership functions. After the rule
evaluation for a specific input value, a composed and truncated area is obtained. This
defuzzification method evaluates the acquired area and delivers the corresponding input.

In this paper, bisector is proposed as a defuzzification method. It requires low pro-
cessing effort for area decomposition, avoids repeating areas, and deals with complex
geometries.

4. Testing and Analysis of Results
4.1. Test System

The 400 V test system proposed in this paper consists of a variable load, two converter-
integrated distributed generators and one storage device. The proposed micro-grid topol-
ogy is presented in Figure 6.
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Line parameters consider positive and zero sequence resistances of 0.423 and 0.3864
[Ω/km]; positive and zero sequence inductances of 0.4265× 10−3 and 4.1264 × 10−3 [H/km];
positive and zero sequence capacitances of 310 × 10−9 and 7.751 × 10−9 [F/km] and the
line lengths is equal to 0.1 [km]. Fixed load is 300 + 145.4i [kVA] and variable load is
35 + 33.9i [kVA]. All DERs have the same rated power of 100 [kVA].

4.2. Testing Scenarios

The proposed scenarios are oriented to validate the VSC operation with fuzzy mathematics-
based control methods in case of variations in load, three-phase faults, connection of other
converters and change in micro-grid operating modes. This validates the VSC operation
and the designed fuzzy controller. Tables 1 and 2 show the proposed testing scenarios.

Table 1. Analysed micro-grid scenarios.

No. Scenarios
Switching Times [s]

0.2 1.5 2.0 2.2 4.0 5.0 5.2

1 Connection of grid-
forming converter Fr.1

2 Connection of grid-
following converter F.1 F.2

3

Reference variation
for active power F.1 F.2

Reference variation
for reactive power F.1 F.2

Table 2. Connection times and disturbances.

No. Scenarios
Switching Times (s)

0.8 2.5 6.0 7.0 8.0

4

Three-phase
fault (50 ms) � � �

Three-phase
fault (70 ms) �

5 Load change �
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4.3. Definition of the Fuzzy-Based Outer-Loop Control Method

The procedure for designing the fuzzy control method has been explained in Section 3.
The characteristics selected for each controller component are described below.

4.3.1. Universe of Discourse

The FLC outputs vary between [−1, 1] since the inner-loop requires current values
in p.u. Similarly, FLC inputs are on a per-unit basis, and the universe of discourse for
errors is defined as [−1, 1]. On the other hand, the derivative is not physically limited; for
this reason, the universe of discourse is defined according to the maximum and minimum
values of the variable. In this case, the derivative’s maximum values range [−20,000,
20,000]. These take negative values, which allows the FLC to be used for storage systems
charged from the network. These values are selected based on multiple simulations of the
test system, which has allowed us to observe values taken by the variables under study.

4.3.2. Membership Functions

This paper proposes triangular and trapezoidal membership functions after evaluating
the relation between system inputs and outputs. Extreme values in universes of discourse
are defined as trapezoidal functions representing huge inputs and outputs, and the other
membership functions are triangular. In this way, the use of linear functions is maintained,
reducing the computational effort, i.e., the processing time of this control stage is reduced.
In Figures 7 and 8, the membership functions used for FLC are observed as proposed in
Section 3.3.3.
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Figure 7. Membership functions for grid-following converters.
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Figure 8. Membership functions for grid-forming converters.

4.3.3. Definition of the Linguistic Values

The linguistic values selected for FLC in grid-islanded and grid-connected modes are
defined as follows: the first is defined for variations around zero (Zero−Z), two for extreme
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variations (Large positive − LP, Large negative − LN), and two more between zero and
the extreme values previously defined (Small positive − SP, Small negative − SN). In grid-
connected mode, two more functions are added (Medium positive− MP, Medium negative−
MN). These linguistic variables are defined for inputs and outputs. The defined linguistic
values are depicted in Figures 7 and 8. To reach these values, adjustments to eliminate
oscillations and to improve response times were made.

4.3.4. Definition of the Rule-Based Inference System

In grid-forming converters, the rules in Table 3 are obtained. The number of rules is
defined by the combinations between the number of inputs and the membership functions
chosen. In this case, twenty-five rules are defined.

Table 3. Rules for FLC of grid-forming converters. The rules are generically represented, since the
relation vd − id and vq − iq are similar.

4i Error Derivative ė

LN SN Z SP LP

Er
ro

r
e(

t)

LN Z SN LN LN LN

SN SP Z SN LN LN

Z LP SP Z SN LN

SP LP LP SP Z SN

LP LP LP LP SP Z

For grid-following converters, the forty-nine rules in Table 4 are obtained.

Table 4. Rules for FLC of grid-following converters. The rules are generically represented, since the
relation P − id and Q − iq are similar.

4i Error Derivative ė

LN MN SN Z SP MP LP

Er
ro

r
e(

t)

LN LN LN LN MN SN SN Z

MN LN LN MN SN SN Z SP

SN LN MN SN SN Z SP SP

Z MN SN SN Z SP SP MP

SP SN SN Z SP SP MP LP

MP SN Z SP SP MP LP LP

LP Z SP SP MP LP LP LP

4.4. Results and Analysis

Five scenarios have been considered to validate the proposed control algorithms. The
following sections discuss the considerations for each scenario and the main findings.

4.4.1. Scenario 1. Connection of a Grid-Forming Converter

In Figure 9, the system behaviour is observed in the case of the islanded operating
mode considering both the FL- and PI-based control strategies. At 0.2 [s], the converter is
connected to supply the load, following the voltage and frequency reference. It is observed
that at 0.2 [s], both control strategies manage the system stabilisation when a grid-forming
converter connection occurs. However, when the fuzzy logic-based control method is
applied, the converter has higher oscillations, but the establishment time is similar to the
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PI-based control method proposed in [24]. This condition can be improved by optimising
membership functions.
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Figure 9. Measurement voltage and frequency in grid-forming converter.

4.4.2. Scenario 2. Connection of a Grid-Following Converter

In Figure 10, the disturbance in voltage and frequency signals is observed when a new
converter is connected to the system. In this case, it is observed that both techniques reach
their control objective, although oscillations in frequency are increased with fuzzy control
application. However, the voltage signal has a drop more significant than 10% of the rating
in case of application of the classical PI control technique proposed in [24]. In addition,
the voltage establishment time is halved in the fuzzy-based control method application
compared to the PI control strategy.

In Figure 11, a power disturbance at 1.5 [s] is observed when the grid-following
converter is connected to the system. In this case, the control objective is accomplished
with both strategies; however, in the case of the PI control method proposed in [24], it is
observed that there are more significant variations in active and reactive power signals.
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Figure 10. Measurement voltage and frequency of the system with connection of other converters.
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Figure 11. Converter connection and reference change of active and reactive power in grid-
following converter.

4.4.3. Scenario 3. Power Reference Change in a Grid-Following Converter

In Figure 11, the tracking control of P and Q when the renewable source delivers
power to the micro-grid in time of 2 [s] is presented. In this case, the micro-grid presents
disturbances in reactive power signal when changes occur in the active power signal and
vice versa; however, active power reference changes highly affect reactive power. Using
the fuzzy-based outer-loop control method makes it possible to attenuate these peaks in
case of changes in the generation reference, achieving a fast stabilisation and an adequate
follow-up of the imposed reference. On the contrary, although the classical PI technique
proposed in [25] manages to stabilise the system, in the case of not delivering power, the
converter absorbs reactive power. Additionally, when it is required to provide power to
the micro-grid, it delivers more than is required.
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4.4.4. Scenario 4. Three-Phase Faults at the Micro-Grid

In this scenario, a three-phase fault at 0.8 [s] and a duration of 50 [ms] is considered,
as it is observed in Figure 9. As a consequence of the three-phase fault, the micro-grid
presents a high disturbance in the case of using a classical PI controller as proposed in [24].
When the three-phase fault is cleared, both techniques stabilise the system. However, when
the PI control technique is applied, sustained voltage swell is observed for an approximate
time of 0.3 [s], until it is restored to the rated value. In this case, the fuzzy logic technique
manages high voltages and generates a gradual reduction until the signal reaches the rated
voltage value.

On the other hand, when a three-phase faults occurs, frequency is severely affected.
In the case of the fuzzy logic-based outer-loop control method, more significant initial
variations are observed in comparison to the classical control method proposed in [24].
However, the establishment time is reduced by half compared to the classical control
technique. Moreover, when the three-phase fault is cleared, frequency oscillations are
reduced using fuzzy logic-based control compared to the classical control technique.

4.4.5. Scenario 5. Load Change

In the Figure 12, a change in the power reference of a grid-following converter is
observed at 6 [s]. In this case, the load change in grid-following converters generates
oscillations in power signals, as seen in Figure 12, because these converters try to deliver
the required power. A grid-following converter is configured to deliver the power adjusted
at the reference, considering its physical and operational parameters; therefore, in case of
load increases, an energy management system is required, which changes the reference
of these converters. However, it is observed that the power tracking control objective is
achieved. Additionally, both techniques manage to follow the power reference imposed by
generation source, where oscillations in the signals are attenuated by the control technique
based on fuzzy logic, as shown in Figure 12.
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Figure 12. System disturbances seen from grid-following converter 2 (load change).

In the analysed PI control strategies, the gain tuning is an issue since conventional
trial-error processes can produce sub-optimal solutions that affect the system’s dynami-
cal performance.
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The integral of time-weighted absolute error (ITAE) and the integral of absolute error
(IAE) are used as the performance index, and in this way, the fuzzy controller’s effectiveness
is demonstrated. Results are shown in Tables 5 and 6.

Table 5. IAE and ITAE for grid-forming. Voltage (v) and frequency ( f ) control.

Variable
Control Strategy

Fuzzy PI

IAE v 0.926 0.853

f 0.197 0.311

ITAE v 6.093 4.685

f 1.014 1.904

Table 6. IAE and ITAE for grid-following 1. Active Power (P) and Reactive Power (Q) control.

Variable
Control Strategy

Fuzzy PI

IAE P 0.459 0.795

Q 0.388 0.548

ITAE P 3.566 5.412

Q 3.071 3.726

Finally, the sampling time used in the simulations is 5 × 10−5 s.

5. Conclusions

A fuzzy mathematics-based outer-loop control method is proposed and validated to
avoid using the detailed mathematical model of the micro-grid. As observed in this paper,
general knowledge related to the micro-grid behaviour is required. The fuzzy-based control
method has advantages compared to the classic PI control in dealing with disturbances.
Additionally, a low settling time is achieved by following the detailed guides proposed
in this document. It is demonstrated with a straightforward converter controller design,
used in grid-connected and grid-islanded operating modes, that the control objectives
are achieved in both cases. In addition, to test the control method reliability, different
fault scenarios are proposed. The proposed controller succeeds in overcoming faults and
restoring the system in a shorter time than the classic control strategies that require more
significant adjustment efforts for the same system. This type of controller can be easily
implemented in nonlinear systems as voltage source converters.

The approach proposed in this paper uses Mamdani-type inference on a fuzzy-logic-
based control method applied to converter-connected distributed generation and storage
devices in micro-grids. The primary method limitations are associated with selecting the
values of the universe of discourse and the type of membership functions. The optimisation
of these parameters allows us to obtain a better controller performance. Other fuzzy
inference drawbacks are observed in the intersected boundaries and an improper transition
region between the inference boundaries of non-intersected.

In future work, robustness can be evaluated by varying the converter parameters to
trigger control errors. This allows us to differentiate converters according to the number
and type of errors uncovered and provides information to solve the identified problems.
Parameter variation helps us to consider uncertainties in the system modelling. Further-
more, optimal control can be proposed as an objective function defined by minimising
the difference between the system response and the reference signal. Variables have to be
restricted by values with physical meaning according to the system size. Finally, the design
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of a Takagi–Sugeno-type controller has to be studied to ensure the system stability and to
consider the available micro-grid mathematical model.
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