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Abstract: We investigate a kinetic model for compressible non-ideal fluids. The model imposes the
local thermodynamic pressure through a rescaling of the particle’s velocities, which accounts for
both long- and short-range effects and hence full thermodynamic consistency. The model is fully
Galilean invariant and treats mass, momentum, and energy as local conservation laws. The analysis
and derivation of the hydrodynamic limit is followed by the assessment of accuracy and robustness
through benchmark simulations ranging from the Joule–Thompson effect to a phase-change and
high-speed flows. In particular, we show the direct simulation of the inversion line of a van der Waals
gas followed by simulations of phase-change such as the one-dimensional evaporation of a saturated
liquid, nucleate, and film boiling and eventually, we investigate the stability of a perturbed strong
shock front in two different fluid mediums. In all of the cases, we find excellent agreement with
the corresponding theoretical analysis and experimental correlations. We show that our model can
operate in the entire phase diagram, including super- as well as sub-critical regimes and inherently
captures phase-change phenomena.

Keywords: non-ideal fluids; kinetic theory; lattice Boltzmann method

1. Introduction

The lattice Boltzmann method (LBM) is a kinetic-theory approach to the simula-
tion of hydrodynamic phenomena with applications ranging from turbulence [1,2] to
microflows [3,4] and multiphase flows [5–8]. The fully discretized kinetic equations evolve
particle distribution functions (populations) fi(x, t), which are associated with a set of
discrete velocities ci, according to a simple stream-and-collide algorithm and recover the
Navier–Stokes equations in the hydrodynamic limit [9].

While LBM has proven successful in a wide range of fluid mechanics problems [9,10],
it is well known that the fixed velocity set restricts conventional LB models to low-speed
incompressible flows [9]. This promoted significant research efforts, which were directed
towards the development of compressible LB models [11–15], but they are typically limited
to ideal gas. A genuine LB model, which can capture both compressible and non-ideal fluids
has been lacking. However, in many scientific and engineering applications the ideal-gas as-
sumption is no longer valid and real-gas effects have to be taken into account. This includes
phenomena such as rarefaction shock waves [16–19], acoustic emission instability [20,21],
inversion line (change of sign of the Joule–Thomson coefficient), phase transition, surface
tension, and super-critical flows.

While LB models for non-ideal gases have been subject to many studies in the litera-
ture, they are mostly restricted to incompressible flows. In the incompressible regime, two
main approaches for non-ideal gases exist: Pressure-based methods [22,23] and forcing
methods [24–27]. Pressure-based methods were pioneered by Swift et al. [22] and alter the
equilibrium populations such that the full non-ideal pressure tensor, including the non-
ideal equation of state (EOS) and the Korteweg stress, are recovered. However, it was soon
realized that these methods are not Galilean invariant [23,27,28] and lack thermodynamic
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consistency [29]. Although various improvements have been proposed in the literature (see,
e.g., [23,27,28,30]) their range of validity and stability remains limited [27]. On the other
hand, forcing methods account for the deviation from the ideal-gas pressure by an appropri-
ate (non-local) force term, which is introduced in the kinetic equations. Forcing methods are
generally more stable than the pressure-based methods and the Galilean invariance error
can be reduced effectively if augmented with appropriate correction terms [27]. Promising
results have been obtained for forcing methods in various of applications, ranging from
droplet collisions at relatively large density ratios [31,32] to droplet impact on textured [33]
and flexible surfaces [34].

The aforementioned models have also been extended to thermal multiphase flows,
including phase change. For instance, a common approach is to solve the temperature
equation by conventional finite difference or finite volume schemes, which is then coupled
to the flow field by a non-ideal EOS. As shown in [35,36], one can capture nucleate, transient,
and film boiling. Another common approach is to use a second set of population for the
temperature equation, which is combined with additional source terms to account for phase
change [37–39]. Under the low Mach conditions, these methods are commonly associated
with simplifying assumptions such as neglecting the viscous heat dissipation [39] or the
pressure work [38,40] which lead to a tailored form of the energy equation. Therefore, these
models are not able to capture high-speed compressible flow of non-ideal fluids, where a
complex temperature field with a wide range of values is expected to emerge.

To mitigate these shortcomings, we recently proposed a novel method for non-ideal
compressible fluid dynamics [41] based on adaptive discrete velocities in accordance to
local flow conditions. In contrast to the aforementioned schemes, the model features full
Galilean-invariance and is thermodynamically consistent. As a consequence of the model’s
construction, the full energy-equation of a non-ideal fluid is recovered, which means that
no additional phase-change model is required. This enables us to capture a large range of
flow regimes, which we aim to explore in this paper. While basic validation was conducted
in [41], we extend this analysis here and assess the model’s performance for super-critical
flows, throttling, phase change, and shock-stability.

The paper is structured as follows: Section 2 provides an in-depth analysis of the model.
We start with a presentation of the discrete kinetic equations in Section 2.1, followed by
the Chapman–Enskog analysis and the derivation of the hydrodynamic limit in Section 3.
Numerical benchmarks including the simulation of the Joule–Thomson effect, phase-change,
and high-speed flows are presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Methodology
2.1. Kinetic Equations

Our thermokinetic model of non-ideal fluids [41] is based on the so-called particles-
on-demand (PonD) method [13], which constructs the particle’s velocities relative to the
reference frame (gauge) λ = {T, u}, where T is the local temperature and u is the local
flow velocity. While the former leads to thermodynamic consistency, the latter guarantees
Galilean invariance. In addition, in the local reference frame, the local equilibrium becomes
exact and solely dependent on the density. This is in contrast to classical LBM where one
typically resorts to a truncated polynomial. The populations can be transformed between
different reference frames by requiring the moments to be independent of the reference
frame [13]. In [41], we generalized this concept to encompass the thermodynamics of
non-ideal fluids by defining the new set of discrete velocities as:

vi =

√
p

ρTL
ci + u, (1)

where p(x, t) is the local thermodynamic pressure, ρ(x, t) is the local density, and TL is a
lattice reference temperature, a constant known for any set of speeds C = {ci, i = 1, ..., Q},
and u(x, t) is the local flow velocity.
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A two-population approach is employed in this study. While f populations maintain
the density and the momentum field, the g populations carry the total energy. As in classical
LBM, a stream and collide algorithm is used to evolve the populations in time. In particular,
we use a semi-Lagrangian approach for advection along the characteristics [42,43] at the
monitoring point (x, t), which reads:

f λ
i (x, t) = f̃i

λ
(x− viδt, t− δt), (2)

gλ
i (x, t) = g̃i

λ(x− viδt, t− δt), (3)

while the Bhatnagar–Gross–Krook (BGK) model is employed for the collision step:

fi(x, t) = f λ
i (x, t) + ω( f eq

i − f λ
i (x, t)) + Sλ

i , (4)

gi(x, t) = gλ
i (x, t) + ω(geq

i − gλ
i (x, t)) + Gλ

i δt, (5)

where { f eq
i , geq

i } denote the equilibrium populations. The source terms {Sλ
i ,Gλ

i } are used
to account for the effect of surface tension in the momentum equation and a correction
term in the energy equation, respectively. Details will be provided in Sections 2.2 and 2.3.

It is important to note that since the discrete velocities (1) depend on the local flow
field (pressure, density, and velocity), the departure point xd = x− viδt does not neces-
sarily coincide with a grid node. Thus, the populations at the departure point need to be
reconstructed and we use the general interpolation scheme:

{ f̃ λ(xd, t), g̃λ(xd, t)} =
N

∑
p=0

Λ(xd − xp)Gλ
λp
{ f λp(xp, t), gλp(xp, t)}, (6)

where xp, p = 0, ..., N denote the collocation points (grid points) and Λ is the interpola-
tion kernel. Notice that the populations at the collocation points are, in general, not in
the same reference frame as the populations at the monitoring points. Thus, during the
reconstruction step, populations are transformed from the reference frame λp to λ through
the transformation matrix Gλ

λp
[13]. In general, a set of populations at gauge λ can be

transformed to another gauge λ′ by matching the Q linearly independent moments:

Mλ
mn =

Q

∑
i=1

f λ
i vm

ixvn
iy, (7)

where m and n are integers. This may be written in the matrix product form as Mλ =Mλ f λ

whereM is the Q×Q linear map. Requiring that the moments must be independent from
the choice of the reference frame, leads to the matching condition:

Mλ′ f
λ′ =Mλ f λ, (8)

which yields the transformed populations:

f λ′ = Gλ′
λ f λ =M−1

λ′ Mλ f λ. (9)

Finally, we comment that the choice of the interpolation kernel is not the focus of the
present study. For simplicity, we use the third-order Lagrange polynomials in what follows,
unless stated otherwise.

With the transformations defined, we are set for the advection scheme, where the
local gauge is found iteratively using a predictor-corrector scheme. The full algorithm is
depicted in Figure 1. Initially, the discrete velocities (1) are defined relative to the gauge
λ0 = {p0/ρ0, u0} based on the pressure, density, and velocity field from the previous time
step. Once the discrete velocities vi

0 are set, the semi-Lagrangian advections (2) and (3) are
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performed. With the new populations at the monitoring point, the density, momentum,
and total energy are evaluated by taking the corresponding moments of each population:

ρ1 =
Q

∑
i=1

f λ0
i , (10)

ρ1uα1 =
Q

∑
i=1

f λ0
i v0

iα, (11)

2ρ1e1 + ρ1u2
1 =

Q

∑
i=1

gλ0
i , (12)

where e = e(ρ, T) is the internal energy of a non-ideal fluid. Subsequently, the pressure can
be evaluated using the EOS of choice with the updated values for density and temperature.
Finally, we can define the corrector gauge as λ1 = {p1/ρ1, u1} with v1

i =
√

p1/(ρ1TL)ci +
u1. This predictor-corrector step is iterated until the convergence of the gauge is achieved,
where the limit gauge is the co-moving reference frame. Once the co-moving reference
frame is determined, the advections (2) and (3) are completed.

Define reference frame based on the
values from the previous time-step:

(Initially, m = 0)
pm = p(x, t − δt);
ρm = ρ(x, t − δt);
um = u(x, t − δt);
λm = {pm/ρm,um};

Define discrete velocities:
θm =

√
pm/ρmTL;

vmi =
√
θmci + um;

Semi-Lagrangian advection:

fλm
i (x, t) = f̃i

λm

(x− vi
mδt, t− δt);

gλm
i (x, t) = g̃i

λm(x− vi
mδt, t− δt)

Compute filed variables:
ρm+1 =

∑
i f

λm
i ;

ρm+1um+1 =
∑
i f

λm
i vi

m;

2ρm+1Em+1 =
∑
i g
λm
i ;

Compute new reference frame:
pm+1 = p(ρm+1, Tm+1)→ corresponding EOS;

λm+1 = {pm+1/ρm+1,um+1}
Convergence of
reference frame?

Collision

m←− m+ 1

yes

no

next time-step

Figure 1. Flowchart of the semi-Lagrangian advection using the predictor-corrector algorithm.

Finally, the collision step in the co-moving reference frame follows. For the f popula-
tions the local equilibrium takes the exact form:

f eq
i = ρWi, (13)

where Wi are lattice weights, which are known for any velocity set. The equilibrium for the g
population is derived using Grad’s approximation [44–46] for the new discrete velocities (1).
Thus, the equilibrium populations are constructed from the moments:

Meq =
Q

∑
i=1

geq
i , qeq

α =
Q

∑
i=1

geq
i viα, Req

αβ =
Q

∑
i=1

geq
i viαviβ, (14)

where the explicit relations for the equilibrium moments are given by:

Meq = 2ρE, (15)

qeq
α = 2ρuα H, (16)

Req
αβ = 2ρuαuβ(H + p/ρ) + 2pHδαβ, (17)
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where E = e+ u2/2 is the total energy and H = E+ p/ρ is the total enthalpy. Here, we shall
define a second-order polynomial based on the general discrete velocities viα =

√
θciα + uα,

geq
i = Wi

[
Meq + Mα(viα − uα) + Mαβ(viαviβ − θTLδαβ − uαuβ)

]
, (18)

where it can easily be observed that the zeroth-order moment is already recovered. To satisfy
the higher order moments, we must solve for Mα and Mαβ. Substituting (18) in (14) gives:

qeq
α = Mequα + MαθTL + 2θTLMαβuβ, (19)

Req
αβ = Meq(θTLδαβ − uαuβ) + qeq

α uβ + qeq
β uα + 2θ2T2

L Mαβ. (20)

Considering the explicit relations of the moments given by Equations (15)–(17) and
taking into account the scaling θ = p/ρTL one obtains:

Mα = 0,

Mαβ = ρδαβ. (21)

Finally, upon substitution in Equation (18), geq
i is obtained as:

geq
i = ρWi

[
2e− D(p/ρ) + v2

i

]
, (22)

where D is the space dimension. As mentioned earlier, the source term Gi in Equation (5)
is responsible for correction of the energy equation. Here, we only derive the formulation
and further details are discussed in Section 2.2. To derive an expression for the correction
term in the co-moving reference frame, we follow the same method employed to express
geq

i . The pertinent moments of the correction term are:

M0 =
Q

∑
i=1

Gλ
i , 0 =

Q

∑
i=1

Gλ
i viα, 0 =

Q

∑
i=1

Gλ
i viαviβ, (23)

Using relations (19) and (20), one can write:

0 = M0uα + MαθTL + 2θTLMαβuβ, (24)

0 = M0(θTLδαβ − uαuβ) + 2θ2T2
L Mαβ, (25)

which leads to the following solution:

Mα = −M0
u2

θ2T2
L

uα,

Mαβ =
M0

2θ2T2
L

[
uαuβ − θTLδαβ

]
. (26)

Eventually, we can write the polynomial form of the correction term as:

Gλ
i = M0Wi

(
1 + ρ

uαuβciαciβ

2pTL
−

ρv2
i

2p
+

D
2

)
, (27)

where M0 is the correction term in the energy equation.
We remind that the internal energy of a non-ideal fluid is now a function of both

density as well as the temperature:

de = CvdT +

[
T
(

∂p
∂T

)
v
− p

]
dv, (28)
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where Cv = (∂e/∂T)v is the specific heat at constant volume and v = 1/ρ is the specific
volume. For the sake of presentation, we shall at first neglect the interface energy and only
consider E = u2/2 + e, where E is the total energy, e = e(s, v) is the local internal energy
per unit of mass, s is the entropy, and the temperature is defined by T = (∂e/∂s)v.

In this paper, we use the classical van der Waals (vdW) EOS p = ρRT/(1− bρ)− aρ2

to model non-ideal behavior of real-gases but others can be used analogously. The constants
are set to a = 2/49, b = 2/21, and R = 1, where a is the long-range attraction parameter, b
represents the excluded-volume effect, and R is the specific gas constant. Considering the
vdW EOS, we have: (

∂evdw
∂ρ

)
T
= T

(
∂p
∂T

)
v
− p = −a, (29)

evdw =
∫

CvdT − aρ, (30)

which suggests that evdw = F(T)− aρ, where F(T) is an arbitrary function of temperature.
In other words, the internal energy of a vdW fluid is the sum of a density-dependent
function and temperature-dependent function.

2.2. Correction of the Energy Equation

We first comment that the expression of heat flux recovered from the Chapman–
Enskog analysis (see Section 3) without the correction term in the g population is found as
qCE

α = −µ∂αh where µ is the shear viscosity and h = e + p/ρ is the specific enthalpy. In the
limit of an ideal gas, this is equivalent to the Fourier law qig

α = −kig∂αT, where kig = µCig
p

and hence the Prandtl number is fixed to Pr = µCig
p /kig = 1 due to the single relaxation

time BGK collision model. However, considering the enthalpy of a real-gas as a function of
pressure and temperature, we have ∂αh = Cp∂αT + v(1− βT)∂α p, where β = v−1(∂v/∂T)p
is the thermal expansion coefficient and Cp = Cv + Tvβ(∂p/∂T)v is the specific heat at
constant pressure. While one could eliminate the pressure part of the enthalpy by the
correction term and only retain the temperature dependent part, it must be noted that the
thermal expansion coefficient at the critical point diverges, β→ ∞ and so does the specific
heat Cp → ∞. Hence, to recover the Fourier law, the post-collision of the g population
is augmented by the correction term Gλ

i δt, where M0 = ∑ Gλ
i in Equation (27) is set to

M0 = 2∂α(−µ∂αh + k∂αT) and k is the conductivity, which is set independently.

2.3. Surface Tension

In order to describe two-phase flows in the sub-critical part of the phase diagram,
the collision step for the f -populations (4) is augmented with a source (forcing) term Sλ

i :

Sλ
i = Gu

u+δu[ρWi]− ρWi, (31)

where: δu = F/ρδt is the change of the local flow velocity due to the force Fα = ∂βKαβ, where

Kαβ = κ

(
∆ρ +

1
2
|∇ρ|2

)
δαβ + κ∂αρ∂βρ (32)

is the Korteweg stress [8], ∆ = ∇2 is the Laplacian, and κ is the surface tension coefficient.
The first term on the R.H.S of Equation (31) denotes the transformation of equilibrium
populations residing at the reference frame “u + δu” to the reference frame “u” which is
equivalent to the exact difference method (EDM) [47], adapted to the comoving reference
frame. Having included the source term Si, the actual fluid velocity is now shifted to
û = u + δu/2, where u = 1/ρ ∑ fivi.

In the presence of an interface, the local equilibrium (22) is extended to account
for the forcing F. In order to do that, the same analogy used in the absence of the force
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term is employed here with the only difference that the velocity terms in the pertinent
moments (15)–(17) are replaced by the modified velocities:

ûα = uα +
Fαδt
2ρ

. (33)

In this setting, the solution to relations (19) and (20) gives:

Mα =
1

(p/ρ)

[
Fα(Ĥ − u2)δt−

[
uαδt +

(
Ĥ +

p
ρ

)
δt2

2p
Fα

]
Fβuβ

]
, (34)

Mαβ = ρδαβ +
ρδt
2p
[
uαFβ + Fαuβ

]
+

ρδt2

4p2 FαFβ(Ĥ + p/ρ), (35)

which can be written in a compact form using the expression ûαFβ + ûβFα = uαFβ + uβFα +

δtFαFβ/ρ and taking Gαβ = ûαFβ + ûβFα + δtFαFβÊ/2p,

Mα =
δt

(p/ρ)

[
FαĤ − Gαβuβ

]
, (36)

Mαβ =
1

(p/ρ)

[
pδαβ +

δt
2

Gαβ

]
, (37)

where Ĥ = Ê + p/ρ = h + û2/2. Finally, the extended equilibrium takes the form,

geq
i = Wi

[
2ρÊ + Mα(viα − uα) + Mαβ

(
viαviβ −

p
ρ

δαβ − uαuβ

)]
, (38)

where ρÊ = ρE + û2/2 is based on the actual velocity of the flow. Note that in the absence
of the force, the equilibrium (38) simplifies to Equation (22). Consequently, the correspond-
ing work of the added force is taken into account in the energy equation by modifying the
correction term (27) with M0 = 2∂α(−µ∂αh + k∂αT) + 2ûα∂βKαβ. Finally, with the above
modifications, the hydrodynamic equations for a two-phase system are recovered in their
correct form. The evolution Equations (67)–(69) together with the stress tensor (70) re-
main intact but all velocity terms u are replaced by the actual velocity û. Furthermore,
the standard form of the total-energy conservation for a two-phase system [48] is recovered:

∂t
(
ρÊ
)
+ ∂α

(
ρÊ ûα + pûα + τ̂αβûβ + qα + Kαβûβ + κρ∂βûβ∂αρ

)
= 0, (39)

where ρÊ = ρÊ + κ
2 |∇ρ|2 accounts for the excess energy of the interface.

It is essential to mention that the van der Waals formulation of a real-gas can yield neg-
ative values of pressure for a range of temperatures in the subcritical region (Tr < 0.84375)
and a constant base-pressure must be added in order to have a meaningful evaluation of
discrete velocities (1). Thus, we redefine the pressure as p = pvdw + p̄ and choose p̄ such
that p remains positive. This will contribute to the internal energy according to relation (28)
and the pressure-dependent part is re-evaluated as:

T
(

∂p
∂T

)
v
− p =

a
v2 − p̄. (40)

Finally, the internal energy of a vdW fluid with base-pressure p̄ and constant specific
heat Cv is given by:

e = CvT − aρ− p̄
ρ

. (41)

However, the enthalpy of such a fluid remains intact since:
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h = e +
pvdw + p̄

ρ
, (42)

h = CvT − aρ +
pvdw

ρ
− p̄

ρ
+

p̄
ρ

, (43)

where the effect of the base-pressure is canceled out in the evaluation of the enthalpy.

3. Chapman–Enskog Analysis
3.1. Excluding the Forcing Term

Here we aim at deriving the macroscopic Navier-Stokes equations from the kinetic
Equations (2)–(5). To this end, the pertinent equilibrium moments of f and g populations
are required, which are computed as follows:

Peq
αβ =

Q

∑
i=1

f eq
i viαviβ = ρuαuβ + pδαβ, (44)

Qeq
αβγ =

Q

∑
i=1

f eq
i viαviβviγ = ρuαuβuγ + p[uδ]αβγ, (45)

qeq
α =

Q

∑
i=1

geq
i viα = 2ρuα H, (46)

Req
αβ =

Q

∑
i=1

geq
i viαviβ = 2ρuαuβ(H + p/ρ) + 2pHδαβ, (47)

where [uδ]αβγ = uαδβγ + uβδαγ + uγδαβ and H is the total enthalpy. First, we introduce the
following expansions:

fi = f (0)i + ε f (1)i + ε2 f (2)i , (48)

gi = g(0)i + εg(1)i + ε2g(2)i , (49)

∂t = ε∂
(1)
t + ε2∂

(2)
t , (50)

∂α = ε∂
(1)
α . (51)

Applying the Taylor expansion up to second order and separating the orders of ε
results in:

{ f (0)i , g(0)i } = { f eq
i , geq

i }, (52)

∂
(1)
t { f (0)i , g(0)i }+ viα∂

(1)
α { f (0)i , g(0)i } = −(ω/δt){ f (1)i , g(1)i }, (53)

∂
(2)
t { f (0)i , g(0)i }+

(
∂
(1)
t + viα∂

(1)
α

)(
1− ω

2

)
{ f (1)i , g(1)i } = −(ω/δt){ f (2)i , g(2)i }. (54)

The local conservation of density, momentum, and energy imply:

Q

∑
i=1
{ f (n)i , g(n)i } = 0, n ≥ 1, (55)

Q

∑
i=1

f (n)i viα = 0, n ≥ 1. (56)

Applying conditions (55) and (56) on Equation (53), we derive the following first order
equations:
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D(1)
t ρ = −ρ∂

(1)
α uα, (57)

D(1)
t uα = −1

ρ
∂
(1)
α p, (58)

D(1)
t T = − T

ρCv

(
∂p
∂T

)
ρ

∂
(1)
α uα, (59)

where D(1)
t = ∂

(1)
t + uα∂

(1)
α is the first order total derivative. Subsequently, we can derive a

similar equation for pressure considering that p = p(ρ, T). This yields:

D(1)
t p =

(
∂p
∂ρ

)
T

D(1)
t ρ +

(
∂p
∂T

)
ρ

D(1)
t T = −ρς2∂

(1)
α uα, (60)

where ς =

√(
∂p
∂ρ

)
s

is the speed of sound given by:

ς =

√√√√(∂p
∂ρ

)
T
+

T
ρ2cv

(
∂p
∂T

)2

ρ

. (61)

The second order relations are obtained by applying the conditions (55) and (56) to
Equation (54),

∂
(2)
t ρ = 0, (62)

∂
(2)
t uα =

1
ρ

∂
(1)
β

[
δt
(

1
ω
− 1

2

)(
∂
(1)
t Peq

αβ + ∂
(1)
γ Qeq

αβγ

)]
, (63)

∂
(2)
t T =

1
2ρCv

{
∂
(1)
α

[
δt
(

1
ω
− 1

2

)(
∂
(1)
t qeq

α + ∂
(1)
β Req

αβ

)]
− 2ρuα∂

(2)
t uα

}
. (64)

Equations (57) and (62) constitute the continuity equation. The non-equilibrium pres-
sure tensor and heat flux in the R.H.S of Equations (63) and (64) are evaluated using
Equations (57)–(60),

∂
(1)
t Peq

αβ + ∂
(1)
γ Qeq

αβγ = p
(

∂
(1)
β uα + ∂

(1)
α uβ

)
+
(

p− ρς2
)

∂
(1)
γ uγδαβ, (65)

∂
(1)
t qeq

α + ∂
(1)
β Req

αβ = 2
(

p− ρς2
)

∂
(1)
γ uγuα + 2puβ

(
∂
(1)
β uα + ∂

(1)
α uβ

)
+ 2p∂

(1)
α h. (66)

Finally, summing up the contributions of density, momentum and temperature at the
ε and ε2 orders and taking into account the correction to the energy Equation (27), we get
the hydrodynamic limit of the model, which reads:

Dtρ = −ρ∂αuα, (67)

ρDtuα = −∂α p− ∂βταβ, (68)

ρCvDtT = −ταβ∂αuβ − T
(

∂p
∂T

)
v
∂αuα − ∂αqα, (69)

where Dt = ∂t + uα∂α is the material derivative, qα = −k∂αT is the heat flux, and the
nonequilibrium stress tensor reads:

ταβ = −µ

(
∂αuβ + ∂βuα −

2
D
(∂γuγ)δαβ

)
− η(∂γuγ)δαβ. (70)
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The shear and bulk viscosity are:

µ =

(
1
ω
− 1

2

)
pδt, (71)

η =

(
1
ω
− 1

2

)(
D + 2

D
− ρς2

p

)
pδt, (72)

respectively and ς =
√
(∂p/∂ρ)s is the speed of sound. As expected, the bulk viscos-

ity vanishes in the limit of ideal monatomic gas. Furthermore, one can observe that
only the excluded volume part of the pressure T(∂p/∂T)v contributes to the tempera-
ture Equation (69), as expected.

3.2. Including the Forcing Term

As mentioned before, the force terms in the kinetic equations represent the interface
dynamics. First, we recast the post-collision state of the f population in the following
form [49]:

f ∗i (x, t) = fi(x, t) + ω( f eq
i (ρ, û)− fi(x, t)) + Ŝi, (73)

û = u +
Fδt
2ρ

, (74)

Ŝi = Si −ω
(

f eq
i (ρ, û)− ρWi

)
, (75)

where [Si = f eq
i (ρ, u + Fδt/ρ)− ρWi] and Fα = −∂βKαβ. Here we expand the forcing term

Ŝ(1)
i = εŜ(1)

i in addition to the Expansions (48), (50) and (51). Similarly, we get the following
relations at the orders of ε0, ε1, ε2, respectively:

f (0)i = f eq
i (ρ, û), (76)

∂
(1)
t f (0)i + viα∂

(1)
α f (0)i = −(ω/δt) f (1)i +

1
δt

Ŝi
(1), (77)

∂
(2)
t f (0)i +

(
∂
(1)
t + viα∂

(1)
α

)
(1− ω

2
) f (1)i +

1
2

(
∂
(1)
t + viα∂

(1)
α

)
Ŝ(1)

i = −(ω/δt) f (2)i . (78)

It is important here to assess the solvability conditions imposed by the local conserva-
tions. Considering the moment-invariant property of the transfer matrix between the two
gauges λ = {p/ρ, u} and λ̂ = {p/ρ, û}, one can easily compute:

Q

∑
i=1

f (0)i =
Q

∑
i=0

f eq
i (ρ, û) = ρ, (79)

Q

∑
i=1

f (0)i viα =
Q

∑
i=0

f eq
i (ρ, û)viα = ρûα. (80)

This implies that:

Q

∑
i=1

f (n)i = 0, n ≥ 1, (81)

Q

∑
i=1

f (n)i viα =

{
− δt

2 F(1)
α , n = 1,

0, n > 1.
(82)

According to the definition of Si, the following moments can be computed:
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Q

∑
i=1

Ŝ(1)
i = 0, (83)

Q

∑
i=1

Ŝ(1)
i viα = δt(1− ω

2
)F(1)

α , (84)

Q

∑
i=1

Ŝ(1)
i viαviβ = δt(1− ω

2
)
(
ûαFβ + ûβFα

)
+

ωδt2FαFβ

4ρ
. (85)

Similarly, the first order equations of density and momentum are derived by applying
the solvability conditions (81) and (82) on Equations (77) and (78),

D̂(1)
t ρ = −ρ∂

(1)
α ûα, (86)

D̂(1)
t ûα = −1

ρ
∂
(1)
α p +

1
ρ

F(1)
α , (87)

where D̂(1)
t = ∂

(1)
t + ûα∂

(1)
α . At this point it is necessary to mention that since there is a

force added to the momentum equation (in this case the divergence of the Korteweg stress),
it should also be considered in the energy equation as well. Hence as mentioned before,
M0 in Equation (27) is modified to:

M0 = 2∂α(−µ∂αh + k∂αT) + 2ûαFα. (88)

The equilibrium moments are modified as:

Q

∑
i=1

geq
i = 2ρÊ, (89)

qeq
α =

Q

∑
i=1

geq
i viα = 2ρûαĤ, (90)

Req
αβ =

Q

∑
i=1

geq
i viαviβ = 2ρûαûβ

(
Ĥ + p/ρ

)
+ 2pĤδαβ, (91)

where Ê = e + û2/2 and Ĥ = Ê + p/ρ. With the changes mentioned so far, the first-order
equation of temperature is derived as:

D̂(1)
t T = − T

ρCv

(
∂p
∂T

)
ρ

∂
(1)
α ûα. (92)

Finally, in a similar manner to the case without the force, the macroscopic equations
are recovered by collecting the equations of density, momentum, and temperature at
each order:

D̂tρ = −ρ∂αûα, (93)

ρD̂tûα = −∂α p− ∂βτ̂αβ − ∂βKαβ, (94)

ρCvD̂tT = −τ̂αβ∂αûβ − T
(

∂p
∂T

)
v
∂αûα − ∂αqα, (95)

τ̂αβ = −µ

(
∂αûβ + ∂βûα −

2
D
(∂γûγ)δαβ

)
− η(∂γûγ)δαβ. (96)

It should be noted that the error terms associated with the forcing are not shown here.
For instance, as reported in the literature [49–51], one can show that the error term in the
momentum equation appears as ∇ · (δt2FF/4ρ).

The total energy of the fluid is formulated by Ê = e(T, v) + û2/2 + Eλ, where
Eλ = κ|∇ρ|2/2 is the non-local part corresponding to the excess energy of the inter-
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face. The evolution equation for the specific internal energy e(T, v) can be obtained by
considering Equations (28), (93), and (95):

ρD̂te = −p∂αûα − τ̂αβ∂αûβ − ∂αqα. (97)

From the momentum Equation (94) we get:

1
2

ρD̂tû2 = −ûα∂α p− ûα∂βτ̂αβ − ûα∂βKαβ, (98)

and the evolution of the excess energy can be computed using the continuity equation:

ρD̂tEλ = −Kαβ∂βûα − ∂α

(
κρ∂βûβ∂αρ

)
. (99)

Finally, upon summation of all three parts, we get the full conservation equation for
the total energy:

∂t
(
ρÊ
)
+ ∂α

(
ρÊ ûα + pûα + τ̂αβûβ + Kαβûβ + κρ∂βûβ∂αρ + qα

)
= 0. (100)

4. Results and Discussion

In this section, we show validity of our model in a broad range of problems, which
are chosen to probe the correct thermodynamics as well as Galilean invariance:

• As a first test of basic thermodynamic consistency for non-ideal fluids, we simulate the
inversion line of a vdW fluid, which is one of the classic thermodynamical concepts of
non-ideal fluids. To capture this phenomenon it is crucial that the model recovers the
correct energy equation and can operate in a wide range of pressures and temperatures
in the super-critical part of the phase diagram;

• Phase-change is the next fundamental process that is tested with our model. It is
important to remind that since the full energy equation is recovered by our kinetic
equations, phase-change emerges naturally in the proposed scheme and no additional
ad-hoc phase-change model is required. In addition, we probe fast dynamics with
temperatures near the critical point, where phase-change happens on short time scales;

• As a final test case we probe both thermodynamic consistency as well as Galilean
invariance in supersonic flows. In particular, we study the behavior of a perturbed
shock-front in both an ideal gas as well as a vdW fluid at Mach number Ma = 3.
In agreement with theory, our model shows to capture all regimes, including the
exotic behaviors of a real fluid.

For all simulations, we use the standard D2Q9 lattice, where D = 2 denotes the spatial
dimension and Q = 9 is the number of discrete velocities.

4.1. Inversion Line

When a fluid passes through a throttling device, the value of the enthalpy remains con-
stant in the absence of work and heat. During this so-called throttling process, the pressure
of the fluid drops and the behavior of the temperature is characterized by the Joule–
Thomson (JT) coefficient µ = (∂T/∂P)h [52]. Depending on the sign and value of the JT
coefficient, the temperature may increase, decrease, or remain constant through the process.
For ideal gas, the JT coefficient vanishes and thus the temperature does not change. On the
other hand, for real gases, we need to distinguish between three different regions in the
T − P diagram, corresponding to the different signs of the Joule–Thomson coefficient. Let
us start by defining the inversion line as the locus of points where µ = 0. Hence, crossing
the inversion line will lead to a change of sign of µ. For the vdW EOS, one can derive the
expression for the inversion line as:

Pr = 24
√

3Tr − 12Tr − 27, (101)
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where the subscript “r” indicates that the quantities are reduced with respect to their values
at the critical point. The critical values of pressure, temperature and density for a vdW
fluid are Pcr = a/27b2, Tcr = 8a/27Rb, and ρcr = 1/3b, respectively. In addition to the
reduced variables, it is useful to define the non-dimensional enthalpy as:

ĥ =
h

RTcr
= Tr

[
1
δ
+

3
3− ρr

]
− 9

4
ρr, (102)

where δ = R/Cv is a constant. A closer assessment of (101) reveals that the point with the max-
imum pressure on the inversion line corresponds to the following values,

(
Pr, ρr, Tr, ĥ

)
=

(9.0, 1.0, 3.0, 11.25).
To test that our model captures these phenomena also numerically, we measure the

value of the Joule–Thomson coefficient at different points in the T − P diagram. We do this
in two steps, in the first simulation, the flow is subjected to a positive acceleration under
fixed density hence the pressure drops and the quantity (∂P/∂T)ρ is measured. In a second
simulation, the isothermal speed of sound (∂P/∂ρ)T is computed by introducing a small
perturbation in the pressure field, measuring the velocity of the subsequent shock front.
The Joule–Thomson coefficient is computed by:

µ = − 1
Cp

[
1
ρ
− T

(∂P/∂T)ρ

ρ2(∂P/∂ρ)T

]
. (103)

Finally, we use a simple Euler scheme to construct the isenthalpic lines with:

∆T ≈ µ∆P. (104)

The simulations are conducted for three different enthalpies, ĥ = 5, ĥ = 11.25, and
ĥ = 15. Figure 2 shows the measured values of the dimensionless Joule–Thomson coeffi-
cient at different reduced pressures up to the far supercritical value Pr = 15. The compari-
son between the van der Waals theory and the simulation is excellent and thus validates
our scheme.
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T
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Inversion line

Figure 2. Joule-Thomson coefficient against reduced pressure. The value of the Joule–Thomson
coefficient along the dimensionless isenthalpic lines ĥ = h/RTcr was measured in a wide range of
reduced pressures up to P/Pcr = 15. Line: Theory; Solid: ĥ = 11.25; Dashed: ĥ = 15; Dash dot: ĥ = 5.
Symbols: Present method; Squares: ĥ = 11.25; Triangles: ĥ = 15; Inverted triangles: ĥ = 5. Inset:
Simulated lines of constant enthalpy on the Tr − Pr (phase) diagram.
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4.2. Phase Change: One-Dimensional Stefan Problem

In this section, we validate our model for phase-change problems, starting from the
one-dimensional Stefan problem, where a liquid-vapor system is subjected to a heated wall
on the vapor side. The heat transfer from the wall leads to the evaporation of liquid and
the interface is moving away from the wall. The analytical solution for the liquid-vapor
interface location with time is given by xi(t) = 2β

√
αvt, where αv is the diffusivity of the

vapor and β is the solution to [53]:

β exp(β2)erf(β) =
St√

π
, (105)

where St = Cpv∆T/h f g is the Stefan number, Cpv is the specific heat capacity of the vapor
phase, ∆T is the temperature difference between the wall, and the saturation temperature
and h f g denotes the latent heat of evaporation. Simulations were carried out for three
different Stefan numbers at fixed diffusivity. The choice of the Stefan number is directly
related to the velocity of the interface:

ui(t) =
d
dt

xi(t) = β

√
αv

t
, (106)

and hence the Mach number of the flow. Note that since our model is not restricted to
low-speed flows, we can accurately capture a wide range of Stefan numbers. Figure 3
shows the location of the interface during evaporation compared to the analytical solution.
The results of the simulation are in good agreement with the theory. We mention that the
choice of parameters in our model such as the latent heat of evaporation h f g or the specific
heat Cp is not arbitrary and they are computed based on the thermodynamical state of the
initial flow. For instance, the value of the Stefan number increases for a given temperature
difference ∆T as we approach the critical point due to vanishing of h f g and diverging of Cp
at the critical point.

t

x
i

0 1000 2000 3000 4000 5000
0

10

20

30

40

St = 0.2

St = 1.0

St = 1.9

St = 3.8

Figure 3. Location of the interface versus time in lattice units for four different Stefan numbers. Line:
Analytical solution. Symbols: Present method.

4.3. Phase Change: Nucleate Boiling

Due to its importance in engineering and real life applications, various boiling regimes
have been the focus of many studies, both numerically and theoretically [48,54,55]. To
validate our model, we chose a two-dimensional setup, where a liquid is in direct contact
with a wall with high temperature in the middle of the wall. The schematic of the setup is
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shown in Figure 4a. The non-uniform temperature of the wall triggers a two-dimensional
flow and the nucleus starts to appear and rise under the gravitational field. The nucleus
continues to rise and grow until necking is achieved and the bubble is detaching from the
nucleus. Once the first bubble is detached from the nucleus and released into the liquid,
the nucleus continues to grow and releases a second bubble. This is a periodic process
of bubble release, which is a function of surface tension, density ratio, and the gravity.
An empirical correlation for the bubble release frequency was found experimentally by
Zuber [56] and reads:

f−1 ≈ d
0.59

(
σg(ρl − ρv)

ρ2
l

)−1/4

, (107)

where d is the departure diameter and is itself proportional to g−0.5 [57], ρl is the density
of the liquid phase, and ρv is that of the vapor phase. Hence, the bubble release period is
proportional to g−0.75. We consider a domain of 121× 601 points with time step δt = 0.3,
conductivity k = 0.6, specific heat Cv = 3, viscosity ν = 0.005, surface tension coefficient
κ = 0.0234, and gravity g = 0.0001 in lattice units. The Jacob number is defined as:

Ja =
Cpl(Tw − Tsat)

h f g
, (108)

where Cpl is the specific heat of the liquid phase. The wall temperature is set to Tw =
1.5Tsat, where Tsat is the saturation temperature and the initial temperature of the liquid is
Tsat = 0.9Tcr, which fixes the latent heat of evaporation. This choice of parameters leads
to the Jacob number Ja = 2.21. Figure 4b illustrates a sequence of the bubble interface
from the early times of the first nucleus development until the first bubble is released into
the liquid. The bubble release period was measured for different values of gravity and
the results are presented in in Figure 5. The comparison shows that the bubble release
period is proportional to g−0.75 in our numerical simulations which is in agreement with
the empirical correlation.

L / 10

Saturated liquid at T
sat

T
w

T
sat

L

(a) (b)

Figure 4. (a) Schematic of the nucleate problem. (b) The interface of the vapor bubble during the nucleation, starting from
the appearance of the first nucleus until the release of the first bubble. From bottom to top; Fine-dashed: Time = 600, Dash
dot: Time = 1200, Dashed: Time = 1800, Long-dashed: Time = 2400, Dash dot-dot: Time = 3000, Solid: Time = 3780. Times
are measured in lattice units.
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Figure 5. Bubble release period against different gravity numbers. Symbols: Simulation. The solid
line represents a function 0.945g−0.75.

4.4. Phase Change: Single-Mode Film Boiling

As a final phase-change validation, we conduct simulations of film boiling, where a
heated horizontal surface is covered by a thin layer of vapor. The liquid rests on top of
the vapor and both phases are initially saturated. Phase-change then takes place at the
liquid-vapor interface, where the heat is transported from the hot wall with temperature
Tw, which is set to be above its saturation temperature Tsat. The governing non-dimensional
numbers are the Jacob, the Prandtl, and the Grashof number [58],

Ja =
Cpv(Tw − Tsat)

h f g
, (109)

Pr =
µvCpv

kv
, (110)

Gr = ρvg(ρl − ρv)
l3
s

µ2
v

, (111)

which are defined for the vapor phase. The non-dimensional capillary length ls is defined as:

ls =
√

σ

(ρl − ρv)g
, (112)

and t∗ = t/
√

ls/g is the dimensionless time. The well-known Klimenko correlation as
proposed in [59] has the following form in the laminar flow regime (Gr ≤ 4.03× 105):

Nuk = 0.1691
(

GrPr
Ja

)1/3
, Ja < 0.71, (113)

Nuk = 0.19(GrPr)1/3, Ja ≥ 0.71, (114)

where Nu is the Nusselt number. In our simulation, we consider domain of 129× 257 points
with δt = 0.3, k = 0.6, Cv = 3, ν = 0.005, κ = 0.0234 and g = 0.0001 in lattice units. The non-
dimensional numbers are Ja = 0.064, Pr = 0.094, and Gr = 2482.58. Based on the value of
the Jacob number, the Nusselt number as computed from the correlation (113) amounts to
Nuk = 2.6085861. Initially, the liquid-vapor interface is perturbed with the function:
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y = 0.125W − 0.05W cos
(

2πx
W

)
, (115)

where W is the width of the domain. The space-averaged Nusselt number is computed
throughout the simulation using:

〈Nu〉 = − ls
W(Tw − Tsat)

∫ W

0

∂T
∂y

∣∣∣∣
w

dx, (116)

where the gradient of the temperature is computed at the wall using finite differences. The
evolution of the liquid-vapor interface is shown at three different times in Figure 6. The
first bubble is released at t∗ ≈ 15, which is then followed by a periodic release of bubbles.
The space-averaged Nusselt number is computed during the simulations until the first
bubble is released. The results are presented in Figure 7, where we have compared the time-
averaged Nusselt number with the correlation (113). We can confirm the time-averaged
Nusselt number is in very close agreement with the correlation while according to [59], the
majority of the experimental data lie within ±25% interval of the fitted lines obtained by
Equations (113) and (114).
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Figure 6. Bubble growth from the vapor film at Gr = 2482.58, Ja = 0.064, and Pr = 0.094. The phase boundary is shown at
different times. From left to right: t∗ = 0, t∗ = 9.8, and t∗ = 14.96.
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Figure 7. Space-averaged Nusselt number as a function of dimensionless time for Gr = 2482.58, Ja =

0.064, and Pr = 0.094. The error bars amount to ±25% acceptable error as shown by Klimenko [59].
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4.5. On the Stability of Shock Waves

The stability of planar shock waves subject to small perturbations have long been
investigated since the pioneering work of D’yakov [60] and later modifications of Kon-
torovich [61], which were the first attempts to study the conditions under which a planar
shock with corrugations on its surface would become unstable. The key parameter in the
analysis of shock instabilities is the so called D’yakov parameter [20], defined as:

hD = j2
(

dv
dp

)
H

, (117)

evaluated at the post-shock (downstream) state, where j2 = (p1 − p0)/(v0 − v1) is the
square of the mass flux across the shock front, v is the specific volume, p is the thermody-
namic pressure, and the subscript H denotes that the derivative is taken along the Hugoniot
curve [16].

Furthermore, the subscripts “0” and “1” refer to the upstream (pre-shock) and down-
stream (post-shock) states, respectively. It has been shown that the necessary condition for
stability of a shock wave is [21,62]:

−1 < hD < 1 + 2M1, (118)

where 0 < M1 < 1 is the downstream Mach number, which is measured in the reference
frame that is moving with the shock. Under this condition, linear perturbations imposed
on the shock front will asymptotically decay in time as t−3/2 [62].

According to the theory, a planar shock wave is unconditionally stable when prop-
agating through an ideal-gas medium [63]. This can be easily evaluated, where h for an
ideal gas EOS yields hD,ig = −1/M2

0, which always falls within the stability range (118).
On the other hand, for non-ideal fluids, these stability conditions (118) can be violated,
which leads to an amplification of the perturbations until the structure of the flow filed is
altered [62]. It has been shown that the violation of the upper limit of the stability condition
(118) corresponds to the splitting of the shock front into two counter-propagating waves [64],
while the violation of the lower limit is associated with the splitting of the shock front into
two waves, travelling in the same direction [65].

Extensive theoretical investigations have been carried out to study the dynamics
of the isolated planar shock waves propagating in an inviscid fluid medium. Namely,
Bates [21,66] derived analytical expressions for the amplitude of the ripples on the shock
front, for initial sinusoidal perturbations. According to [66], two families of solutions
emerge depending on the sign of the following non-dimensional parameter:

Λ = α4 − 4βΓα2 + 4Γ2, (119)

where

α2 =
1−M2

1
M2

1
, β =

1− hD1

2M1
, Γ =

(1 + hD)η

2M1
(120)

are non-dimensional parameters as a function of downstream conditions and η = ρ1/ρ0 is
the compression ratio through the shock. For the case Λ > 0, the solution is given by:

δx(τ)
δx(0)

=
2α2
√

β2 − 1√
Λ

∫ ∞

0
(b sin az cos bz− a cos az sin bz)

J1(α(τ + z)
α(τ + z)

dz, (121)

where δx is the amplitude of the ripple, τ = Ukt/η is the non-dimensional time, U is the
speed of the shock front in the laboratory reference of frame, k is the wave number of the
initial ripple, J1 is the first-kind Bessel function, and the parameters a and b are defined as:
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a =

√
2βΓ− α2

4(β2 − 1)
+

Γ
2(β2 − 1)1/2 , (122)

b =

√
2βΓ− α2

4(β2 − 1)
− Γ

2(β2 − 1)1/2 , (123)

and are real numbers. It is interesting to mention that the ideal-gas EOS belongs to this class
of solutions. Using the asymptotic approximation J1(x) ∼

√
2(πx)−1/2 cos (x− 3π/4) as

x → ∞ and considering Equation (121), one can confirm that the amplitude of the ripple
in a fluid medium with Λ > 0 (such as an ideal gas) will decay in time with the negative
power law τ−3/2 in the long-time limit [66].

However, the situation can be different for fluids with an EOS that can yield a negative
Λ. Finally, for the case Λ < 0, the solution to the initial value problem is [66]:

δx(τ)
δx(0)

=
1
2

exp(−στ) cos aτ −
[

Γ
β2 − 1

− α2

2(β2 − 1)

]
exp(−στ) sin aτ

4aσ

+
α2

4σ
√

β2 − 1

{ ∫ τ

0
exp(−σ(τ − z))

(
cos a(τ − z) +

σ

a
sin a(τ − z)

) J1(αz)
αz

dz

+
∫ ∞

0

(
cos az +

σ

a
sin az

) J1(α(τ + z))
α(τ + z)

dz

}
, (124)

where σ = −ib is a real number. The presence of the exponential function implies a stronger
damping compared to Equation (121). However, the long time asymptotic is still a function
of τ−3/2 in both cases [66].

These theoretical considerations give us the opportunity to also test and validate our
numerical model in the high-speed regime for the exotic shock-wave behavior of non-ideal
gases. Our simulations consist of a long channel with periodic boundary conditions in the
vertical direction. In all cases, the conductivity is set to zero and the viscosity is chosen to
take the lowest possible value as long as the simulations are stable. In order to capture
the shocks and avoid oscillations at the shock front, a third-order WENO scheme based
on a 4-point stencil has been used in the reconstruction process instead of the third-order
Lagrange polynomials in all previous simulations. Three different cases have been selected:
Ideal gas (IG) with M0 = 3, vdW fluid with M0 = 3.033, and M0 = 1.114. All other
parameters are provided in Table 1. In all cases, the shock front is initially perturbed with
a single-mode sinusoidal function. The ratio of the amplitude to the wave length of the
perturbation is 10%. The first two cases fall into the category of stable shocks, where the
perturbations on the shock front are expected to decay in time. However, the last case is an
example of shock-splitting, which will be discussed below.

Let us consider the first two cases. At time t = 0, the shock starts to propagate
while it oscillates as it moves further towards the low-pressure side. We then measure the
oscillation amplitude and compare it to the analytical expressions.

Table 1. Parameters for different cases of the simulation of the shock-stability.

Case EOS M0 ρ0 p0 ν δt Cv/R hD Λ

(1) IG 3.0 1 1 10−3 0.03 1.5 −1/9 4.214
(2) vdW 3.033 ρcr/3 0.66pcr 10−4 0.1 3.0 −0.094 −7.856
(3) vdW 1.114 ρcr/3 0.66pcr 10−6 0.4 80.0 −0.542 1.487

The initial shape of the shock front and its evolution in time is shown in Figure 8 for
the first case, where the oscillation of the front and the damping effect is apparent. Figure 9
shows the bird-eye view of this simulation.
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Time

Figure 8. Evolution of an initially perturbed shock (dashed line) in time in an ideal gas medium with
γ = 5/3 and Ma = 3.0.
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Figure 9. Case(1): Left: Initial perturbation on the shock front. Right: Evolution of the shock-front at time τ = 9.73. Both
plots and their coloring, show reduced density with respect to the pre-shock value ρ/ρ0.

According to the sign of Λ, the magnitude of the ripple for case (1) and case (2) were
compared with analytical solutions (121) and (124), respectively. The results are presented
in Figure 10 and are in good agreement with the theory. It is apparent that our model
captured the two distinct damping effects accurately, with a more pronounced damping
for the non-ideal fluid, as expected.
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Figure 10. Comparison between the theoretical solution and the simulations for the ripple amplitude of an initially perturbed
shock propagating through (left) an ideal gas with M0 = 3.0 (right) a van der Waals (vdW) fluid with M0 = 3.033.
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We now consider the exotic case (3). As mentioned earlier, non-ideal fluids can show
exotic behaviors under certain conditions. Regarding case (3), due to its large specific
heat value, the Hugoniot curve passes through regions, where the relation hD < −1 is
satisfied. As argued in [16], this, together with the fact that the Hugoniot curve has more
than two intersection points with the Rayleigh line (see Figure 11) can cause the shock front
to split into two traveling waves. Figure 12 presents our simulation for this case, where
it is visible that the initial perturbation on the shock front has become unstable, leading
to splitting of the shock. The resulting waves travel in the same direction with different
speeds, as expected. This validates our model also for high-speed flows and shock-waves
in real-gas media.
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Figure 11. Case(3): The plot of hD and the Hugoniot curve as a function of the downstream specific
volume. It is visible that the Hugoniot curve has more than two intersection points with the Rayleigh
line. In addition, as the volume decreases, there are regions where hD < −1.
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Figure 12. Case(3): Left: Initial perturbation on the shock front. Right: Evolution of the shock-front at time τ = 16.3.
The shock wave has split into two travelings waves in the same direction. Both plots and their coloring show reduced
density with respect to the critical value ρ/ρcr.

5. Conclusions

In this paper, we presented a thorough study of our recently proposed model for
compressible non-ideal flows. The model features full Galilean-invariance and the full
energy equation is recovered for a non-ideal fluid, accounting also for two-phase systems
and the presence of interfaces. It has been shown that the model is able to handle flows
which are far into supercritical states. The effect of the inversion line on the T − P diagram
was correctly captured for the van der Waals fluid in a wide range of reduced-pressures,
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from pr = 3 to pr = 15. In addition, owing to the full energy conservation, the latent
heat is already included in the model. This was shown on two different phase-change
benchmarks: The one-dimensional Stefan problem and boiling. As one of the advantages
of the model, we were able to choose relatively large Stefan and Jacob numbers, which are
scarce in the literature. Finally, the stability of an initially perturbed shock front in ideal
gas and in the van der Waals fluid at a Mach number Ma ≈ 3 were studied and compared
to theoretical predictions. It was observed that the damping effect was much stronger in
the nonideal fluid as predicted by the inviscid theory. Beside from the fact that all of these
simulations were implemented by taking only nine discrete velocities in two dimensions,
the results show that the real-gas effects were captured accurately by the proposed model.
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