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Abstract: Situational awareness is a critical aspect of the decision-making process in emergency
response and civil protection and requires the availability of up-to-date information on the current
situation. In this context, the related research should not only encompass developing innovative
single solutions for (real-time) data collection, but also on the aspect of transforming data into
information so that the latter can be considered as a basis for action and decision making. Unmanned
systems (UxV) as data acquisition platforms and autonomous or semi-autonomous measurement
instruments have become attractive for many applications in emergency operations. This paper
proposes a multipurpose situational awareness platform by exploiting advanced on-board processing
capabilities and efficient computer vision, image processing, and machine learning techniques. The
main pillars of the proposed platform are: (1) a modular architecture that exploits unmanned aerial
vehicle (UAV) and terrestrial assets; (2) deployment of on-board data capturing and processing;
(3) provision of geolocalized object detection and tracking events; and (4) a user-friendly operational
interface for standalone deployment and seamless integration with external systems. Experimental
results are provided using RGB and thermal video datasets and applying novel object detection and
tracking algorithms. The results show the utility and the potential of the proposed platform, and
future directions for extension and optimization are presented.

Keywords: UAV; UxV; terrestrial; situational awareness; computer vision; machine learning; object
detection; object tracking

1. Introduction

Situational awareness is a critical aspect of the decision-making process in emergency
response and civil protection, and requires the availability of up-to-date information on
the current situation, e.g., on traffic infrastructure or on current location and availability
of security and medical staff [1]. In this context, the related research should not only
encompass developing innovative single solutions for (real-time) data collection, but also
on the aspect of transforming data into information so that the latter can be considered
as a basis for action and decision making. This aim also covers issues of visualization
and dissemination of information acquired from different sources, taking the specific
technological, organizational, and environmental settings of an end-user into account.
According to [2,3], the definition of situation awareness is: “Situation awareness is the
perception of the elements in the environment within a volume of time and space, the
comprehension of their meaning, and the projection of their status in the near future”.
In this context, situation awareness underscores situation assessment in order to make
accurate forecast in dynamic and complex environments. The authors in [4] decomposed
a relevant meaning of situation awareness to the following three elements: (i) perception
of the current situation, (ii) comprehension of said situation, and (iii) projection of the
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future condition. In our work, we focus on the first element, automated perception of
the current situation. The perception of the current situation refers to the perception of
information elements in the environment by the operator [5]. For instance, for a navigator,
the information elements such as GNSS position, speed, course heading, etc., are required to
be perceived first in order to be aware of the external state environment. The comprehension
of the situation refers to the comprehension of the situation by the operator by deriving
meaning from the perceived information elements. This level of awareness provides a
meaning of the existing state and helps the operator to determine a course of action (if any)
which will be required. The projection of the future condition refers to the ability of
operator to make projections about the future state of the system basis on the derived
comprehension of situation. For instance, for a navigator, parameters such as the vector
extension of the target’s radar simulation provides a projected view of the basis on which
it may be possible to predict a future outcome of the system state.

In search and rescue applications, investigation, containment, and search are required
to be done as quickly as possible to prevent the increase in risk for the safety of a missing
person [4]. The investigation task is used to collect crucial information about the subject
including their plans of activity before they got lost. In this way, the investigators are
able to understand what area has the highest probability of the person’s whereabouts. On
the other hand, the containment plan aims to prevent the search area from expanding.
Thus, the more time has passed before the missing person is found, the bigger the search
area becomes. An unmanned aerial vehicle (UAV) situational awareness can significantly
contribute to scanning the search area quicker and possibly finding the missing person
sooner, in addition to reducing the risk to the search team’s safety.

In disaster response applications, in the aftermath of a disaster, there is an imme-
diate need for emergency services. For cases where it is not possible to find people in
need of assistance, a search is required to find these missing people. In this context,
UAVs can be deployed to scan the affected area for potential unknown victims and obtain
video feeds. Most of these systems mainly depend on human–agent collectives or crowd-
sourcing to understand where potential victims or structure damage occurred. For such
situations, automatic detection is preferable, even if some human monitoring is kept for
redundancy. Alternatively, many surveillance systems already operate autonomously or
semi-autonomously. However, some of these provide only UAV or only terrestrial assets.
Thus, integrated situational awareness systems that include both UAV and terrestrial assets
with multipurpose capabilities can further contribute to the related research and cover the
end-user needs. In the applications associated with emergency situations, the detection
and tracking of several objects of interest, such as vehicles and persons, and recognizing
their actions in real-time or near real-time can play a crucial role for preparing an effective
response [4]. Human resource in situational awareness is a key concern because human
performance is limited by fatigue and waning concentration when continuously watching
a video feed.

In [6], some situational awareness requirements in autonomous ships are provided
from three main different viewpoints, namely: (i) requirements for vessels, (ii) requirements
for sensing, and (iii) requirements for software. A relevant study to define a goal-directed
task analysis for situation awareness information requirements for maritime navigation is
provided in [5]. Through their analysis one major goal among others was recognized as
“Navigate the vessel safely from pilot point to berth or vice versa”. This major goal was
further decomposed into four goals, namely: (i) ensure appropriate information exchange
with pilot point; (ii) execute the passage plan safely and effectively; (iii) monitor the
progress and use resources optimally; and (iv) maneuver safely either working together
with the pilot point or working without the pilot point.

Extended information for situation awareness requirements for a critical infrastructure
monitoring operator was also provided in [2]. The purpose of their research was to define
a common requirement base that can be used when designing a critical infrastructure
monitoring system or a user interface to support situation awareness. Such requirements
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are able to be used during system or user interface evaluation, and a guide for the aspects
to emphasize when training new critical infrastructure monitoring operators. In this con-
text, the critical infrastructure sectors are defined in three levels. The first level covers
the topics of information and telecommunication, power/energy, and water. The second
level covers the topics of banking finance, transportation, and chemical industries. The
third level covers the topics of the defense industry, postal shipping, agriculture/food,
public health, and emergency services. Furthermore, the study highlighted the situation
awareness requirements of a critical infrastructure monitoring operator in the following
goals: (i) identify incidents (ongoing incidents, affected services and systems, priority
order incidents, etc.); (ii) monitor resource management (ongoing incidents, current ser-
vices and systems, validity of incidents, etc.); (iii) analyze and communicate internally
(ongoing incidents, possible future incidents, etc.); (iv) determine to whom the information
should be communicated; and (v) determine incidents worth mentioning. By comparison,
in [7] the authors highlighted the usefulness of the design of information systems and
network components for situational awareness to ensure that systems and networks are
secure, reliable, and operational. This includes actions taken via computer networks to
protect, monitor, analyze, detect, and respond to cyber-attacks, intrusions, disruptions, or
other perceived unauthorized actions that could compromise or impact defense informa-
tion systems and networks. A review of situation awareness assessment approaches in
aviation environments is provided in [8]. In their study, many aspects of situation aware-
ness were examined, including the classification of situation awareness techniques into
six categories (freeze-probe techniques, real-time probe techniques, post-trial self-rating
techniques, observer-rating techniques, performance measures, and process indices), and
different theoretical situation awareness models from individual, to shared or team, and
to distributed or system levels. Quantitative and qualitative perspectives pertaining to
situation awareness methods and issues of situation awareness for unmanned vehicles
were also addressed.

UAVs as data acquisition platforms and autonomous or semi-autonomous measure-
ment instruments have become attractive for many applications in emergency operations.
The possibility of high-risk flights, cost-effectiveness, high accuracy navigation, high image
overlaps, and large-scale images and videos from several type of sensors (multispectral,
hyperspectral, thermal, LIDAR, SAR, gas or radioactivity sensors, etc.) are the main ad-
vantages of UAVs. Their mobility and flexible deployment, ability to provide real-time
data, and recent developments in powerful on-board embedded processing hardware
make UAVs ideal candidates for sensing and monitoring applications. There are several
challenges in geomatics that are still to be overcome with novel developments [9–11] in
order to provide accuracy, economy, rapidity, and automation. These geomatics fields
are: (i) the on-board and real time data analysis and processing, and power efficiency; (ii)
navigation and position/orientation determination; (iii) data fusion; (iv) on-board data
storage and transmission; (v) UAV control, obstacle sense, and avoidance; (vi) autonomous
flight and exploration; (vii) control and automation of on-board components; and (viii)
object positioning and orientation.

Finally, computer vision, image processing, and machine learning have been attracting
increasing amounts of attention in recent years due to their wide range of applications
and recent breakthroughs in many important problems. In this context two core problems,
object tracking [12–16] and object detection [17–21], are under extensive investigation in
both academia and real-world applications. With the rapid development in deep machine
learning, more powerful tools, which are able to learn semantic, high-level, deeper features,
have been introduced to address the problems existing in traditional architectures [22,23].
In general, the object detection methods can be categorized: (i) to those that employ
hierarchical, rule-based techniques such objected-based image analysis (OBIA) [24], and
(ii) to those that employ machine learning techniques, such as deep learning, through
convolutional neural networks (CNNs). Although OBIA methods extract satisfactory
results, they are tailored for a particular scene layout and task. Thus, OBIA methods are
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affected by the used parameters and the adopted features, which are usually application
dependent. Therefore, they present low generalization capabilities because the tuned
parameters of one study area cannot be directly applied to another region. Machine learning
techniques are flexible and data driven methods, requiring only training samples to well
generalize the properties of each available class. Thus, they provide high generalization
capabilities, that is, robustness against data being outside the training set.

2. Approach

In the literature there are several studies that have design efficient schemes to enhance
situational awareness [4,25–28]. However, their limitations are that they: (i) implement
only object detection or only object tracking processes, (ii) consider only UAV or only
terrestrial assets, and (iii) employ only RGB or only thermal cameras. Our contribution is
the design of an efficient, integrated, and modular UAV and terrestrial based situational
awareness system that can support humans in analyzing the video feed and provide crucial
information of detected objects in an area of interest. The proposed multipurpose based
situational awareness system, namely the INtelligentUxV Surveillance—INUS platform, is
aimed to be used for several applications and consists of the following main core entities:
(i) an aerial unmanned platform (UAV), (ii) a terrestrial system, (iii) the UAV pilot’s
workstation, and (iv) the intelligence officer’s workstation. The system exploits novel UAV
and terrestrial feature technologies such as on-board processing, supports the integration
of optical and thermal sensors, and applies robust and effective computer vision, image
processing, and machine learning techniques. The INUS platform is focused on the first
element of the situation awareness component, i.e., the “perception of the current situation”.
Our approach is based on the following main pillars:

(i) Modular architecture that facilitates the design of a multipurpose situational awareness
system that exploits aerial assets from UAVs and terrestrial assets from fixed positions.

(ii) Provision of localized object detection and tracking events exploiting novel computer
vision, image processing, and machine learning techniques that can be efficiently
performed in complex scenes. Object detection and tracking from RGB and thermal
videos is a demanding task due to radiometric distortions (e.g., shadows, reflections,
etc.), occlusions, repetitive object patterns, multiple moving targets, simultaneous
existence of several types of objects in the scene, etc.

(iii) User friendly operational interface for standalone deployment and for seamless
integration with external systems such as surveillance systems, decision support
systems, and command and control systems (C2s).

The human operator that controls the intelligence officer’s workstation can be assumed
as the human-in-the-loop with expertise in the domain of the application and the use case.
The INUS platform supports several functionalities that the operator can manage in real
time as the on-board process is running, such as: (i) switch to UAV or terrestrial asset;
(ii) select zoom level of a camera; (iii) control the camera of the UAV; (iv) switch between
RGB or thermal camera; and (v) choose an event and focus it on a map component. Such
functionalities that run continuously can significantly assist and support the operator in
order to perceive, assess, and supervise the current situation, and thus to plan and/or
design relevant actions, interventions, or confirmations.

It should be noted that operators of INUS who register and/or process the images,
videos, geolocation, object detection and tracking, and any other data related to an identi-
fied or identifiable person are subject to General Data Protection Regulation (GDPR), EU
Data Protection Directive 95/46/EC.

3. INUS Platform
3.1. Proposed System

The components of the INUS platform Hardware-HW and Software (SW), their func-
tions, data flows, and interfaces are depicted in the functional architecture in Figure 1.
From an operational point of view the INUS platform is operated by a certified UAV pilot
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and the intelligence officer. The UAV pilot is tasked with the remote control of the UAV
and mission planning through a dedicated workstation which provides a head-up display
(HUD) that combines first-person view video from cameras on board the UAV with naviga-
tion and status information. This setup enables beyond line-of-sight operation of the UAV,
during day and night. In the current design an extended Common Information Sharing
Environment (e-CISE) compatible mission adapter is implemented with the purpose of
accepting UAV flight missions from third party components such as Command and Control
Systems (C2s) and presenting them to the pilot for flight plan extraction. The mission
adapter and the interface to any external systems is configurable according to the needs of
the systems to be integrated.

Figure 1. The proposed situational awareness system, namely the INUS platform.

The payload of the UAV is comprised of an electro-optical sensor and a processing
unit capable of executing computer vision algorithms and image processing in real time
under power consumption constraints (e.g., 15 or 30 W power profiles), a valuable feature
that leads to reduced payload weight due to the reduction in the required battery capacity
and thermal solution weight. It should be noted that in addition to a serial connection link
with the autopilot hardware module, for the purpose of retrieving localization information,
the payload functions independently, even having its own power supply and wireless
communication link, and can thus be readily deployed on board other flying platforms.

The terrestrial system complements the focused surveillance capability of the UAV
by providing a set of fixed surveillance assets, consisting of a camera set of sensors (RGB
camera, thermal, and/or similar) and a processing unit performing an object detection
process, with the aim of early detection. The terrestrial asset may be deployed at fixed
known locations, deployed on demand at temporary locations, or deployed on manned or
unmanned vehicles/robotic systems. The deployment decision is based on the actual use
case, the operational requirements, and the surveillance mission and target. An example
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of fixed installation is at the perimeter of critical infrastructure for the detection of illicit
activities of critical areas.

The primary output of both the UAV and the terrestrial system is video streams an-
notated with bounding boxes indicating the detected objects with messages containing
information about the location and type of those objects. These are gathered at the intel-
ligence officer’s workstation and presented on a map to provide situation awareness. In
addition, the system is able to forward localized information to C2s or other interested
parties through its e-CISE adapter. Because the system is able to both forward information
and receive UAV missions through its e-CISE compliant adapters, in addition to being able
to function in a standalone fashion, it can be integrated in other e-CISE aware surveillance
or C2 systems.

Regarding the UAV, the intelligence officer can invoke tracking functionality to have
the electro-optical sensor of the UAV continuously track an object or instruct the UAV
to follow it. The INUS platform was built with low cost and versatility in mind. To this
end we attempted to use as many commercial off-the-shelf modules as possible to keep
the cost of the hardware low, and exclusively open-source software modules to enable
customization and development of new features. Although the system is aimed at a specific
application, many of the components used, such as the UAV or the fixed terrestrial assets,
can be utilized in a variety of different applications, such as vehicle traffic counting and
aerial mapping, contributing to the reusability of the platform.

3.2. Features and Hardware

One of the core modules of the INUS platform is the UAV, delivering most of the
platform’s capabilities and constituting the single most expensive module. As depicted
in Figure 2, it is built upon the octocopter DJI S1000 airframe, which is rated for a takeoff
weight of up to 11 Kg and can tolerate the loss of one off its rotors. For the control and
stabilization of the UAV the open autopilot hardware pixhawk 2.1 is utilized, which is
connected to a long-range radio module with antenna diversity, data encryption, and
Frequency-Hopping Spread Spectrum (FHSS) for the purpose of transferring the telemetry
from and to the ground control station. A real-time kinematic (RTK) base station is also
included in the system, with Radio Technical Commission for Maritime Services (RTCM)
messages injected into the telemetry stream, transmitted to the autopilot module, and
routed to the RTK rover module on board the UAV to enable its DGNSS capability.

Because it can remain stationary, the RTK base station can achieve enhanced absolute
position accuracy, which is transferred to the UAV to be utilized for localization and
position aware applications. The main purpose of the UAV is to provide video streams and
perform object detection and tracking processes. Raw video requires a bandwidth in the
order of magnitude of Gbps which is impractical for wireless transmission, and therefore
video compression has to be applied in order to reduce the required bandwidth.

Object detection is realized through deep convolutional neural networks (CNNs) (see
Section 6) which have high requirements for processing power and benefit in particular
from architectures utilizing mass parallelism such as GPUs. To meet these needs the Jetson
AGX Xavier is installed on board the UAV, and is assumed to be a powerful unit achieving
better performance compared to other units [29,30]. It is an embedded processing system
capable of performing video compression and CNN inference though its dedicated hard-
ware, while having low weight and high energy efficiency. In addition to its specialized
hardware, it features multiple CPU cores and a GPU which make it a powerful general-
purpose processing unit adding greatly to the flexibility of the platform. The utilization of
the aforementioned component not only provides for the on-board processing capability of
the UAV, but is in line with the general trend for edge processing to reduce required band-
width and improve response time. In particular, by performing the detection and tracking
on board the UAV, we are able to remove the encoding/decoding and communication
latency from the control loops responsible for object tracking and following in conjunction
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with greatly easing the computational burden for the intelligence officer’s workstation,
thus delivering a more scalable system.
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Two sets of cameras are installed on board the UAV. The first set is tasked with
providing first person view (FPV) video to the UAV’s pilot as a visual aid to flying and
includes one RGB camera for day and a thermal camera for night. The second set of
cameras and the gimbal make up the electro-optical sensor. The gimbal is necessary for
the stabilization of the cameras due to the vibrations caused by the UAV’s motors and
the changes in orientation caused by the UAV’s movement. Furthermore, it provides
the capability to point the cameras in an arbitrary direction in space. Two cameras are
installed on the gimbal: an RGB camera with 30× optical zoom and full HD @ 60fps
video capability, and a thermal camera with resolution 640 × 512 pixels. The wireless link
between the UAV’s payload and the intelligence officer’s workstation is realized through
802.11b network adapters operating in ad hoc mode.

3.3. Intelligence Officer’s Workstation

The intelligence officer’s workstation is tasked with collecting and presenting all of
the information generated by the intelligence assets. To achieve this, multiple components
were developed and deployed in the workstation.

• Video Streaming Proxy Server: Janus is a general purpose WebRTC Server capable
of setting up a WebRTC media communication with a browser, acting as an interme-
diate between the UAV and terrestrial assets, that generates video streams and any
component that consumes those video streams.

• Message Broker: Eclipse Mosquitto is an open source (EPL/EDL licensed) message
broker that implements the MQTT protocol. All messages from and to UAV and
terrestrial assets are produced and consumed through appropriate topics on this
message broker.
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• Intelligence Officer’s Workstation Back-End: A back-end service was developed that
consumes data from the message broker and stores them in a database. At the same
time, it exposes a REST API for communication with the front-end. It was developed
using Python/Flask and MongoDB.

• Intelligence Officer’s Workstation Front-End: A web application was developed that
consumes data from the back-end and displays it to the intelligence officer. At the
same time, the intelligence officer is capable of issuing several commands to the UAV
and terrestrial assets. These commands are: (i) choose an event and focus it on the map;
(ii) choose a UAV or terrestrial asset and focus it on the map; (iii) choose a camera on
the UAV or terrestrial asset and show a video stream from that camera; (iv) change the
zoom level of a camera on the UAV or terrestrial asset (only if supported); (v) control
the camera of the UAV either by using the map to point to a specific location or by
interacting with the video player; and (vi) draw a bounding box on the video player
and start tracking the object in the bounding box.

Figure 3 provides an example snapshot of the User Interface of the intelligence officer’s
workstation on the OKUTAMA dataset where:

1. Map component: Used to represent the geolocalized information of the platform
(assets, events, etc.).

2. Streaming video player: Main task is to show the selected video stream, manipulate
the camera, and start tracking and following of an object.

3. Status bar: Used to display critical information in the form of colored boxes. This
interactive display method is used to emphasize certain status information (e.g., the
connection with the UAV or terrestrial asset, status of tracking objects) with the
use of color (green indicates normal status, red indicates alert status, blue indicates
general information) and the use of animations (a pulsing animation is triggered on
alert status).

4. Event list: A list of the events that has been detected by the platform.
5. Asset list: A list of the UAVs or terrestrial assets that are being handled by the platform.
6. Top menu: Supplies access to specific functions, such as camera drop down menu,

zoom drop down menu, and settings menu.
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4. Datasets for Experiments and Training

The INUS platform incorporates a variety of well-known and novel computer vision
and image processing algorithms for the object tracking and detection tasks. To verify the
utility and functionality of the employed algorithms, several experiments were performed
by using selected free available video datasets associated with aerial views from RGB
sensors: (i) OKUTAMA [31], (ii) UAV123 [32], (iii) UCF-ARG [33], (iv) VisDrone2019 [21],
(v) AU-AIR [34], (vi) CARPK [35], (vii) PUCPR [35], (viii) UAVDT [36], (ix) OIRDS [37],
(x) JEKHOR [38], (xi) OTCBVS-RGB [39], (xii) P-DESTRE [40], and from thermal sensors:
(i) VIVID [41], (ii) LITIV2012 [42], (iii) OTCBVS-THERMAL [39], (iv) IRICRA [43]. Table 1
depicts sample views from each dataset. In addition, real time thermal and RGB videos
were captured in real case scenarios. Such datasets depict several scenes captured from
several spectral sensors and with variable pixel resolution.

Table 1. Views from each free available video datasets.

Dataset Type of Sensor View

OKUTAMA RGB
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Table 1. Cont.

Dataset Type of Sensor View
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5. Object Tracking
5.1. Object Tracking Module

The object tracking module is responsible for tracking persons or vehicles as the
camera streaming is running. The following object tracking algorithms are employed:
(i) MedianFlow [44], (ii) Boosting [45], (iii) GoTURN [46], (iv) Mosse [47], (v) Channel
and Spatial Reliability Tracking-CSRT [48], (vi) Tracking–Learning–Detection-TLD [49],
(vii) Kernelized Correlation Filter-KCF [50], and (viii) Multiple instance learning-MIL [51].
The initialization of the trackers is started by the user by defining a bounding box sur-
rounding each object of interest from the start frame. Then, the tracking process continues
automatically. It should be mentioned that more than one object can be tracked, thus,
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multiple object tracking can be performed maintaining the assignment of unique IDs and
the indicated set of bounding boxes from the user. Event information is also extracted
associated with: (i) output array that contains the position box points and the centroid
box point of the tracked objects, and (ii) the corresponding datetime. The object tracking
module is provided only for the UAV asset and is based on the Python programming
language with the OpenCV library. In the following, the corresponding workflow of the
object tracking module in each camera frame is described and depicted as workflow in
Figure 4:

• Define and set the tracker. The object tracker is predefined among the: (i) MedianFlow,
(ii) Boosting, (iii) GoTURN, (iv) Mosse, (v) CSRT, (vi) TLD, (vii) KCF, and (viii) MIL.

• Read the current frame of the camera streaming and the image coordinates of the
defined from the user bounding box on the starting frame.

• Apply the tracker and get the matrix object name and matrix box point. The matrix
object name includes the name of the tracked object (person or vehicle). The matrix
box point includes the bounding box (i.e., the top left and the bottom right image
coordinates) of the tracked object.

• Overlay the rectangle of the matrix box point to the current frame of the camera streaming.
• Calculate the object centroid (as image coordinates) of the bounding box.
• Import the object centroid to the localization module and calculate the correspond-

ing WGS’84 coordinates (latitude, longitude) and UTM projection coordinates. The
localization module is described in Section 7.

• Import the Universal Transverse Mercator (UTM) projection coordinates of the tracked
object to the speed and heading module. The speed and heading module is described
in Section 7.2.

• Export the matrix object name, the matrix box point, the WGS’84 coordinates (latitude,
longitude), the speed and the heading to the Message Broker (see Section 3.3).
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5.2. Experiments

For the MedianFlow, CSRT, KCF, and Mosse algorithms, a tracking lost object function
is available to alarm the tracker for cases of lost tracked objects. The image coordinates
of the centroid box point of a tracked object can be used to support the gimbal camera
rotation movement.

Figures 5–8 depict the experimental results of the multiple object-tracking process
on the UAV123, OKUTAMA, VIVID, and LITIV2012 video datasets, respectively. Assess-
ing qualitatively the experimental results on the RGB video datasets (OKUTAMA and
UAV123), the Mosse tracker seems that achieves the best performance compared with the
other trackers. By comparison, based on the experimental results on the thermal video
datasets (VIVID and LITIV2012), the CSRT tracker achieves the best performance compared
with the other trackers. However, to extract a general overview for the performance of each
tracking algorithm, an extended experimental analysis is required in terms of: (i) variable
initialization of the size of the bounding boxes that contain proper color values; (ii) vari-
able sensor cameras; (iii) variable pixel resolution; (iv) computational time; (v) variable
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perspectives of the objects; and (vi) variable datasets of complex scenes with occlusions,
shadows, repetitive patterns, etc.
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6. Object Detection
6.1. Object Detection Module

The object detection module is responsible for detecting persons and vehicles as the
camera streaming is running. Here, the objects of interest are cars/vehicles and persons. In
this study, the following methods were adopted for the object detection task for the classes
of persons and cars:

• Three novel deep learning models that employ CNNs namely: (i) YOLOv3 [52],
(ii) TinyYOLOv3 [53], and (iii) RetinaNET [54].

• Custom deep learning YOLOv3 model.
• An OBIA technique based on a thresholding/rule-based model that considers color

values and pixel area.

The YOLOv3, TinyYOLOv3, and RetinaNET models have recently proved their ro-
bustness for a variety of applications [55,56]. To assess the performance of such models,
pretrained weights were used. It should be mentioned that YOLOv3, TinyYOLOv3, and
RetinaNET models have been trained mainly with terrestrial RGB imagery and not with
thermal imagery [57]. Thus, to cover the object detection task using the thermal video
datasets, the aforementioned OBIA rule-based technique is performed. For the deep learn-
ing models, event information is extracted associated with: (i) the class of each detected
object and the corresponding datetime, (ii) output array that contains the corresponding
probability percentages and position box points, and (iii) output count for unique object
classes per processed frame, per second, and per minute. For the OBIA technique, event
information is extracted associated with: (i) the detected objects and the corresponding



Computation 2021, 9, 12 16 of 34

datetime; (ii) output array that contains the corresponding position box points; (iii) output
array that contains the used color threshold values that correspond to the detected objects;
and (iv) the area of the pixel segments that correspond to the detected objects. The color
and area thresholds can be tuned from the user to optimize the object detection results.

The object detection module is based on the Python programming language using the
OpenCV, Tensorflow, and ImageAI libraries. In the following outline, the corresponding
workflow of the object detection module in each camera frame is described:

• Define and set the object detector. The object detector is predefined among the:
(i) pretrained YOLOv3 model, (ii) pretrained TinyYOLOv3 model, (iii) pretrained
RetinaNET model, and (iv) custom YOLOv3 model. The process used to create and
train a custom YOLOv3 model is provided in Section 6.3.2.

• Read the deep learning weights of the defined object detector. The deep learning
weights are in *.h5 format. In the case of the custom YOLOv3 model, a *.json file is
also read that includes the new trained anchors.

• Read the current frame of the camera streaming.
• Apply the object detection model to the current frame and get the matrix object name,

matrix probability, and matrix box point. The matrix object name includes the name of
the class of each detected object (person or vehicle). The matrix probability includes
the corresponding percentage probability where the detected object belongs to the
assigned class. The matrix box point includes the bounding box (i.e., the top left and
the bottom right image coordinates) of the detected object.

• Overlay the rectangles of the matrix box point, the matrix object name and the matrix
probability to the current frame of the camera streaming.

• Calculate the object centroids (as image coordinates) of each bounding box from the
matrix box point.

• Import the object centroids to the localization module. The localization module is
described in Section 7.

• Export the matrix object name, the matrix box point and the WGS’84 coordinates (lati-
tude, longitude) from the localization module of each detected object to the Message
Broker (see Section 3.3).

6.2. Evaluation Metrics

For the quantitative assessment, three objective criteria were adopted according to
the International Society for Photogrammetry and Remote Sensing (ISPRS) guidelines [58],
namely completeness (CM), correctness (CR), and quality (Q) measures per object, given as:

Completeness =
‖TP‖

‖TP‖+ ‖FN‖ , Correctness =
‖TP‖

‖TP‖+ ‖FP‖ , Quality =
‖TP‖

‖TP‖+ ‖FP‖+ ‖FN‖ (1)

where TP, FP, and FN denote true positives, false positives, and false negatives, respectively.
The TP entries are the objects that exist in the scene and thus were correctly detected. The
FP entries are the objects that not exist in scene and thus were incorrectly detected. The FN
entries are the objects that exist in the scene but were not detected.

6.3. Aerial Asset
6.3.1. Experiments with Pretrained Deep Learning Models

Figures 9 and 10 depict the experimental results of the object detection process on
the OKUTAMA and UCF-ARG video datasets employing the YOLOv3, TinyYOLOv3, and
RetinaNET models, respectively. The objects classes are “Car” and “Person”. Assessing
qualitatively the experimental results of the RGB video datasets (OKUTAMA and UCF-
ARG), the YOLOv3 model achieved better performance compared with the other models.
This is also verified from an indicative quantitative assessment provided in Table 2 for the
first 30 frames of the video datasets.
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Table 2. Quantitative object detection results for the first 30 frames of the OKUTAMA and UCF-
ARG datasets.

OKUTAMA Dataset UCF-ARG Dataset

Pretrained Deep
Learning Model CM (%) CR (%) Q (%) CM (%) CR (%) Q (%)

YOLOv3 60.0 100.0 60.0 79.2 100.0 79.2

TinyYOLOv3 33.3 100.0 33.3 22.5 81.8 21.4

RetinaNET 68.1 89.4 63.0 70.8 95.5 68.5

The TinyYOLOv3 and RetinaNET missed some crucial information concerning the
objects of interest. The results of the YOLOv3 are considered satisfactory (average Q in
the two datasets about 70%) taking account that only pretrained weights were adopted.
However, in some frames, the YOLOv3 missed some objects. It should be mentioned
that the OKUTAMA and UCF-ARG datasets consist of aerial views of low UAV altitude.
Applying the YOLOv3 model on the UAV123 dataset, the object detection results were
insufficient due to its higher UAV altitude view. To achieve more stable and accurate
results two approaches are recommended: (i) perform a new training process, which is
discussed in detail in Section 6.3.2, and (ii) adopt a high optical zoom while the UAV camera
sensor captures the scene in order to compensate the UAV altitude and the appearance of
the objects.
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Figure 10. Object detection results (persons in blue rectangles and cars in orange rectangles) as
time progresses (frames (a–c)) on the UCF-ARG dataset and applying several pretrained deep
learning schemes.

6.3.2. Experiments with Custom Deep Learning Model

To cover cases of higher UAV altitude view, a custom deep learning model is created.
More specifically, the YOLOv3 is retrained applying a transfer learning scheme [59] ex-
ploiting the available pretrained YOLOv3 weights. The objects classes are “Vehicles” and
“Persons”, where the class “Vehicles” incorporate both cars and trucks. In this context, a
training process is carried out exploiting the 16 datasets described in Section 4. Twelve RGB
and four thermal datasets are used. This unequal distribution in the used spectral datasets
is justified because few free thermal datasets from UAVs, with pedestrians and vehicles,
are available in the web. Each dataset is split into a training set and validation set. The
corresponding percentages of the total images of each dataset is 80% for the training set and
20% for the validation set. In addition, the corresponding annotation files are created both
for the training and validation set. The annotation file includes crucial information for the
training and validation samples, such as the bounding box of each object class, the name of
the class, etc. Figure 11, depicts a sample annotation file, where width, height, depth are the
dimensions of the image, name is the object class, and xmin, ymin, xmax, ymax are the top left
and the bottom right coordinates respectively of the object bounding box. At the end of the
training process, new anchors and weights are created associated with the custom YOLOv3.
Table 3 provides detailed information for the datasets used for the custom YOLOv3, such
as the number of the total images and the number of the samples of each class. Figure 12
depicts the distribution of the samples in each class per dataset retrieving this information
from the Table 3. The total number of samples of the class “Persons” is about the half of
the number of samples of the class “Vehicles”. This is justified due to the greater number
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of available free and qualitative datasets with pedestrians; furthermore, in some datasets
(e.g., such the VisDrone2019 dataset) the cars and the trucks were registered in the class
“Vehicles”. The training process is not influenced from the difference between the numbers
of the two classes. Nevertheless, the total count of the samples indicates an adequate
training and validation set depicting a variety of scenes captured from several spectral
sensors and perspectives, and with variable pixel resolution. Thus, a robust custom deep
learning model is extracted with high generalization properties in videos and images from
the training set.

Computation 2021, 9, x FOR PEER REVIEW 21 of 35 
 

 

to the greater number of available free and qualitative datasets with pedestrians; further-
more, in some datasets (e.g., such the VisDrone2019 dataset) the cars and the trucks were 
registered in the class “Vehicles”. The training process is not influenced from the difference 
between the numbers of the two classes. Nevertheless, the total count of the samples in-
dicates an adequate training and validation set depicting a variety of scenes captured from 
several spectral sensors and perspectives, and with variable pixel resolution. Thus, a robust 
custom deep learning model is extracted with high generalization properties in videos and 
images from the training set.  

 
Figure 11. Left: annotation file; right: the corresponding image subset with the bounding boxes of 
each sample object (green rectangles). 

Table 3. Detailed information for the datasets used for the custom YOLOv3. 

Dataset Number of Total 
Images 

Number of Samples of 
the Class “Vehicle” 

Number of Samples of 
the Class “Person” 

OKUTAMA 4128 - 23,749 
UAV123 795 2888 289 

UCF-ARG 1007 3021 1024 
VisDrone2019 34,061 845,686 406,896 

AU-AIR 32,713 125,426 5158 
CARPK 1448 89,774 - 
PUCPR 120 16,916 - 
UAVDT 40,403 763,817 - 
OIRDS 428 1644 - 

JEKHOR 26 270 - 
OTCBVS-RGB 25 24 27 

P-DESTRE 20,635 - 292,003 
VIVID 239 875 - 

LITIV2012 143 - 429 
OTCBVS- 

THERMAL 659 99 2034 

IRICRA 3237 - 5747 
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each sample object (green rectangles).

Concerning the training process, the batch size was selected to be equal to four, and a
GPU process was considered via a NVIDIA GeForce RTX 2080. The computational time of
each epoch was 24 h. The training and validation loss percentages versus training epochs
are presented in Figure 13. As is observed, the training process converges at a maximum of
19 epochs. This is mainly due to the fact that early stopping criteria are adopted to reduce
the computational cost. The training loss was almost stabilized from the fifth epoch. In
contrast, the validation loss presents fluctuations as the training process continued and the
custom weights were adapted respectively. Finally, a validation loss = 5.5% and training
loss = 14.7% were achieved in the 19th epoch. In addition, the evaluation metric mean
Average Precision (mAP) was calculated using the following thresholds: (i) Intersection
over Union (IoU): 50%, (ii) object probability: 30%, and (iii) Non-Maximum Suppression
(NMS): 50%. The Average Precision (AP) for the two classes were Person: 0.4868 and
Vehicle: 0.6652, in addition to mAP: 0.5760. The achieved mAP is considered satisfactory
and equal to the initial proposed YOLOv3-320, YOLOv3-416, and YOLOv3-608 versions,
indicating a robust custom YOLOv3 model. Figure 14 depicts object detection results
in real time for real case scenarios utilizing an RGB camera and applying the custom
YOLOv3 model.
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Table 3. Detailed information for the datasets used for the custom YOLOv3.

Dataset Number of Total
Images

Number of Samples
of the Class
“Vehicle”

Number of Samples
of the Class

“Person”

OKUTAMA 4128 - 23,749

UAV123 795 2888 289

UCF-ARG 1007 3021 1024

VisDrone2019 34,061 845,686 406,896

AU-AIR 32,713 125,426 5158

CARPK 1448 89,774 -

PUCPR 120 16,916 -

UAVDT 40,403 763,817 -

OIRDS 428 1644 -

JEKHOR 26 270 -

OTCBVS-RGB 25 24 27

P-DESTRE 20,635 - 292,003

VIVID 239 875 -

LITIV2012 143 - 429

OTCBVS-
THERMAL 659 99 2034

IRICRA 3237 - 5747

Total count 140,067 1,850,440 737,356
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Figure 14. Object detection results (persons in cyan and car in orange/yellow rectangles) applying
the custom YOLOv3 model in real case videos.

6.3.3. Experiments with OBIA

Figure 15 depicts the object detection results and the corresponding binary masks apply-
ing the OBIA technique on the LITIV2012 dataset. The values of the used parameters were:

(i) color threshold = 170 pixels. Pixels with higher color values from this threshold
correspond to the objects of interest of high temperature.

(ii) dilation contour = 20 pixels. A dilation on the contours of the detected objects is
performed to fill holes and to extract solid objects.

(iii) minimum area = 10 pixels and maximum area = 30,000 pixels. Only the objects within
this pixel area range are assigned as objects of interest.
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The results from applying the OBIA technique on the thermal video dataset (LITIV2012
dataset) can be considered satisfactory because all of the objects were detected. Although
the limitation of this technique is that should be applied to simple scenes, it is able to give
a reliable position of an object of interest. For more complex cases such as the one depicted
in the VIVID dataset, the OBIA technique will detect false positive entries associated with
road lights and other objects with high temperature. Furthermore, another limitation is that
the detected objects have no semantic information, i.e., they are not assigned to a specific
class (e.g., persons). Similar to object tracking experiments, to extract a general overview
for the performance of each deep learning model and the OBIA technique, an extended
experimental analysis is required in terms of: (i) variable sensor cameras; (ii) variable
pixel resolution; (iii) computational time; (iv) variable perspectives of the objects; and (v)
variable datasets of complex scenes with occlusions, shadows, repetitive patterns.

6.4. Terrestrial Asset
Experiments with Pretrained Deep Learning Models

Figure 16 depicts object detection results in real time case scenarios utilizing the
thermal camera and applying the pretrained YOLOv3 model. Indicative quantitative
assessment is provided in Table 4 for the corresponding videos. The thermal camera
was installed in several positions and perspectives in parking space, park, and structure
environment. According to the results, the pretrained YOLOv3 model achieved satisfactory
results when the distance between the camera and object was lower than 40 m. This is
mainly due to occlusions, similar thermal values between background and the objects,
and the somewhat low resolution of the thermal camera. However, the achieved average
rates for all the videos were CM = 75.5%, CR = 97.0%, and Q = 73.7%, indicating the
appropriateness of the pretrained YOLOv3 model in thermal views.
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Table 4. Quantitative object detection results for terrestrial asset using the thermal camera and
applying the pretrained YOLOv3 model.

Video CM (%) CR (%) Q (%)

1 78.3 92.1 73.4

2 58.2 100.0 58.2

3 95.0 100.0 95.0

4 74.5 92.3 70.3

5 71.4 100.0 71.4
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7. Localization, Speed and Heading

The calculation of the localization, speed, and heading of a tracked or a detected object
is considered an important advantage of a UxV system compared to typical tracking or
detection schemes. In this context, for instance, not only the UAV position is provided but
also the ground real world coordinates (e.g., the WGS’84 coordinates) of the detected or
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tracked objects. By these means, a clearer view of the area of interest, and an enhanced scene
understanding, is achieved, providing more accurate and additional information. Such
information can be overlaid on several georeferenced maps, in addition to contributing to
external systems with fusion modules through rule-based schemes in order to be correlated
with other features.

7.1. Localization Module

The on-board localization module is responsible for calculating the ground real-world
coordinates (i.e., the WGS’ 84 coordinates as latitude and longitude) of the detected objects
or tracked object in real-world coordinates as the UAV is moving. This module is provided
only for the UAV asset. To estimate these WGS’ 84 coordinates, linear features in terms
of collinearity condition [60] are considered to express the relationship between pixel
locations on the image plane and the corresponding 3D world coordinates on the ground.
The module is based on the Python programming language using the math and pyproj
libraries. In the following outline, the corresponding workflow of the localization module
in each camera frame is described:

• Import the object centroids from the object detection or object tracking module.
• Import the turns yaw, pitch, roll of the gimbal.
• Import the UAV position as WGS’ 84 coordinates.
• Import the camera sensor parameters.
• Calculate the distance from the UAV position and the projection image center in the

real world via the turn pitch.
• Transform the UAV position from WGS’ 84 to the UTM projection.
• Transform the object centroids coordinates from the image plane to photogrammetric

image center.
• Calculate the real-world coordinates of the detected or tracked object in the UTM

projection via the collinearity condition.
• Transform the coordinates from UTM projection to WGS’84.
• Export the UTM projection coordinates to the speed and heading module if the object

tracking module is active. The speed and heading module is described in Section 7.2.
• Export the WGS’84 coordinates to the object detection or object tracking module.

7.1.1. Collinearity Condition

The mathematical expression of the collinearity condition is described in the following.
Figure 17 shows the collinearity condition in the 3D space. It is noticed that the collinearity
condition in the 3D space is considered for aerial cases with nadir captures. Thus, position
error at the objects in ground are imported for wide viewing angles that resemble terrestrial
cases. However, to mitigate such cases of high pitch turns, a shift in the 3D space is adopted
by considering the distance from the UAV position and the projection image center in the
real world. The localization module considers the same assumptions, namely [61]:

- We assume the earth is semi-flat between the aircraft and the target in the Field Of
View (FOV), with a variance of less than a couple of meters.

- We have at least 1 arcsecond post data for the digital elevation model (DEM).
- We assume that the plumb-line (e.g., local gravity vector) is parallel to the geodetic

normal of the ellipsoid. This will allow us to simply add/subtract DEM, ellipsoid,
and geoid elevations.

- We assume that we know the aircraft position to less than a few centimeters, and
attitude to some immeasurable error.

- We assume that we know the position of the camera and its orientation relative to the
aircraft perfectly.

- We assume that we do not have any timing errors between image frames, and posi-
tion/attitude information.
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Figure 17. Collinearity condition in the 3D space.

Our localization module uses the camera’s intrinsic matrix and its lens distortion
parameters, obtained through camera calibration (see Section 7.1.2), which were not con-
sidered in [61].

The collinearity condition expresses the basic relationship in which an object point
and its image lies on a straight line passing through the perspective center. The general
collinearity equation is expressed as follows: x

y
−c

= λ· Rωϕκ ·

 X− X
Y−Y
Z− Z

 (2)

R= Rκ Rϕ Rω=

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (3)

R=

 cosϕcosk cosωsinκ + sinωsinϕcosκ sinωsinκ − cosωsinϕcosκ
−cosϕcosk cosωcosκ − sinωsinϕsinκ sinωcosκ + cosωsinϕsinκ

sinϕ −sinω cosϕ cosωcosϕ

 (4)

The detailed collinearity condition taking consideration of all of the camera parameters
is the following:

x′ = xo − ∆xr − ∆xd − c· (X−X0)·r11+(Y−Y0)·r12+(Z−Z0)·r13
(X−X0)·r31+(Y−Y0)·r32+(Z−Z0)·r33

y′ = yo − ∆yr − ∆yd − c· (X−X0)·r21+(Y−Y0)·r22+(Z−Z0)·r23
(X−X0)·r31+(Y−Y0)·r32+(Z−Z0)·r33

(5)

where:

- x′, y′ are the centroid coordinates of the object of interest in the image plane converted
from the image plane system to the photogrammetric system.

- xo, yo are the coordinates of the principal point.
- ∆xr, ∆yr are the corrections of the radial-symmetric lens distortion parameters.
- ∆xd, ∆yd are the corrections of the decentering lens distortion parameters.



Computation 2021, 9, 12 29 of 34

- Rωϕκ is the matrix with elements ri,j incorporating the turns in the 3D space of the
image plane referred to the world’s system.

- c is the focal length of the camera.
- X0, Y0, Z0 are the coordinates of the image center in the 3D space. Such coordinates

are provided from the UAV position (as latitude and longitude) converted from the
WGS’ 84 coordinate system to the UTM.

- X, Y, Z are the coordinates of the object of interest in the 3D space. Because a monocular
vision system is considered, the Z value should be predefined. Thus, the Z value is
set as the home UAV height altitude associated with the ground geometric height in
WGS’ 84. Solving Equation (5) for the unknowns X and Y, the corresponding UTM
coordinates are calculated. The final latitude and longitude coordinates of the object
are calculated by converting the UTM coordinates to WGS’ 84.

Figure 18 shows two examples of the calculated positions of a tracked object super-
imposed on Google Earth. The blue point in Figure 18 indicates the real position of the
object (according to Google Earth) and the red point indicates the corresponding calculated
position of the object through the localization module. The perspective view parameters
for the first case were height = 20 m, pitch turn = −35◦, azimuth = 20◦, and the perspective
view parameters for the second case were height = 20 m, pitch turn = −45◦, azimuth
= 5◦. The difference between the real position and the calculated position of the object
was 5 and 10 m for case 1 and case 2, respectively. Such differences can be considered
satisfactory for a monocular, on-board, and real-time system, and for emergency response
applications. However, an extended experimental analysis is required for (i) pitch turns,
(ii) azimuth, (iii) heights, (iv) multiple objects with reference positions measured by RTK
stations, and (v) type of sensor, in order to evaluate the sensitivity of the localization
module in several scenarios.
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7.1.2. Camera Calibration

A calibration process [62] on the RGB camera is performed to acquire the precise
intrinsic camera parameters. Such parameters feed the localization module to increase the
object position accuracy and absorb lens distortions. The single assumption is that several
images of a typical chess-board pattern (alternating dark and light squares), acquired with
the same camera, are available. The algorithm then proceeds to extract object corner points,
discard blunders, sort the valid nodes into pattern rows and columns, and finally calibrate
the camera by bundle adjustment. Figure 19 shows five of the 13 chess-board pattern
images that were totally collected in our laboratory. As a result of the final converged
bundle adjustment, the calibrated intrinsic camera parameters are calculated: cx, cy the focal
length in pixels in the x and y axis, respectively; xo,yo the coordinates of the principal point
in pixels; ar the aspect ratio; sk the skewness; k1, k2 the coefficients of radial-symmetric lens
distortion; and p1,p2 the coefficients of decentering lens distortion. The calibrated intrinsic
RGB camera parameters are depicted in Figure 20 with the corresponding radial distortion
curve. A calibration process for the thermal camera is one of the tasks for future work.
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7.2. Speed and Heading

The speed and heading module is responsible for calculating the speed and the
heading of the tracked object. This module is provided only for the UAV asset and the
active tracking module. The module is based on the Python programming language using
the math library. In the following outline, the corresponding workflow of the speed and
heading module is described:

• Import the object coordinates of the tracked object in UTM projection from the local-
ization module with a time interval of 1 s.

• Calculate the differences Dx = xB − xA, Dy = yB − yA in the X axis and Y axis between
the two position of timestamps A and B.

• Calculate the azimuth of the vector between the two position points as azimuth = arctan (Dx/Dy).
• Calculate the distance between the two position of timestamps as distance = sqrt (Dx

2 + Dy2).
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• Export the speed, which is the distance in the time interval between the two position
of timestamps, to the object tracking module.

• Export the heading, which is the azimuth, to the object tracking module.

8. Conclusions and Future Work

This paper proposes an efficient and modular multipurpose situational awareness
platform system, namely the Intelligent UxV Surveillance platform (INUS), that can sup-
port humans in analyzing video feeds and inform them promptly about detected and
tracked objects in an area of interest. The system exploits novel UAV and terrestrial fea-
ture technologies, such as on-board processing, supports the integration of optical and
thermal sensors, and applies robust and effective computer vision, image processing and
machine learning techniques. In addition, a localization, speed, and heading module was
designed to provide localized events. The information extracted from the localized events
can provide not only an enhanced scene understanding but also contribute to external
systems with fusion modules through rule-based schemes in order to be correlated with
other features.

Concerning the tracking process, the Mosse and CSRT trackers appear to provide
more stable results compared to the other trackers. Concerning the object detection process,
several experiments were carried out applying deep learning pretrained and new custom-
trained models in UAV and terrestrial videos. The pretrained YOLOv3 model achieved
satisfactory results with a quality rate of 70–74% in complicated real case scenes both with
RGB and thermal sensors. To cover cases of higher UAV altitude view, a custom deep
learning model was created. Thus, the YOLOv3 was retrained by applying a transfer
learning scheme. The experimental results achieved promising results, highlighting the
potential and the functionality of the concept. As future work we intend to perform an
extended experimental analysis for the object detection module in terms of: (i) variable
sensor cameras; (ii) variable object classes; (iii) variable pixel resolution; (iv) computational
time; (v) variable perspectives of the objects; and (vi) variable datasets of complex scenes
with occlusions, shadows, repetitive patterns. In addition, we intend to perform an
extended experimental analysis for the localization, speed, and heading modules with
several (i) pitch turns, (ii) azimuths, (iii) UAV heights, (iv) multiple objects with reference
positions measured by RTK stations, and (v) types of sensors.

Due to the modular design and the flexibility of the INUS platform, several exten-
sions and enhancements can be made in future work for adaption to several applications.
For instance, stereo cameras, hyperspectral cameras, or LIDAR sensors can be installed
depending the scenario or user requirement needs. In addition, a fusion of the UAV and
terrestrial assets may contribute to more stable and cross-checked detection and tracking
events. Finally, new modules, e.g., motion detection and human pose estimation, can be
designed to enhance the platform with several capabilities for a wide range of applications.
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