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Abstract: Predictive emission monitoring systems (PEMS) are software solutions for the validation
and supplementation of costly continuous emission monitoring systems for natural gas electrical
generation turbines. The basis of PEMS is that of predictive models trained on past data to estimate
emission components. The gas turbine process dataset from the University of California at Irvine
open data repository has initiated a challenge of sorts to investigate the quality of models of various
machine learning methods to build a model for predicting CO and NOx emissions depending on
ambient variables and the parameters of the technological process. The novelty and features of
this paper are: (i) a contribution to the study of the features of the open dataset on CO and NOx

emissions for gas turbines, which will enable one to more objectively compare different machine
learning methods for further research; (ii) for the first time for the CO and NOx emissions, a model
based on symbolic regression and a genetic algorithm is presented—the advantage of this being the
transparency of the influence of factors and the interpretability of the model; (iii) a new classification
model based on the symbolic regression model and fuzzy inference system is proposed. The coeffi-
cients of determination of the developed models are: R2 = 0.83 for NOx emissions, R2 = 0.89 for
CO emissions.

Keywords: predictive emission monitoring systems; exhaust emissions prediction; CO emissions;
NOx emissions; gas turbines; machine learning; symbolic regression; genetic algorithm; fuzzy
classification model

1. Introduction

One of the essential sources of harmful pollutants (NOx and CO) released in the
atmosphere is the combustion process in the power industry. NOx is a generic term for
the emission family of nitrogen dioxide (NO2) and nitric oxide (NO), which are produced
from the reaction of nitrogen and oxygen gases in the air during combustion. There
are three main mechanisms for the formation of nitrogen oxides during gas combustion:
“thermal”, “fast”, and “fuel” NOx. In accordance with the thermal theory, the rate of NOx
formation depends on the temperature of the combustion zone, on the residence time of the
combustion products in the high-temperature zone, and on the oxygen concentration in this
zone. “Fast” NOx are formed in the initial region of the flame front in the temperature range
of 1000–1500 K. “Fuel” NOx are formed from nitrogen-containing fuel compounds. Since
natural gas does not contain nitrogen compounds, or contains them in very small quantities,
only the first two mechanisms of NOx formation lead to emissions in gas turbines which are
limited by strict environmental regulations. According to Industrial Emissions Directive,
the flue gas concentrations of NOx and CO must be continuously measured from each
combustion plant exceeding a total capacity of 100 MW. Predictive emission models do
not require significant initial and ongoing financial costs to help prove the reliability of
continuous measurements. An overview of the history of PEMS development as well as
the regulatory framework can be found in [1]. There are two main approaches to model
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building for PEMS: analytical equations derived from the laws of thermodynamics, mass
and energy balance, and data-driven models, including statistical and machine learning
methods. The publication of the dataset in the open data repository of the University
of California, Irvine, School of Information and Computer Science [2] in 2019 allowed
researchers to start open discussion on the features of data and the quality of models
derived from various machine learning methods to predict CO and NOx emissions.

In [3], the dataset under study was presented for the first time and a description of
its main statistical characteristics was given. The dataset was collected for 5 years which
contained 36,733 instances of 11 sensor measures aggregated over one hour, including three
external environmental parameters (air temperature (AT), air humidity (AH), atmosphere
pressure (AP)), indicators of the gas turbine technological process (six parameters given
in Table 1), and two target variables: the sensor measurements of emissions of carbon
monoxide (CO) and the total nitrogen monoxide and nitrogen dioxide (NOx). The data
were collected in an operating range between partial load (75%) and full load (100%).

Table 1. The list of process parameters.

Process Parameters Abbreviation Unit

Air filter difference pressure AFDP mbar
Gas turbine exhaust pressure GTEP mbar
Turbine inlet temperature TIT ◦C
Turbine after temperature TAT ◦C
Turbine energy yield TEY MWh
Compressor discharge pressure CDP mbar

The dataset lacks some important parameters for a more thorough analysis, such as the
amount of fuel consumed and the gas composition. However, the existing dataset provides
valuable information on gas turbine performance, CO and NOx emission predictions. In [3],
the first attempt to use extreme learning machine classifiers (ELMs) for this problem is
presented. The hyperparameters (the number of hidden nodes K and the regularization
parameter C) and three fusion strategies were examined, and the best result has a coefficient
of determination R2 = 0.56 and mean absolute error (MAE) 0.97 mg/m3 for CO prediction,
and R2 = 0.67 and MAE = 4.57 mg/m3 for NOx prediction.

Subsequent articles by other researchers explored various machine learning techniques
to produce better performing models. In [4], K-nearest-neighbor algorithm, based on the
same dataset for predicting NOx emissions from the natural gas electrical generation
turbines is proposed. In [5], the model of PEMS, using a gradient boosting machine
learning method, is presented. The dataset from the continuous emission monitoring
system (CEMS) with a sampling rate of 1 min for this research is not publicly available.
In this study, the authors note that ANN-based models are treated as “black boxes” and
regulators and decision makers without a statistical background often have difficulty
understanding these models, which poses a significant challenge for a broader application
of PEMSs. In [6], the M5P algorithm was used to predict CO emissions, and a binary
decision tree with linear regression functions at the leaf nodes was built. The reported
MAE predicting CO emissions ranged from 0.75 to 1.4 mg/m3 and that predicting NOx
emissions ranged from 4.2 to 11 mg/m3. The advantage of the method is that the models
are suitable for human interpretation.

In [7], the problem of choosing a feature normalization method and its impact on
ANN-based models was investigated. Three datasets were examined, including CO and
NOx emissions. Each dataset is specific, three methods of feature normalization showed
similar results for the dataset under consideration. The authors calculated the proportional
dispersion weights for each feature to improve the understanding of the features’ contri-
bution to the model. The performance of the presented models is not perfect: average
MAE = 0.73, R2 = 0.56 for CO and MAE = 5.4, R2 = 0.55 for NOx. In [3], the authors
calculated the main statistical characteristics of the variables and found a strong correlation
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between the input variables, particularly between the compressor discharge pressure and
the turbine energy yield (ρ(CDP, TEY) = 0.99), CDP and GTEP (ρ(CDP, GTEP) = 0.98),
and also GTEP and TEY (ρ(GTEP, TEY) = 0.96). Thus, the problem of excluding variables
containing redundant information is considered by most researchers. The idea of reduc-
ing the number of predictors using principal components analysis (PCA) was discussed
in [4,6]. In [3], a canonical correlation analysis (CCA) was used — a method which uses
two principal components to predict two explanatory variables.

In [8], the authors presented a new class of reliable-based multiple linear regression
(MLR) models called Etemadi and evaluated the performance of the Etemadi model and
classic MLR model using the same dataset to predict the hourly net energy yield (TEY) of
the turbine with gas turbine parameters and the ambient variables as predictors. Given
the high correlation between the predictors and the dependent variable, this dataset is
not a valid example to support the conclusions of the article on the model for energy
yield prediction.

It is worth noting that the problem of predicting power generation is vital and the
Kalman filter has given good results for an open cycle gas turbine in [9] and for combined
cycle gas turbine in [10]. The dataset under consideration requires a different method as
emissions are more influenced by process parameters than temperature cycles.

The purpose of our research was to study the open dataset on CO and NOx emis-
sions in order to choose suitable machine learning algorithms for emission predictions,
investigate the quality of the resulting models and build symbolic regression models as an
explainable method of prediction.

2. Analyzing a Dataset

The first step in our data analysis was to answer the question of whether it is possible
to consider the data for all 5 years as a single training set and build a single model, or
whether it is necessary to separate the data by years or seasons. Figure 1 shows boxplots
of technological process parameters and CO and NOx emissions over 5 years. Note that
the median for the turbine energy yield for 2011–2014 remained practically unchanged,
whilst in 2015, it decreased by 1.5%. At that, the median for CO emissions in 2015 was
significantly higher than the values for previous years. For NOx emissions in 2014 and
2015, the median was lower compared to 2011–2013 by more than 10%. We cannot obtain
additional information about the equipment maintenance during the period 2011–2015, but
these observations allow us to conclude that to train the NOx model, it is worth dividing
the data into two subsets and building one model for 2011–2013 dataset, and the second
for 2014–2015.

Points marked with symbol “+” show values that are larger than q3 + 1.5·(q3 − q1)
or smaller than q1 − 1.5·(q3 − q1), where q1 and q3 are the 25th and 75th percentiles,
respectively. They cannot be considered outliers if there is a simultaneous change in CO
emission and process parameters. Moreover, a sharp increase in emission is a key issue for
the problem under consideration. For CO emission, one can see a significant number of
cases when emissions are 5–40 times greater than the median values, but the total amount of
CO emissions on average is approximately 5–10% of NOx emission. Thus, CO emission can
dramatically increase and it is important to indicate the situation that leads to extraordinary
emissions. We divided the data into two subsets. The first subset included 10% of the
data with the highest CO values (emissions exceeding 4.75 mg/m3), we called this subset
“extreme CO”. For the second subset, CO emissions were less than 4.75 mg/m3, and we
called this subset “standard CO”.

We plotted correlation matrices for the subset of extreme CO samples and for the
subset of standard CO (Figure 2). Comparison of the correlation matrices aims to describe
the relationship between the parameters for two subsets and to make sure that the reduction
in the number of predictors does not lead to a reduction in the information needed to
predict emissions.
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Figure 1. Boxplots of the process parameters and CO and NOx emissions over 5 years.

We plotted correlation matrices for the subset of extreme CO samples and for the
subset of standard CO (Figure 2). Comparison of the correlation matrices aims to describe
the relationship between the parameters for two subsets and to make sure that the reduction
in the number of predictors does not lead to a reduction in the information needed to
predict emissions.

Figure 2. Correlation matrices for the CO extreme set and CO standard set.
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Figure 2 shows that out of four pairs of variables with a correlation of more than 0.9 for
the standard CO subset, only one pair (CDP and TEY) remained in the extreme CO subset;
for different subsets, the change in the correlation coefficient between these variables was
very small: ρstandard(CDP, TEY) = 0.99 and ρextreme(CDP, TEY) = 0.97. It makes no sense
to use both of these variables as predictors; it is better to leave one, since the presence of
the second practically adds no new information. We decided to exclude CDP since energy
production TEY is a more explicable parameter.

For the CO standard set, all correlation coefficients between CO emissions and techno-
logical and ambient variables are statistically significant. For the CO extreme set, the statis-
tically insignificant correlation coefficients are ρ(CO, AH), ρ(CO, AFDP), ρ(CO, GTEP),
ρ(CO, CDP), ρ(CO, TEY). A statistically insignificant correlation coefficient does not mean
that the variables are independent, since there may be a nonlinear relationship between
the variables. For standard and extreme subsets, the largest changes are for the correlation
coefficients between TAT (7th row and column) and all technological parameters. The
colors show the relationship of parameters and the difference is visually clear. This means
that dividing all data into two subsets is justified and in this case a more accurate forecast of
emissions can be obtained. Thus, we decided to build a classification model to predict the
class of CO emission (extreme or standard) and develop a different model for each class.

3. Methods and Models

Thus, the classification model using the random forest algorithm [11] was constructed.
The effectiveness of a classification model was determined by metrics such as Precision,
Recall, and F1-score, that can be calculated as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1 = 2
Precision·Recall

Precision + Recall,
(1)

where:

TP—the number of positive class predictions that actually belong to the positive class;
FP—the number of positive class predictions that actually belong to the negative class;
FN—the number of negative class predictions that actually belong to the positive class.

The metrics of the model are given in Table 2. The F1-score for extreme class identifica-
tion should be improved. In Section 4, a novel method to build a classification model will
be presented. This section presents models for predicting CO and NOx emissions using
symbolic regression (SR).

Table 2. Metrics for random forest classification model.

Class Precision Recall F1-Score Support

Standard 0.981 0.974 0.977 9968
Extreme 0.804 0.757 0.779 1053

The advantage of symbolic regression (SR) is that it allows to generate models in the
form of analytic equations, and the researcher does not need to determine the structure
of the model in advance. The disadvantage of the method is the long running time of the
algorithm in the case of a large number of explanatory variables, the difficulty in selecting
the tuning parameters, the lack of confidence that the best possible solution has been
obtained, since the result depends on a variety of random events. Nevertheless, the method
has found application in several practical problems. Ref. [12] presents the formulae for
estimating bubble-point pressure and the formation volume factor of crude oil with four
basic oil properties: temperature, gas solubility, oil API gravity and gas-specific gravity
as predictors. In [13], the SR methodology was used to develop a correlation to predict
thermodynamic conditions for hydrates’ formation. In [14], explicit approximations of
widely used hydraulics, the Colebrook equation for flow friction obtained with SR method
are considered. In [15], authors proposed two-phase bi-objective symbolic regression
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method and discussed how to choose the model that fit the training data as precisely as
possible and is consistent with the prior knowledge about the system given in the form of
nonlinear inequality and equality constraints. In [16], the authors, using SR, reconstruct
the pressure and the forcing field for a weakly turbulent fluid flow only when the velocity
field is known.

Symbolic regression uses the approach of genetic algorithm [17]. The idea of SR is to
construct a model (chromosome) as a sequence of genes, as a gene can be used a predictor,
a number, an arithmetic operation or a function. To avoid the use of parentheses, Polish
postfix notation is used. In Figure 3, the first and second columns show two formulae
below in Polish postfix notation:

P1 = 2.8 ∗ x1 + 1.6 ∗ x2 ∗ (exp(x1)− x3),
P2 = 25.1 ∗ x1 ∗ x2 − 60.3 ∗ x3 ∗ x2

4.

The first population (certain number) of formulae, i.e., chromosomes, is randomly
generated. For each chromosome, a fitness function is calculated (the sum of the squares of
the differences between the observed dependent variable and the value predicted by the
generated function). Then the parents are selected, and new chromosomes are created with
the crossover operation. The idea behind the crossover operation is to produce offspring
by exchanging sections of chromosomes. In a single-point crossing, a breakpoint in each
chromosome is randomly selected. Both structures are broken into two segments at this
point. Then, the corresponding segments from different parents are “glued together” and
two children are obtained. In Figure 3, the crossover point (red line) divides Parent 1
(in the first column) into two fragments, marked with light yellow and terracotta colors,
and Parent 2 (in the second column) into light green and green sections, so Offspring 1 (in
the third column) receives a light yellow fragment from Parent 1 and a green fragment
from Parent 2, and Offspring 2 (in the fourth column) receives a light green fragment from
Parent 2 and a terracotta fragment from Parent 1. Thus, the formulae after the crossover
operation are as follows:

O1 = 2.8 ∗ x1 − 1.6 ∗ x2 ∗ x1 ∗ x2
4,

O2 = 25.1 ∗ x1 ∗ x2 + 60.3 ∗ (exp(x3)− x3).

The next step in the genetic programming algorithm is chromosome mutation. A mu-
tation is the transformation of a chromosome that accidentally changes one or more of its
genes. In our example in Figure 3, in the fifth column, for the second offspring, the multipli-
cation operation was replaced by the division operation (yellow cell) as a result of the muta-
tion. So, the second offspring is transformed as M2 = 25.1 ∗ x1/x2 + 60.3 ∗ (exp(x3)− x3).
The mutation operator is designed to maintain the diversity of individuals in a population
and to prevent falling into the local minimum.

Then, the fitness function for new chromosomes is calculated and the next generation
is formed. The described procedure is repeated until one of the following conditions is met:
the change in the best value of the fitness function becomes less than a given tolerance;
a predetermined number of generations is obtained, or the maximum time to complete
the calculation is reached. A detailed description of methods for parental selection and
chromosome selection for a new population is beyond the scope of this article. In our
study, we used free open source genetic programming and symbolic data mining MATLAB
toolbox [18].

The predictors are standardized using the Z-score:

Z =
x− µx

σ
(2)

where z—standardized value of parameter x; x—original value of parameter x; µx—the
mean value of parameter x; and σ—the standard deviation of parameter x.
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Figure 3. An example of one-point crossover and mutation operators.

The predictors are standardized using the Z-score:

Z =
x− µx

σ
(2)

where z—standardized value of parameter x; x—original value of parameter x; µx—the
mean value of parameter x; and σ—the standard deviation of parameter x.

Formulae for extreme and standard CO emissions are given below, and the coefficients
are rounded to the nearest hundredth. As genes, we used four arithmetic operations, the
operation of raising to an integer power, exponential and logarithmic functions and a
unary minus:

Fextr = 225.59 · GTEP2 · TAT − 20.67 · TAT · exp(−TIT)− 20.67 · AFDP · TIT + 7.88×
GTEP · exp(−TIT2)− 67.05 · AT · AFDP · TIT − 24.68 · AT · TIT · exp(−TAT)− (3)

68.81 · AFDP · GTEP · TIT · exp(−GTEP) + 7.25.

Fst = −2.46 · AT − 2.46 · AH + 4.93 · GTEP− 4.77 · TIT − 4.77 · TAT + 2.46 · TEY−
4.92 · exp(−TAT) + 3.15 · exp(−GTEP− TEY) + 4.93 · AFDP · (AT + AH) + (4)

1.76 · exp(−2.0 · TEY) · (AT + AH) + 3.33.

The interaction between the generated models is shown in Figure 4. Models are
obtained in a convenient form, but the interpretation of the models is not always easy.

Figure 3. An example of one-point crossover and mutation operators.

Formulae for extreme and standard CO emissions are given below, and the coefficients
are rounded to the nearest hundredth. As genes, we used four arithmetic operations, the
operation of raising to an integer power, exponential and logarithmic functions and a
unary minus:

Fextr = 225.59·GTEP2·TAT − 20.67·TAT·exp(−TIT)− 20.67·AFDP·TIT + 7.88×
GTEP·exp

(
−TIT2)− 67.05·AT·AFDP·TIT − 24.68·AT·TIT·exp(−TAT)−

68.81·AFDP·GTEP·TIT·exp(−GTEP) + 7.25.

(3)

Fst = −2.46·AT − 2.46·AH + 4.93·GTEP− 4.77·TIT − 4.77·TAT + 2.46·TEY−
4.92·exp(−TAT) + 3.15·exp(−GTEP− TEY) + 4.93·AFDP·(AT + AH)+

1.76·exp(−2.0·TEY)·(AT + AH) + 3.33.

(4)

The interaction between the generated models is shown in Figure 4. Models are
obtained in a convenient form, but the interpretation of the models is not always easy.
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Figure 4. Flowchart for CO prediction with crisp classification model.

Formulae for NOx emissions obtained for subsets 2011–2013 (training set includes
15,534 samples) and 2014–2015 (training set includes 10,164 samples) are shown below:

F11−13 = 134.97 · TEY + 48.69 · exp(−AT) + 16.89 · exp(−AH − TEY)+

44.68 · GTEP · exp(−AT)− 134.97 · TEY · exp(−AT)− 48.69 · TAT2 · exp(−AT)+

48.69 · TAT2 + 190.78 · TAT · TEY · exp(2 · AT + TAT)+

18.61 · GTEP · TEY · exp(−AT) + 3.83;

(5)

F14−15 = 42.76 · exp(−AT)− 28.33 · AH + 17.37 · exp(AH + GTEP) + 78.78 · TEY ·
(AT + TAT)− 187.94 · TEY2 · (AT + TIT)− 66.11 · (AT · (AT + GTEP)− (6)

1.89 · GTEP · (AT + TEY)) · (AH + GTEP)− 2.15.

More formulae generated with the SR procedure are given in Appendixes A.1–A.3, they
differ in the number and composition of the terms. The influence of the parameter can be
determined by the frequency of occurrence of the corresponding variable in the formulae.
We collected a set of 20 formulae for each class for CO and each subset for NO and
calculated the frequency of using the input variables, which is shown in Figure 5. Some
conclusions can be drawn about the importance of the parameters and features for different
cases. AH is not included in any formula for extreme CO emission (remember the statistical
insignificance of the correlation coefficient ρ(CO, AH)). AP and TEY are rare (the latter is
not the most obvious fact, as with a sharp increase in energy production, a sharp increase in
CO emissions can be expected). The most important parameter for extreme CO prediction
is TAT. For standard CO emissions, the frequencies of AT, AH, AFDP, GTEP are in the
range of 0.12–0.13, followed by TIT, TEY and TAT. AP is not present in the formulae,
its role in standard CO emission prediction is negligible. For NOx emissions, we see
the negligible importance of AP and AFDP parameters for both subsets. AT has the
highest frequency of occurrence, AH, GTEP, TIT, TEY have roughly equal frequencies,
the difference between subsets 2011–2013 and 2014–2015 is in frequency of TAT. This fact
may have a technological explanation, as we indicated in Section 2.

Figure 4. Flowchart for CO prediction with crisp classification model.
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Formulae for NOx emissions obtained for subsets 2011–2013 (training set includes
15,534 samples) and 2014–2015 (training set includes 10,164 samples) are shown below:

F11−13 = 134.97·TEY + 48.69·exp(−AT) + 16.89·exp(−AH − TEY)+

44.68·GTEP·exp(−AT)− 134.97·TEY·exp(−AT)− 48.69·TAT2·exp(−AT)+

48.69·TAT2 + 190.78·TAT·TEY·exp(2·AT + TAT)+

18.61·GTEP·TEY·exp(−AT) + 3.83;

(5)

F14−15 = 42.76·exp(−AT)− 28.33·AH + 17.37·exp(AH + GTEP) + 78.78·TEY·
(AT + TAT)− 187.94·TEY2·(AT + TIT)− 66.11·(AT·(AT + GTEP)−

1.89·GTEP·(AT + TEY))·(AH + GTEP)− 2.15.

(6)

More formulae generated with the SR procedure are given in Appendices A.1–A.3, they
differ in the number and composition of the terms. The influence of the parameter can be
determined by the frequency of occurrence of the corresponding variable in the formulae.
We collected a set of 20 formulae for each class for CO and each subset for NO and
calculated the frequency of using the input variables, which is shown in Figure 5. Some
conclusions can be drawn about the importance of the parameters and features for different
cases. AH is not included in any formula for extreme CO emission (remember the statistical
insignificance of the correlation coefficient ρ(CO, AH)). AP and TEY are rare (the latter is
not the most obvious fact, as with a sharp increase in energy production, a sharp increase in
CO emissions can be expected). The most important parameter for extreme CO prediction
is TAT. For standard CO emissions, the frequencies of AT, AH, AFDP, GTEP are in the
range of 0.12–0.13, followed by TIT, TEY and TAT. AP is not present in the formulae,
its role in standard CO emission prediction is negligible. For NOx emissions, we see
the negligible importance of AP and AFDP parameters for both subsets. AT has the
highest frequency of occurrence, AH, GTEP, TIT, TEY have roughly equal frequencies,
the difference between subsets 2011–2013 and 2014–2015 is in frequency of TAT. This fact
may have a technological explanation, as we indicated in Section 2.
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Figure 5. The frequency of occurrence of input parameters in symbolic regression models.

Nevertheless, it is interesting to compare the influence of some predictors on the
outputs of the models for NOx emissions built for the periods of 2011–2013 and 2014–
2015. Figure 6 shows graphs of NOx emissions versus AT, GTEP and TEY, with the other
explanatory variables held constant. For different periods, the trend in the parameters
remains; as already noted, for the period 2014–2015, NOx emissions are slightly lower than
for 2011–2013 under the same conditions.

Figure 6. Impact of AT, GTEP and TEY on the NO emissions model results.

We emphasize the fact that different runs of the program can give very different
formulae with approximately equal metrics for the quality of the models. One reason is
that, for the dataset under consideration, a fairly large part of the variation in the dependent
variables (CO and NOx emission) cannot be explained by predictors due to the large time
interval for averaging the collected data (1 h). If data with a shorter time interval are
available, it will be possible to continue research and obtain more accurate formulae. The
resulting formulae are specific to the equipment. They will be different for different types of
turbines (e.g., open cycle gas turbines or combined cycle) and even for turbines of the same
type but with a different operating life. For practical tasks, it is necessary to collaborate
with experts in the technological area to choose the best model that gives an acceptable
quality forecast and meets the expectations of the specialists. Nevertheless, the structure
of the presented models is simple and understandable, which cannot be said about the
models created by random forest algorithm, or ELM, for example.

The issue of the relationship between CO and NOx emissions was mentioned in [19,20].
We calculated the correlation coefficients between CO and NOx emissions for the testing
sets and the predictions of the obtained models. It should be noted that the data were

Figure 5. The frequency of occurrence of input parameters in symbolic regression models.

Nevertheless, it is interesting to compare the influence of some predictors on the
outputs of the models for NOx emissions built for the periods of 2011–2013 and 2014–
2015. Figure 6 shows graphs of NOx emissions versus AT, GTEP and TEY, with the other
explanatory variables held constant. For different periods, the trend in the parameters
remains; as already noted, for the period 2014–2015, NOx emissions are slightly lower than
for 2011–2013 under the same conditions.
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variables (CO and NOx emission) cannot be explained by predictors due to the large time
interval for averaging the collected data (1 h). If data with a shorter time interval are
available, it will be possible to continue research and obtain more accurate formulae. The
resulting formulae are specific to the equipment. They will be different for different types of
turbines (e.g., open cycle gas turbines or combined cycle) and even for turbines of the same
type but with a different operating life. For practical tasks, it is necessary to collaborate
with experts in the technological area to choose the best model that gives an acceptable
quality forecast and meets the expectations of the specialists. Nevertheless, the structure
of the presented models is simple and understandable, which cannot be said about the
models created by random forest algorithm, or ELM, for example.

The issue of the relationship between CO and NOx emissions was mentioned in [19,20].
We calculated the correlation coefficients between CO and NOx emissions for the testing
sets and the predictions of the obtained models. It should be noted that the data were
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We emphasize the fact that different runs of the program can give very different
formulae with approximately equal metrics for the quality of the models. One reason is
that, for the dataset under consideration, a fairly large part of the variation in the dependent
variables (CO and NOx emission) cannot be explained by predictors due to the large time
interval for averaging the collected data (1 h). If data with a shorter time interval are
available, it will be possible to continue research and obtain more accurate formulae. The
resulting formulae are specific to the equipment. They will be different for different types of
turbines (e.g., open cycle gas turbines or combined cycle) and even for turbines of the same
type but with a different operating life. For practical tasks, it is necessary to collaborate
with experts in the technological area to choose the best model that gives an acceptable
quality forecast and meets the expectations of the specialists. Nevertheless, the structure
of the presented models is simple and understandable, which cannot be said about the
models created by random forest algorithm, or ELM, for example.

The issue of the relationship between CO and NOx emissions was mentioned in [19,20].
We calculated the correlation coefficients between CO and NOx emissions for the testing
sets and the predictions of the obtained models. It should be noted that the data were
collected with a fairly large time step, so the relationship between CO and NOx may
differ from the real one. However, from the point of view of the consistency of the initial
data and the constructed models, it is of interest to analyze the correlation of CO and
NOx emissions. For the 2011–2013 period, the correlation coefficient for the dataset is
ρdata(NO11−13, CO) = 0.34, for model predictions ρmodel(NO11−13, CO) = 0.38. For the
2014–2015 period, the correlation coefficient for the dataset is ρdata(NO14−15, CO) = 0.48,
for model predictions ρmodel(NO14−15, CO) = 0.53. Thus, the difference between the two
time periods can be seen, as well as the consistency of the model results. SR does not
allow a model to be built with two dependent variables, but compared to the canonical
correlation analysis used in [3], it provides results with a lower mean absolute error where
the relationship between two dependent variables is preserved.

We tested the models for NOx emission with two testing sets: for 2011–2013 (which
includes 6658 samples) and for 2014–2015 (which includes 4356 samples), each of which
includes 30% of the data. The histograms of the predictors and dependent variables
for training and testing sets are statistically identical. The results for the testing set in
comparison with the measured values NOx for 2014–2015 are shown in Figure 7 on the
right, the metrics are MAE = 2.5 mg/m3, R2 = 0.83. The model’s performance is better
than that obtained in [3] for random forest and ELM algorithms and about as good as the
results for K-nearest-neighbor method presented in [4].
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(4.75, 30]. The idea of crisp presentation of the intervals leads to the fact that an emission of
4.7 mg/m3 belongs to the standard emission class and an emission of 4.8 mg/m3 belongs
to the extreme emission class, therefore we decided to apply the approach based on fuzzy
logic, a concept first introduced in [21].
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We tested the models for CO emission with a testing set, which includes 11,021
samples, 1053 of them belong to the extreme class and 9968—to the standard class. The
results for the testing set in comparison with the measured values CO are shown in Figure 7
on the left, the metrics are MAE = 0.39 mg/m3, R2 = 0.84. The model’s performance is
better than it was obtained in [3], but there is a sharp boundary between the two intervals
[0, 4.75] and (4.75, 30]. The idea of crisp presentation of the intervals leads to the fact
that an emission of 4.7 mg/m3 belongs to the standard emission class and an emission
of 4.8 mg/m3 belongs to the extreme emission class, therefore we decided to apply the
approach based on fuzzy logic, a concept first introduced in [21].

4. Fuzzy Classification Model and Modified Symbolic Regression Model

We defined an output fuzzy variable named CLASS, which includes two terms: “Stan-
dard” and “Extreme”, and developed a set of rules for determining the degree of member-
ship to each term based on the values of the input parameters. The predicted value of CO
emission is calculated similar to Sugeno algorithm [22] as follows:

CO = µext·Fext(X) + µst·Fst(X), (7)

where µext—the degree of membership to the class “Extreme”; µext ∈ [0, 1]; µext is defined
as a result of fuzzy reasoning; µst—the degree of membership to the class “Standard”;
µst ∈ [0, 1]; Fext—CO emission, calculated using Formula (3); Fst—CO emission calculated
using Formula (4); and CO—predicted CO emission.

The input variables for the fuzzy inference system (FIS) were selected after analyzing
the components of formulae (3), (4), (A1)–(A7), and other formulae obtained with SR. The
goal was to select the components with the least similarity for samples belonging to the
extreme and standard crisp subsets in the training set. Histograms of some of them are
shown in Figure 8.
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Figure 8. Histograms of COMPONENT#1 = TIT · exp(−exp(GTEP)); COMPONENT#2 = exp(−TIT · exp(AFDP)); and
COMPONENT#3 = exp(−GTEP− TEY).

We selected m = 5 components and defined them as input variables for FIS with
two terms: “Big” and “Small”. The nonlinear S-shaped membership function with two
parameters A and B describes the term “Big”. Parameter A defines the left bound of the
component’s values, where the membership function equals 0, and B defines the right
bound of the component’s values, where the membership function equals 1 (8):
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To define the term “Small”, we use a nonlinear Z-shaped membership function that
is mirror symmetrical to an S-shaped one. Parameter A defines the left bound of the
component’s values, where the membership function equals 1 and B defines the right
bound of the component’s values where the membership function equals 0. The graphs of
the nonlinear Z-shaped and S-shaped membership functions defined for Component#3
are shown in Figure 9. We chose a symmetrical way of representing the terms “Small”
and “Big”, so for each component, it is enough to define only two parameters Aj and Bj to
calculate the degree of membership to each term:

To build a fuzzy classification model, a FIS with five input variables and one output
variable was constructed. The outputs of the system are two parameters µext and µst,
which define the degree of membership of the sample of input values to extreme or
standard classes.
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We selected m = 5 components and defined them as input variables for FIS with
two terms: “Big” and “Small”. The nonlinear S-shaped membership function with two
parameters A and B describes the term “Big”. Parameter A defines the left bound of the
component’s values, where the membership function equals 0, and B defines the right
bound of the component’s values, where the membership function equals 1 (8):

fs(x, A, B) =





0, x ≤ A

2
(

x−A
B−A

)2
, A ≤ x < A+B

2

1− 2
(

x−B
B−A

)2
, A+B

2 ≤ x < B
1, x ≥ B





(8)

To define the term “Small”, we use a nonlinear Z-shaped membership function that
is mirror symmetrical to an S-shaped one. Parameter A defines the left bound of the
component’s values, where the membership function equals 1 and B defines the right
bound of the component’s values where the membership function equals 0. The graphs of
the nonlinear Z-shaped and S-shaped membership functions defined for Component#3
are shown in Figure 9. We chose a symmetrical way of representing the terms “Small”
and “Big”, so for each component, it is enough to define only two parameters Aj and Bj to
calculate the degree of membership to each term:
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Figure 9. Membership functions for terms “Small” and “Big” and their parameters.

We defined 11 rules in the form “IF–THEN”. An example of four rules corresponding
to the components given in Figure 8 is shown below:

IF COMPONENT#1 is small CLASS is extreme;
IF COMPONENT#2 is small CLASS is extreme;
IF COMPONENT#3 is big CLASS is extreme;
IF COMPONENT#1 is big CLASS is standard.
The fuzzy output is calculated as

µext =

n
∑

i=1
ti · wi

n
∑

i=1
wi

, (9)

where ti—the value of membership function calculated for the vector of input data in
i-th rule; n—number of rules; and wi—the weight of the i-th rule corresponding to its
contribution of the correct decision.

Now let us consider the formulation of the constrained optimization problem to define
the parameters Aj, Bj, wi from the training set. Our goal was to maximize the performance
of the fuzzy classification model, namely the value of F1-score (1), the control parameters
are: Aj, Bj, (j = 1, m) for each component and the weights wi, (i = 1, n) for each rule. The
constraints are:

min(Cj) ≤ Aj ≤ max(Cj),

min(Cj) ≤ Bj ≤ max(Cj),

Aj ≤ Bj,

0 ≤ wi ≤ 1. (10)

where Cj—the values of the j-th component calculated from the training set.
We used a genetic algorithm [17], implemented as a standard function in MATLAB.

The hyperparameters are:

• Population size is 150;
• Selection is tournament;
• Single point crossover, crossover fraction is 0.8;
• Uniform mutation, mutation rate 0.01.

Each chromosome is a set of variables Aj, Bj, wi, i = 1, n, j = 1, m, fitness function
is the value of the F1-score for the training set, to calculate it we used α-cut = 0.5 to
transform the obtained fuzzy sets into the crisp sets. Thus, we obtained the optimal set of
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To build a fuzzy classification model, a FIS with five input variables and one output
variable was constructed. The outputs of the system are two parameters µext and µst,
which define the degree of membership of the sample of input values to extreme or
standard classes.

We defined 11 rules in the form “IF–THEN”. An example of four rules corresponding
to the components given in Figure 8 is shown below:

IF COMPONENT#1 is small CLASS is extreme;
IF COMPONENT#2 is small CLASS is extreme;
IF COMPONENT#3 is big CLASS is extreme;
IF COMPONENT#1 is big CLASS is standard.

The fuzzy output is calculated as

µext =

n
∑

i=1
ti·wi

n
∑

i=1
wi

, (9)

where ti—the value of membership function calculated for the vector of input data in
i-th rule; n—number of rules; and wi—the weight of the i-th rule corresponding to its
contribution of the correct decision.

Now let us consider the formulation of the constrained optimization problem to define
the parameters Aj, Bj, wi from the training set. Our goal was to maximize the performance
of the fuzzy classification model, namely the value of F1-score (1), the control parameters
are: Aj, Bj,

(
j = 1, m

)
for each component and the weights wi,

(
i = 1, n

)
for each rule. The

constraints are:
min

(
Cj
)
≤ Aj ≤ max

(
Cj
)
,

min
(
Cj
)
≤ Bj ≤ max

(
Cj
)
,

Aj ≤ Bj,

0 ≤ wi ≤ 1.

(10)

where Cj—the values of the j-th component calculated from the training set.
We used a genetic algorithm [17], implemented as a standard function in MATLAB.

The hyperparameters are:

• Population size is 150;
• Selection is tournament;
• Single point crossover, crossover fraction is 0.8;
• Uniform mutation, mutation rate 0.01.

Each chromosome is a set of variables Aj, Bj, wi, i = 1, n, j = 1, m, fitness function
is the value of the F1-score for the training set, to calculate it we used α-cut = 0.5 to
transform the obtained fuzzy sets into the crisp sets. Thus, we obtained the optimal set of
FIS parameters which gives the highest value for the F1-score of the training set, and then
we can determine the degree of membership for the extreme and the standard classes for
any sample of input data.

The metrics for the obtained fuzzy classification model for a testing set are given
in Table 3. As one can see, the metrics are slightly better compared to the first crisp
classification model Table 2. To test fuzzy classification model and to calculate F1-score
for the testing set, we transformed fuzzy subsets to crisp ones, but our goal is to use the
advantages of the fuzzy logic approach, and use the degrees of membership to each class
to obtain a better prediction for CO emission. The flowchart of the algorithm is given
in Figure 10.



Computation 2021, 9, 139 13 of 16

Table 3. Metrics for fuzzy classification model.

Class Precision Recall F1-Score Support

Standard 0.984 0.975 0.979 9968
Extreme 0.836 0.767 0.800 1053
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Figure 11 shows predicted and measured CO emissions for the testing set using fuzzy
classification model and SR formulae (3) and (4). The metrics are MAE = 0.27 mg/m3,
R2 = 0.89. Compared to the previous model (see Figure 7), one can notice that the points
are better grouped around a line, the sharp transition between the areas where there was a
boundary between classes disappeared. Approximately 10 points are located at a significant
distance from the line; in these cases, the prediction error is large, which can be explained
by the large time interval (1 h) when forming the input data vector.
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Figure 11 shows predicted and measured CO emissions for the testing set using fuzzy
classification model and SR formulae (3) and (4). The metrics are MAE = 0.27 mg/m3,
R2 = 0.89. Compared to the previous model (see Figure 7), one can notice that the points
are better grouped around a line, the sharp transition between the areas where there was a
boundary between classes disappeared. Approximately 10 points are located at a significant
distance from the line; in these cases, the prediction error is large, which can be explained
by the large time interval (1 h) when forming the input data vector.
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Figure 11. Predicted and measured CO emissions for the testing set for the SR model based on
fuzzy classification.

5. Conclusions

This paper presents a study of an open dataset on CO and NOx emissions from gas
turbines. To predict CO emissions, it is proposed to use a combined model that includes
symbolic regression models for the standard and extreme classes and a fuzzy classification
model which makes it possible to determine the degree of membership to each class for the
vector of input parameters. The paper describes a fuzzy classification model and shows
how the input variables for a fuzzy inference system are formed. For the first time, it is
proposed to investigate the components of formulae generated by the symbolic regression
method for defining the differing characteristics of classes. The obtained metrics of the
models exceed the indicators presented in previous works. It should be noted that the
available dataset with a frequency of 1 hour does not allow for the full use of the presented
models for predictive monitoring systems; it would be interesting to continue the study, if
possible, to investigate the operation of the proposed algorithms for data with a shorter
interval between measurements.
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5. Conclusions

This paper presents a study of an open dataset on CO and NOx emissions from gas
turbines. To predict CO emissions, it is proposed to use a combined model that includes
symbolic regression models for the standard and extreme classes and a fuzzy classification
model which makes it possible to determine the degree of membership to each class for the
vector of input parameters. The paper describes a fuzzy classification model and shows
how the input variables for a fuzzy inference system are formed. For the first time, it is
proposed to investigate the components of formulae generated by the symbolic regression
method for defining the differing characteristics of classes. The obtained metrics of the
models exceed the indicators presented in previous works. It should be noted that the
available dataset with a frequency of 1 h does not allow for the full use of the presented
models for predictive monitoring systems; it would be interesting to continue the study, if
possible, to investigate the operation of the proposed algorithms for data with a shorter
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Appendix A. Symbolic Regression Formulae for CO and NO Emissions

Appendix A.1. Formulae for Extreme CO Emissions Class

Fextr−2 = 2.85·TIT + 51.88·TAT·(TAT − AT + AT·AP) + 27.35·AFDP·TAT+

25.15·TAT·TEY− 60.03·AP·TAT2 − 84.55·AFDP·TAT·(AT − TAT) + 6.71;
(A1)

Fextr−3 = 0.29·TAT + 0.29·TEY + 56.84·TAT·(TAT − AT + AT·AP)+

35.89·AFDP·TAT − 57.34·AP·TAT2 − 24.88·TAT·TEY2 − 85.88·
AFDP·TAT·(AT − TAT) + 6.03;

(A2)

Fextr−4 = 25.84·GTEP·exp(−exp(−TIT))− 20.92·TAT·exp(−TIT)−
238.68·GTEP2·TAT − 68.83·AT·AFDP·TIT

−24.97·AT·TIT·exp(−TAT)− 67.40·AFDP·GTEP·TIT·exp(−GTEP) + 7.16.

(A3)



Computation 2021, 9, 139 15 of 16

Appendix A.2. Formulae for Standard CO Emissions Class

Fst−2 = −1.02·AT − 1.02·AH − 3.74·TIT + 3.74·AT·AH + 3.03·AT·AFDP−
3.03·AFDP·TIT + 9.62·GTEP·TEY + 2.28·exp(−TEY)·exp(GTEP)+

22.88·GTEP·TAT·TEY·exp(−TEY)− 0.65;

(A4)

Fst−3 = −5.73·AH + 3.42·GTEP + 1.25·exp(−3.9622·GTEP− AFDP·GTEP)+

7.67·AT·AFDP− 1.93·AT·GTEP + 3.42·AT·TAT + 1.93·AH·exp(AT)+

3.22·AH·exp(AFDP)− 1.93·TIT·exp(AT)− 3.22·TIT·exp(AFDP)−
3.42·TAT2 + 2.16·GTEP·exp(−AH)·exp(AFDP) + 0.32;

(A5)

Fst−4 = −7.21·AH − 0.24·GTEP + 2.31·exp(AT)·(AH − TIT)−
0.35·exp(−2.0·AFDP·GTEP) + 4.24·exp(AFDP)·(AH − TIT)+

9.52·AT·AFDP− 2.31·AT·GTEP− 0.24·TAT·(AT − TAT)+

1.63·GTEP·exp(TIT − AH)·exp(AFDP) + 1.98.

(A6)

Appendix A.3. Formulae for NO Emissions

F11−13∗ = 19.89·exp(−AH)− 32.67·TAT − 41.20·AT + 115.07·AT·TIT−
41.20·AH·TAT − 19.89·GTEP·TAT + 129.64·TAT·TEY−

19.89·AH·TAT2 + 382.65·AT·TIT·TAT + 47.91;
(A7)

F14−15∗ = 40.13·exp(−AT)− 18.33·AH + 2.96·exp(TEY + exp(AH + GTEP))+

82.90·TEY·(AT + TAT)− 166.72·TEY2·(AT + TIT)+

97.49·
(

1.89·GTEP·(AT + TEY)− (AT + GTEP)2
)
·(AH + GTEP) + 9.71.

(A8)
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