
computation

Article

Weighted Consensus Segmentations

Halima Saker 1,2 , Rainer Machné 3 , Jörg Fallmann 1 , Douglas B. Murray 4,5, Ahmad M. Shahin 2 and
Peter F. Stadler 1,6,7,8,9,*

����������
�������

Citation: Saker, H.; Machné, R.;

Fallmann, J.; Murray, D.B.; Shahin,

A.M.; Stadler, P.F. Weighted

Consensus Segmentations.

Computation 2021, 9, 17. https://doi.

org/10.3390/computation9020017

Academic Editor: Shizuka Uchida

Received: 31 December 2020

Accepted: 27 January 2021

Published: 5 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics,
Universität Leipzig, D-04107 Leipzig, Germany; halima@bioinf.uni-leipzig.de (H.S.);
fall@bioinf.uni-leipzig.de (J.F.)

2 Doctoral School of Science and Technology, Lebanese University, Tripoli, Lebanon; ashahin@ul.edu.lb
3 Institute for Synthetic Microbiology and Institute for Quantitative and Theoretical Biology, Heinrich Heine

University, D-40225 Düsseldorf, Germany; machne@hhu.de
4 Lakeland University Japan Shinjuku-ku, Tokyo 160-0022, Japan; mabawsa@gmail.com
5 University of Maryland Global Campus—Asia, Yokota Air Base, Fussa-shi, Tokyo 197-0001, Japan
6 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for

Scalable Data Services and Solutions, Leipzig Research Center for Civilization Diseases, and Leipzig Research
Center for Civilization Diseases (LIFE), Leipzig University, D-04103 Leipzig, Germany

7 Institute for Theoretical Chemistry, University of Vienna, A-1090 Wien, Austria
8 Facultad de Ciencias, Universidad National de Colombia, Bogotá CO-111321, Colombia
9 Santa Fe Institute, Santa Fe, NM 87501, USA
* Correspondence: studla@bioinf.uni-leipzig.de

Abstract: The problem of segmenting linearly ordered data is frequently encountered in time-series
analysis, computational biology, and natural language processing. Segmentations obtained indepen-
dently from replicate data sets or from the same data with different methods or parameter settings
pose the problem of computing an aggregate or consensus segmentation. This SEGMENTATION

AGGREGATION problem amounts to finding a segmentation that minimizes the sum of distances
to the input segmentations. It is again a segmentation problem and can be solved by dynamic
programming. The aim of this contribution is (1) to gain a better mathematical understanding of the
SEGMENTATION AGGREGATION problem and its solutions and (2) to demonstrate that consensus
segmentations have useful applications. Extending previously known results we show that for a
large class of distance functions only breakpoints present in at least one input segmentation appear
in the consensus segmentation. Furthermore, we derive a bound on the size of consensus segments.
As show-case applications, we investigate a yeast transcriptome and show that consensus segments
provide a robust means of identifying transcriptomic units. This approach is particularly suited
for dense transcriptomes with polycistronic transcripts, operons, or a lack of separation between
transcripts. As a second application, we demonstrate that consensus segmentations can be used to
robustly identify growth regimes from sets of replicate growth curves.

Keywords: segmentation aggregation; consensus segmentation; boundedly convex functions; dy-
namic programming; yeast transcriptome; microbial growth curves

1. Introduction

One-dimensional segmentation problems naturally appear in time series analysis
across diverse application areas (often referred to as change point or jump point detec-
tion in this context). In computational biology, 1D-segmentation problems arise in the
analysis of micro-array and high-throughput DNA or RNA sequencing data. Copy num-
ber variations in genomes, for example, can be detected by segmenting array-CGH or
DNA coverage data into piece-wise constant segments; see Reference [1] for a review. In
epigenomics, recurrent patterns of histone modifications define genomic intervals that can
be associated with functional units including promoters, enhancers, or gene bodies, see,
e.g., Reference [2] and the references therein. The identification of transcriptional units is

Computation 2021, 9, 17. https://doi.org/10.3390/computation9020017 https://www.mdpi.com/journal/computation

https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-3013-9340
https://orcid.org/0000-0002-1274-5099
https://orcid.org/0000-0002-4573-9939
https://orcid.org/0000-0003-4704-3035
https://orcid.org/0000-0002-5016-5191
https://doi.org/10.3390/computation9020017
https://doi.org/10.3390/computation9020017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computation9020017
https://www.mdpi.com/journal/computation
https://www.mdpi.com/2079-3197/9/2/17?type=check_update&version=1

Computation 2021, 9, 17 2 of 20

also a segmentation problem, consisting in the distinction of expressed and non-expressed
loci [3,4] or operons [5] or, more generally, in the distinction of adjacent or even overlapping
transcripts without the benefit of non-expressed spacers between them. The latter task
is particularly relevant in organisms with “compact” genomes, such as bacteria [5] or
yeast [6,7], where transcribed loci are rarely separated non-expressed regions. Boundaries
between transcriptional units are detectable by differences in RNA levels [6], see, e.g., the
SRG1 ncRNA in Figure 1. A plethora of segmentation algorithms for genomic features,
as well as time series data, have become available, reviewed and benchmarked, e.g., in
Reference [8–10].

The boundaries between segments typically are not clearly visible in individual data
tracks. Such limitations can often be alleviated by aggregating multiple experiments or
measurements. In the yeast RNA-seq data shown in Figure 1, for instance, transcriptome
samples at different time points of the respiratory cycle are aggregated to produce a more
informative signal than just the RNA expression level at a single time point. Still, any
particular choice of parameters (here the choice of the similarity measure for the temporal
coverage profiles at adjacent nucleotides), produce both false positive and false negative
segment boundaries.

coding

ncRNA

AIM9 SER3

R
N

A
 e

x
p

re
s
s
io

n
a

lt
e

rn
a

ti
v
e

s
e

g
m

e
n

ta
ti
o

n
s

SRG1

chr V

321,000 322,000 323,000 324,000

Figure 1. Segmentation of RNA expression patterns. Top: RNA expression in 24 samples taken every 4 min from
Saccharomyces cerevisae strain IFO 0233 (shown as color scale, with the total of all experiments shown above). The sequencing
data are strand-specific, only the plus strand of about 5000 nt on chromosome V are shown. Middle: nine different
segmentations computed with segmenTier using different parameter settings; see Reference [11] for details on data and
segmentations. Below: annotated coding and non-coding yeast genes. The rightmost block of short segments is a candidate
for an unannotated ncRNA located anti-sense to the much longer protein-coding gene Utp7p on the minus strand. The data
are the same as those in Figure 3 of Reference [11].

Figure 1 suggests that an improvement could be achieved by aggregating the different
segmentations to a single consensus. In a similar vein, Reference [4] employed a simple
heuristic segmentation to detect candidate loci as intervals that are scored by a statistical
model for each RNA-seq experiment, followed by a problem-specific greedy heuristic to
determine consensus interval boundaries for expressed ncRNA loci. The segmentation
method for bacterial RNA-seq data in Reference [5] computes optimal segmentations with
different numbers K of segments and uses a voting procedure to obtain a consensus over

Computation 2021, 9, 17 3 of 20

different values of K. These examples beg the question whether there is a more principled
way to aggregated segmentations in a single consensus segmentation.

This question also appears in a much more general context. Modern *omics studies
often report their results in the form of genome browser tracks, i.e., as segmentation
of the reference genome into intervals. The comparison and consolidation of such data
naturally asks for a consensus or reference. This is particularly the case for annotation based
on epigenomic or transcriptomic data. Here, principled, efficient methods, to compare
annotations beyond quantifying overlaps would be highly desirable to avoid a complete
reanalysis of the underlying raw data. In contrast to genome browser tracks, raw data
typically require extensive processing and are by no means straightforward to access in all
cases. Despite the obvious potential usefulness of consensus segmentations, the literature
on systematic comparisons of segmentations is surprisingly sparse. Two natural ways to
approach the problem have been considered:

(i) Focusing on the breakpoints between segments, one can treat them as signal. Signifi-
cant (consensus) breakpoints are then detectable as unexpected accumulations across
multiple data sets by the C-KS algorithm [12]. Somewhat more generally, this can be
seen as clustering problem for breakpoints [13].

(ii) Segmentations of linearly ordered data form partitions of an interval. (Dis)similarity
measures for partitions, such as the Rand [14], Fowlkes-Mallows [15], Jaccard [16],
and Hubert-Arabie [17] indices, or the Mirkin [18], and Van Dongen [19] metrics, are
also applicable to the special case of segmentations. The MEDIAN PARTITION prob-
lem, also known as Consensus Clustering Problem, consists in finding a partition
that is as close as possible to a given collection w.r.t. to one of these (dis)similarity
measures [20,21]. MEDIAN PARTITION is NP-complete [22,23]. It is this second ap-
proach that we pursue further in this contribution.

The SEGMENTATION AGGREGATION problem [24] is the specialization to partitions of
a linearly ordered set, such as a time series or genomic sequence: Given a set of m segmen-
tations S1, S2, . . . , Sm on an interval, and a distance function D between segmentations,
the task is to find a segmentation C that minimizes the distance sum

f (C) :=
m

∑
q=1

D(C, Sq) . (1)

We assume that D(. , .) is a dissimilarity, i.e., that (i) D(S, S′) ≥ 0, and (ii) D(S, S′) = 0
if S = S′. In most cases, D(. , .) will be a metric. However, neither symmetry nor
the triangle inequality are necessary. It is shown in Reference [24] that SEGMENTATION

AGGREGATION, in contrast to MEDIAN PARTITION in the general case, can be solved
exactly by dynamic programming for several interesting distance measures, including the
disagreement or Mirkin metric and the information distance. Mailă [25] showed, using
an axiomatic approach based on certain additivity conditions in the lattice of partitions,
that the “variation of information” [26], i.e., the information distance [24] serves as the
essentially unique natural distance between partitions. Nevertheless we consider here a
much broader class of dissimilarity measures. Despite its appealing features, namely the
almost complete absence of model assumptions and the fact that no detailed knowledge on
the provenance of the input segmentations is required, SEGMENTATION AGGREGATION

has rarely been used in practical data analysis. Here, we demonstrate that it can be a useful
and efficient approach.

A given set of input data is frequently subject to biases, such as an uneven phyloge-
netic distribution of taxa in comparative genomics or unbalanced distributions of samples
between treatment groups. For the purpose of consensus formation, it is usually desirable
to retain all data. As a remedy for sampling biases, a plethora of weighting schemes have
been proposed to correct for biases by giving larger weights to underrepresented and
smaller weights to over-represented data; see Reference [27] for a comparison of different
approaches. In the context of segmentations of genomic features or time series, the confi-

Computation 2021, 9, 17 4 of 20

dence in individual segmentations Sq may be different, e.g., due to different noise levels
in individual data tracks. It may also be desirable to treat biological replicates different
from technical replicates. Naturally, such differences can be expressed by introducing
segmentation-specific weights wq. We shall see below that such weights can be introduced
in SEGMENTATION AGGREGATION in a straightforward manner.

In this contribution, we investigate the weighted version of the Segmentation Aggrega-
tion problem with the aim of getting insights into the properties of consensus segmentations.
In particular, we generalize previous results of the positioning of consensus break points
and we derive an upper bound on length of consensus segments for a large class of distance
functions. We then consider two very different applications of consensus segmentations:
the identification of transcriptional units, using yeast transcriptomes as a show-case ex-
ample, and the segmentation of microbial growth curves. We close with a brief discussion
of several open problems both regarding the theory behind consensus segmentations and
their practical applications.

2. Theory
2.1. Dynamic Programming Algorithm

The WEIGHTED SEGMENTATION AGGREGATION problem is a moderate generalization
of the unweighted version considered in Reference [24]. Given a set {Sq|1 ≤ q ≤ m} of in-
put segmentations and corresponding weights wq > 0 that quantify the relative importance
of the contributing segmentations Sq, the task is to minimize the objective function

f (C) :=
m

∑
q=1

wqD(C, Sq) , (2)

i.e., the weighted total dissimilarity of the unknown consensus segmentation C. Without
loosing generality we may assume that ∑m

q=1 wq = 1.
Following Reference [24], we consider a distance measure D that can be expressed in

terms of the common refinement S′ ∧ S′′ := {A ∩ B|A ∈ S′, B ∈ S′′} of two segmentations.
S′ ∧ S′′ consists of all intersections of the segments of S′ and S′′. The common refinement
is also known as the union segmentation since its set of segment boundaries is exactly the
union of the boundaries of S′ and S′′. In particular, therefore, S ∧ S = S. Now, define the
potential of a segmentation S as

E(S) = ∑
A∈S

e(A) , (3)

where e is a potential function evaluating the individual segments. This gives rise to a class
of distances between segmentations defined by

D(S′, S′′) = E(S′) + E(S′′)− 2E(S′ ∧ S′′). (4)

Substituting for D in Equation (2) yields

f (C) =
m

∑
q=1

wqE(C) +
m

∑
q=1

wqE(Sq)− 2
m

∑
q=1

wqE(C ∧ Sq), (5)

where the middle term depends only on the input. It is, therefore, a constant that can
be dropped for the purpose of optimization. Making use of the fact that the weights are
normalized, we obtain the objective function

f̃ (C) := f (C)−
m

∑
q=1

wqE(Sq) = E(C)− 2
m

∑
q=1

wqE(C ∧ Sq). (6)

Computation 2021, 9, 17 5 of 20

Now, we explicitly consider C as a sequence of intervals A. Using the additivity of the
potential E, we obtain

f̃ (C) = ∑
A∈C

e(A)− 2
m

∑
q=1

wq ∑
B∈Sq

B∩A 6=∅

e(A ∩ B)

 =: ∑
A∈C

∆(A). (7)

The additive form of Equation (7) as a sum of the contributions ∆(A) for the consensus
segments C makes it possible to minimize f̃ (C) by dynamic programming [24]. To this end,
consider the subset C|k of segmentations that have a segment boundary at k, i.e. , position k
is the endpoint of a segment. For a given segmentation C ∈ C|k, denote by f̃ (C|k) the sum
of the contributions ∆(A) with max A ≤ k. Write Fk := minC∈C|k f̃ (C|k) for the minimal

value of f̃ (C|k). Since k is a segment boundary, the last segment A before k is necessarily
of the form [j + 1, k], where j < k denotes the segment boundary immediately preceding k.
Using this notation, we can compute

Fk = min
C∈C|k

f̃ (C|k) = min
j<k

min
C∈C|j

(
∆([j + 1, k]) + f̃ (C|j)

)
= min

j<k

(
∆([j + 1, k]) + min

C∈C|j
f̃ (C|j)

)
= min

j<k

(
∆([j + 1, k]) + Fj

)
. (8)

Thus, we obtain a simple dynamic programming recursion that has the same form
for the weighted and unweighted consensus segmentation; also see [24]. The weights
appear only in the scoring function ∆. We note, furthermore, that the recursion (8) is the
same as for segmentation problems in general [28]. It appears, e.g., in Reference [29] for
financial time series, in Reference [30] in context of text segmentation, in Reference [31] for
the analysis of array CGH data, and in Reference [5,7,32] for the identification of transcripts
in tiling array and RNA-seq data. It is discussed in the setting of very general similarity
measures in Reference [11]. As we shall see below, the effort to compute Fk is dominated
by the effort to compute the score ∆[i, j].

Before we proceed, we briefly consider a general condition on the form of the potential
function e(.). Denote by D the discrete segmentation in which every interval is a single
point and by J the indiscrete segmentation consisting of a single interval. A function e

is subadditive if e(A) ≤ e(A1) + e(A2) for every A and every subdivision A1∪̇A2 = A of
A. This inequality is strict for at least one interval if and only if e([1, n]) < ∑n

i=1 e([i, i]).
Comparing D and J, we observe that, in this case, D(D, J) = e([1, n]) − ∑n

i=1[i, i] < 0,
violating that D is a proper distance function. For the limiting case of an additive potential,
e(A) = e(A1) + e(A2) for all intervals and their subdivisions, we obtain D(S, S′) = 0 for
any two segmentations S and S′. Thus, only potentials that satisfy e(A) > e(A1)+ e(A2) for
at least some A1∪̇A2 = A are of interest. A function is superadditive if e(A) ≥ e(A1) + e(A2)
for all A1∪̇A2 = A. One easily checks that D is a metric whenever e is superadditive. This
condition is not necessary, however. For example, the negentropy defined in Equation (17)
below, is not superadditive.

2.2. Efficient Computation of the Segment Scores ∆[i, j]

The direct evaluation of ∆([i, k]) according to its definition, Equation (8), for given i
and k, requires O(n m) operations because this entails the summation over O(n) segments
for each of the m input segmentations. This results in an impractical total effort of O(n3 m)
compared to the quadratic cost of the dynamic programming recursion itself. It is of
considerable practical interest, therefore, to find a more efficient way of computing the
scoring function. The key idea is to consider, for a given position i, two slightly different
partial sums:

Computation 2021, 9, 17 6 of 20

δ<(i) :=
m

∑
q=1

wq ∑
B∈Sq

max B≤i

e(B) and δ≤(i) :=
m

∑
q=1

wq ∑
B∈Sq

min B≤i

e(B). (9)

For a given boundary i in C, the first term sums all intervals in Sq that do not extend
beyond i, while the second sum also includes those that begin before or at i and extend
beyond i. Thus, δ<(k)− δ≤(j) captures all segments of the Sq that are contained within
[j + 1, k] with one important exception: Segments, such as B in Figure 2, that contain
[j + 1, k] contribute to δ≤(j) but not to δ<(k). Such overlapping segments will be taken
care of in a correction term discussed below. Using the notation B≤i := {b ∈ B|b ≤ i} and
B≥i := {b ∈ B|b ≥ i} we, furthermore, define terms

δ∩<(i) :=
m

∑
q=1

wq ∑
B∈Sq

i∈B,i 6=max B

e(B≤i) and δ∩>(i) :=
m

∑
q=1

wq ∑
B∈Sq

i∈B,i 6=min B

e(B≥i), (10)

where each sum contains at most a single term, namely the interval B ∈ Sq that extends
across i. Note that intervals that begin or end in position i do not contribute to δ∩>(i) or
δ∩<(i), respectively. The correction terms correspond to the parts of segments that are
non-trivially intersected by [j + 1, k], shown in magenta and cyan, resp., in Figure 2. Thus
δ<(k)− δ≤(j) + δ∩<(k) + δ∩>(j + 1) covers exactly all the intervals contributing to [j + 1, k] –
with the exception of segments B ∈ Sq that begin at minB < j + 1 and end at max B > k
as mentioned above. For such segments, instead of the contributions for B≤k and B≥j+1, a
single contribution for the interval [j + 1, k] ∩ B = [j + 1, k] has to be used. In addition, the
contribution for B that is erroneously subtracted with δ≤(j), needs to be restored. Collecting
these contributions, we obtain the following correction term for intervals that span across
the interval [i′, i′′] of interest:

δ∗(i′, i′′) :=
m

∑
q=1

wq ∑
B∈Sq

i′ ,i′′∈B
min B<i′≤i′′<max B

(
e(B) + e([i′, i′′])− e(B≤i′′)− e(B≥i′)

)
. (11)

For the interval [j + 1, k], the correction term δ∗(j + 1, k− 1) defined in Equation (11)
can be understood as follows: the first term accounts for the correct contribution of B ∩
[j + 1, k] = [j + 1, k], the second term compensates for the error introduced by δ≤(j), and
the remaining two terms remove the superfluous contributions introduced by δ∩<(k) and
δ∩>(j + 1). We summarize this derivation in the following form:

Theorem 1. The potential-dependent segment scores defined in Equation (7) can be expressed as

∆([j + 1, k]) = e([j + 1, k])− 2
(
δ<(k)− δ≤(j) + δ∩<(k) + δ∩>(j + 1) + δ∗(j + 1, k)

)
. (12)

The only term that depends on both j + 1 and k is the correction of long input intervals
δ∗(j + 1, k). The restricted sum over the B ∈ Sq in Equation (11) contains at most one
segment for each input segmentation and, thus, can be evaluated in O(m) time for a given
interval. Furthermore, the sum is certainly empty whenever [j + 1, k] is larger than the
largest segment in any of the Sq; this can be used to speed up the evaluation from O(m)
to O(1) if the segment lengths in the input are bounded by a constant, except for the
short intervals.

Computation 2021, 9, 17 7 of 20

i’ i"

B

Figure 2. Definition of auxiliary variables. The input segments contributing to δ<(i′′) are all those to the left of the green
line (i.e., the ones shown in light and dark gray. δ≤(i′) are to the left of the blue line, i.e, those shown in light gray. The large
interval B is included in δ≤(i′) but not in δ<(i′′). The correction terms δ∩>(i′) and δ∩<(i′′) comprise the cyan and magenta
parts, respectively. The correction term δ∗(i′, i′′), finally adds takes care of the interval B.

Lemma 1. The arrays of correction terms δ<, δ≤, δ∩<, and δ∩> can be computed in O(nm) total time.

Proof. The values of δ<(i) and δ≤(i) can be computed iteratively: we obtain δ<(i) by
adding the contribution wqe(Bq) to δ<(i− 1) whenever i = max Bq for the segmentation
Sq. Similarly, δ≤(i) is obtained by adding wqe(Bq) to δ≤(i− 1) if i = min Bq. For each i,
therefore, we require O(m) operations. The sums in Equation (10) comprise at most one
segment of Sq for every q. All terms can be computed in constant time using auxiliary arrays
that return, for each i and q, the values of min B and max B for i ∈ B and B ∈ Sq. These
auxiliary arrays in turn can obviously be constructed in O(nm) time for the breakpoint list
of the input segmentations.

It, therefore, makes sense to precompute the arrays δ<, δ≤, δ∩<, and δ∩<(k).

Corollary 1. The score ∆[j + 1, k] can be computed in O(m) time with O(nm) preprocessing cost
to compute the arrays δ<, δ≤, δ∩<, and δ∩>.

It is worth noting, finally, that there is nothing to be gained by storing the score values
∆[j + 1, k] since each entry is used only once in the recursion.

2.3. Boundaries of Consensus Segments

For a function g on Z, we define the local curvature at x as ∂2
xg(x) := g(x + 1) + g(x−

1)− 2g(x). A function g is (strictly) convex at x if ∂2
xg(x) > 0. This condition immediately

implies that x is not a local maximum of g since at least one of g(x + 1) or g(x− 1) is larger
than g(x). Correspondingly, g is (strictly) concave in x if ∂2

xg(x) < 0, whence x is not a
local minimum.

Definition 1. The potential e is boundedly convex if satisfied for all intervals p′ ≤ p ≤ x ≤
q ≤ q′

∂2
xe([x, q]) ≥ ∂2

xe([x, q′]) > 0 and ∂2
xe([p, x]) ≥ ∂2

xe([p
′, x]) > 0 . (13)

For boundedly convex e, the curvature in non-increasing as the intervals become
larger. In particular, suppose e([p, q]) depends only on the length z := q− p + 1 of the
interval and is a smooth function, then e′′(z) > 0 and e′′′(z) ≤ 0 for all z > 0 implies e is
boundedly convex.

Theorem 2. Let {S1, S1, . . . , Sm} be a set of segmentations with union segmentation Ŝ and
suppose e is boundedly convex. Then, the consensus C is refined by the union segmentation Ŝ.

Computation 2021, 9, 17 8 of 20

Proof. Following Reference [24,33], we assume, for contradiction, that the optimal consen-
sus C has a segment boundary ̂ that is not contained in the union segmentation Ŝ. We aim
to show that moving ̂ to some close-by position x will reduce the cost f (C). We focus on a
fixed input segmentation Sq and denote by Ŝq := Sq ∧ C. Denote by p− 1 and q the first
boundaries to the left and to the right of ̂ in C. Analogously, p̂ and q̂ are the first boundary
to the left and to the right of ̂ in Ŝq, respectively. Thus, C contains the two segments [p, ĵ]
and [̂ + 1, q]. Since every segment of Ŝq ∧ C is a subset of a unique segment of C, we have
[p̂, q̂] ⊆ [p, q].

We proceed by evaluating how D(Sq, C) = E(Sq) + E(C)− 2E(Sq ∧ C) varies when
the boundary ̂ is perturbed. Let x be the perturbed boundary position. Since only E(C)
and 2E(Sq ∧ C) depends on x and all boundaries except ̂ are fixed, it suffices to focus on
the intervals [p, q] and [p̂, q̂], respectively. Collecting all constant terms in D0, we obtain

D(x) = D0 + e([p, x]) + e([x + 1, q])− 2e([p̂, x])− 2e([x + 1, q̂]). (14)

Since e is boundedly convex, we have 0 < ∂2
xe([p, x]) ≤ ∂2

xe([p̂, x]) and 0 < ∂2
xe([x +

1, q]) ≤ ∂2
xe([x + 1, q̂]), whence ∂2

xD(x) < −∂2
xe([p̂, x])− ∂2

xe([x + 1, q̂]) < 0. Thus, D(x) is
concave at x for every Sq and, thus, also for any non-negative contribution to the linear
combination of input segmentations. Thus, f (C) as a function of the moving boundary x
cannot have a minimum in the interior of the interval [p̂, q̂], contradicting the assumption
that ̂ is a boundary in the optimal consensus C.

Theorem 2 establishes a very useful property: All segment boundaries of the consensus
are contained in the union segmentation. This property was observed for disagreement
distance and information distance (see below) in the unweighted setting [24,33]. Here, we
show it holds for a broader class of distance functions and arbitrary weighting schemes.
The techniques used in the proof of Theorem 2 do not seem to generalize to potentials
with increasing curvature. Numerical data, however, indicate that the union segmentation
refines the consensus for a much larger class of potential functions.

From an algorithmic point of view, it implies that it suffices to compute the Fk for
those values of k where segment boundaries are in the union segmentation of the inputs
Ŝ. Correspondingly, we need to store the auxiliary variables only for the intervals of the
union segmentation, instead of each i. That is, the recursion (8) reduced to

Fjk = min
i<k

ji∈∂Ŝ

(
∆([ji + 1, jk]) + Fji

)
, (15)

where ji ∈ ∂Ŝ denotes the i-th segment boundary in the union segmentation Ŝ.
Recursion (15) also speeds up the computation of the scoring function ∆, which now

is also needed only for the segment boundaries. First, note that we still obtain δ<(ik) from
δ<(ik−1) by adding the contributions e(B) for the intervals ending at the boundary ik to
δ<(ik−1) since by definition ik−1 and ik are consecutive breakpoints. Analogously, δ>(ik)
is obtained by adding e(B) for all blocks beginning at ik−1 to δ>(ik−1). The terms δ∩>(ik)
and δ∩<(ik) remain the same. The correction term δ∗ could be stored for all pairs of the
boundaries in Ŝ. Alternatively, it suffices to store the m boundaries at which the intervals
crossing ik start and to keep track of the correct correction term directly in recursion (15).
Equation (15), thus, can be evaluated in O(s2), where s is the number of breakpoints in the
union segmentation.

2.4. Length Bounds on Consensus Segments

It is reasonable to expect that a consensus segmentation cannot be a lot coarser than
the individual input segmentations. To see that this is indeed the case, we start with a
technical observation.

Computation 2021, 9, 17 9 of 20

Lemma 2. Consider intervals A = [i, k], A′ = [i, x] and A′′ = [x + 1, k]. Then ∆(A) >
∆(A′) + ∆(A′′) if for every Sq there is B ∈ Sq with x ∈ B such that

e(A)−
(
e(A′) + e(A′′)

)
> 2

[
e(B)−

(
e(B ∩ A′) + e(B ∩ A′′)

)]
(16)

Proof. Equation (7) implicitly defined ∆(A) as the term in parentheses, which in turn is
the wq-weighted sum of contributions for each Sq. Consider B ∈ Sq with B ⊂ A. The
contribution dq(A) of Sq to ∆(A) is

dq(A) = e(A)− 2 ∑
B′∈Sq

e(A ∩ B′)

= e(A)− 2

 ∑
B′∈Sq :

max B′<max B

e(A ∩ B′) + ∑
B′∈Sq

max B′>maxB

e(A ∩ B′)

− 2e(B).

Now, consider an alternative segmentation in which A is subdivided into A′∪̇A′′ at
some position x inside B. Then, A contributes

dq(A′) + dq(A′′) = e(A′) + e(A′′)− 2
(
e(A′ ∩ B) + e(A′′ ∩ B)

)
−2

 ∑
B′∈Sq :

max B′<maxB

e(A′ ∩ B′) + ∑
B′∈Sq

max B′>maxB

e(A′′ ∩ B′)

.

The terms corresponding to the segments B′ 6= B that intersect A are the same as
before since either B′ ∩ A = B′ ∩ A′ or B′ ∩ A = B′ ∩ A′′, depending on whether B′

comes before or after B in Sq. Thus, we have dq(A) > dq(A′) + dq(A′) if and only if
Equation (16) is satisfied. Since ∆(A), ∆(A′), and ∆(A′′) are convex linear combinations of
the dq(A), dq(A′), and dq(A′′), respectively, it is sufficient for ∆(A) > ∆(A′) + ∆(A′′) that
dq(A) > dq(A′) + dq(A′) holds for all Sq.

In other words, if A satisfies the condition of Lemma 2, then f̃ (C) strictly decreases
when A is subdivided into A′ and A′′. Thus, we conclude:

Corollary 2. An interval A satisfying the conditions specified in Lemma 2 cannot appear in a
consensus segmentation.

Our goal is now to show that sufficiently long intervals A always satisfy the conditions
of Lemma 2 and, thus, can never be part of the consensus segmentation. Here, we need
that e is superadditive, i.e., e(A) > e(A1) + e(A2) for all A = A1∪̇A2 and A1, A2 6= ∅. This
is the case particularly for the polynomial potentials. It fails for the negentropy potential,
Equation (17), however, because this function is not monotonically increasing with the
segment length |A|.

Theorem 3. Let e be a superadditive potential. Let B be the longest segment in the input seg-
mentations and denote by `∗ the length of the shortest interval A such that e(A) − 2e(A′) >
2e(B)− 2 minB′ ,B′′ :B′∪B′′=B(e(B′) + e(B′′)), where |A′| = d|A|/2e and |B′| = b|B|/2c. Then
every segment of the consensus segmentation is shorter than L∗ := max(2|B|, `∗).

Proof. If e is superadditive, the l.h.s. of Equation (16) is maximal if |A′| = |A′′| (for even
|A|) or |A′| = |A′′| ± 1 for odd |A|, i.e., we assume that x is located in the middle of A.
In order to ensure that segments containing x are completely contained in A we need
|A| ≥ 2|B|. If this condition is satisfied, Equation (16) applies. We obtain a sufficient
condition by replacing the r.h.s. with the maximal possible contribution of the subdivided
interval B. By superadditivity, this term monotonically increases with the size of B. The

Computation 2021, 9, 17 10 of 20

assumption that x equally divides A fixed the l.h.s. of the inequality. Since e is strictly
superadditive e(A)− 2e(A′) is strictly monotonically increasing with |A|, thus, there is a
unique smallest value `∗ of |A| unless e(A)− 2e(A′) ≤ 2 for all A, in which case no bound
`∗ exists.

Corollary 3. The consensus segmentation C with superadditive potential e for m input segmenta-
tions with length bound L∗ as specified in Theorem 3 can be computed in O(nmL∗) time.

Proof. We observe that for each k, only values of j between k− 2`∗ and k− 1 appear in
Equation (8) since longer segments by Theorem 3 cannot be part of an optimal consensus
segmentation. The corollary now follows immediately from Corollary 1.

The length bound on consensus segments, thus, leads to a reduction of the computa-
tional efforts. Although `∗ in Theorem 3 may be inconvenient to compute for some choices
of the potential e, we shall see below that a simple, uniform bound can be obtained for an
interesting class of potentials.

2.5. Special Potential Functions

Let us now consider plausible distance functions. The disagreement distance between
segmentation was introduced in Reference [24] using the potential e(A) := (|A|/n)2/2. A
natural generalization is e(A) = (|A|/n)1+α/(1 + α) for 0 < α ≤ 1. We note that a linear
potential e(|A|) = |A|/n, i.e., α = 0, yields a constant value of f̃ (C) because the sum of all
segment lengths adds up to n; thus, E(S) = 1 is independent of the segmentation S.

Recall that the entropy of a discrete distribution is defined as H = −∑i pi ln pi.
Given a segmentation S, we consider the probabilities pi of randomly picking a point
from a segment, i.e., pi = |Ai|/n is the relative length of a segment Ai ∈ S, where n
denotes the total length of the segmented genome or time series. The information distance
is the symmetrized conditional entropy, which can also be computed as D(S′, S′′) =
2H(S′ ∧ S′′)− H(S′)− H(S′′) [24,34]. It corresponds to the potential function

e(A) := (|A|/n) ln(|A|/n), (17)

given by the negative of the entropy (negentropy) contribution of the interval A.
It has been shown in Reference [24,33] that the union segmentation Ŝ refines the un-

weighted consensus segmentation for both the disagreement distance and the information
distance. This result generalizes to the weighted case and the α-disagreement distances
with 0 < α ≤ 1.

Corollary 4. The consensus segmentation C is refined by the union segmentation Ŝ for the
disagreement distance, its α generalization with 0 < α ≤ 1, as well as the information distance.

Proof. It suffices to show that the potentials e(z) are boundedly convex. For the dis-
agreement distance, we have e(z) = z2/2, and we have e′′(z) = 1 and e′′′(z) = 0;
for e(z) = z1+α/(1 − α), we have e′′(z) = αzα−1 > 0 and e′′′(z) = α(α − 1)zα−2 < 0
for 0 < α ≤ 1. For the negentropy, e(z) = z ln z, we have e′′(z) = 1/z > 0 and
e′′′(z) = −1/z2 < 0, where z := (|A|/n). The scaling by 1/n obviously does not af-
fect the signs.

Is does not seem possible to generalize the result to potentials that grow faster than
quadratically.

Let us finally consider the consequence of Theorem 3. Reusing the convexity results
above we can replace 2 minB′ ,B′′ :B′∪B′′=B(e(B′) + e(B′′)) by 4e(B′) where |B′| = b|B|/2c.
A short computation then shows that the inequality in Theorem 3 is satisfied for |A| >

1+α
√

2|B|. Since 1+α
√

2 ≤ 2, we have

Computation 2021, 9, 17 11 of 20

Corollary 5. The consensus segmentation C of a collection of segmentations Sq with respect to the
α-disagreement potentials contains no segment longer than twice the length of the longest input segment.

This allows us immediately to limit the range of the indices in recursion (8) to
ji > jk − 2 max |B|.

2.6. Generalization: Symmetrized Boundary Mover’s Distance

Equation (7) highlights the fact that the cost function f̃ (C) measures, for each segment
A ∈ C, how well A conforms to the input segmentations. As noted above, the additive
structure of Equation (7) is sufficient to enable minimization by dynamic programming
for arbitrary choices of ∆. If we retain the idea of weighted contributions for each input
segmentation, we may write ∆(A) = ∑q wq∆(A|Sq), where ∆(A|Sq) measures how well
the segment A “fits” into the segmentation Sq. As a minimal requirement, for any given
interval A, the score ∆(A|Sq) must attain its minimum value if the interval A is a segment
in Sq. Since two segmentations in general do not have segments or breakpoints in common,
measures are required that are more fine-grained than the distinction between identical
and distinct segments or breakpoints. ∆(A|Sq), thus, are similar to a measure of overlap,
between A and the segments of Sq that are covered by A. Clearly, the potential-based
measures can be understood in this manner.

An interesting class of dissimilarities utilizes the distance between break points instead
of the lengths of intersections between segments. For a segmentation S with segments Si,
i = 1, . . . , n, we define si = max Si and set s0 = 0, i.e., the segments are Si = [si−1 + 1, si] =:
(si−1..si). By slight abuse of notation, we write S = (s0, s1, . . . , sm), i.e., we now specify
a segmentation in terms of its breakpoints. Moreover, we write s ∈ S to mean that s
represents a breakpoint in the segmentation S.

The “boundary movers distance” was introduced in Reference [24,33] as

DB(S|C) := ∑
s∈S

min
c∈C

d(s, c) , (18)

where d(. , .) is some distance function between the positions s and c on [1, . . . , n]. The
dissimilarity measure DB is not symmetric and satisfies DB(S|C) = 0 whenever C is a
refinement of S. The segmentation aggregation problem that minimizes ∑q wqDB(Sq|C),
therefore, is solved by the union segmentation C = Ŝ, while ∑q wqDB(C|Sq|) is minimized
by the indiscrete segmentation {[1, n]}. As noted in Reference [24,33], these measures, thus,
are only useful with additional constraints on the number or size of allowed segments.

The symmetrized version of DB, however, has attractive properties for our purposes,
as we shall see: Clearly, minc∈C d(s, c) = min{d(s, c′), d(s, c′′)}, where c′ and c′′ delimit the
segment of C within which s resides. If s = c′ or s = c′′, the contribution vanishes; hence,
we can write

DB(S|C) := ∑
(c′ ...c′′)∈C

∑
s∈(c′ ...c′′)

min{d(s, c′), d(s, c′′)}. (19)

This term individually penalizes a segment (c′, c′′) of C for containing boundary points
of S in its interior. On the other hand, we can rewrite DB(C|S) in terms of segments of C by
simply splitting the contribution of each boundary between the two adjacent segments:

DB(C|S) = ∑
(c′ ,c′′)∈C

1
2

(
min
s∈S

d(s, c′) + min
s∈S

d(s, c′′)
)

. (20)

Here, we have used that the lower bounds of the first segments and the upper bounds
of the last segments necessarily coincide (they are the boundary of the interval on which our
segmentations live); therefore, they do not contribute to the distance. Again, the minima
are only taken over two alternative breakpoints of S for each given value of c′ or c′′, namely
those delimiting the segments of S harboring the breakpoints c′ and c′′ of the consensus

Computation 2021, 9, 17 12 of 20

segment. It is not difficult to see that D(S, C) = DB(S|C) + DB(C|S) vanishes only if
S = C. Furthermore, DB(Sq|C) + DB(C|Sq) can be written as a sum of contributions

∆q((c′...c′′)) := ∑
s∈Sq

s∈(c′ ...c′′)

min{d(s, c′), d(s, c′′)}+ 1
2

min
s∈Sq

d(s, c′) +
1
2

min
s∈Sq

d(s, c′′) (21)

for each of the segments (c′, c′′) ∈ C and each segment of the input segmentations Sq.
Clearly, ∆((c′...c′′)) = ∑q wq∆q((c′...c′′)) depends only on the input segmentations Sq
and the boundary breakpoints c′ and c′′, i.e., an individual segment in the consensus C.
The segmentation aggregation problem with the symmetrized boundary movers distance,
therefore, can again be solved by dynamic programming recursion Equation (8). A more
in-depth analysis of this distance function is the subject of ongoing research.

3. Computational Results
3.1. Implementation

The consensus segmentation algorithm is available as an R package consseg, where
the dynamic programing recursion is implemented in C++ via Rcpp (≥0.12.18) and Rcp-
pXPtrUtils (≥0.1.1) to allow user-defined potential functions. A CRAN package accompa-
nying this contribution will be made available. The development version is available at
https://github.com/Bierinformatik/consseg (accessed on 1 December 2020).

The input segmentations are converted into an index returning for each position
k the minimum position min Bq and the maximum position max Bq of the segment Bq
containing k. With their help, δ<(k) is obtained by adding wqe(Bq) to δ<(k − 1) if k =
max Bq. Analogously, δ≤(k) is computed by adding wqe(Bq) to δ≤(k) whenever k = min Bq.
The terms δ∩<(k) and δ∩>(k) are evaluated as defined in Equation (10). These computations
are interleaved with the evaluation of Fk, Equation (8). Since the expensive part in the
algorithm is the evaluation of the segment cost ∆[j + 1, k], we avoid their recomputation
in the backtracking step by storing instead the values J[k] of the segment boundary j
that realizes the minimum in Equation (8) for position k. Thus, the last segment of the
optimal segmentation on [1, k] is [J[k] + 1, k]. Backtracking then proceeds on [1, J[k]]. The
segment boundaries of the optimal segmentation are, therefore, obtained as ji+1 = J[ji],
starting from j0 = n and continuing until jk = 0 is reached. It is worth noting that the fast,
incremental Equation (12) is prone to rounding errors for large n and very fast-growing
potentials e due to the computation of difference δ<(k)− δ≤(j) of two sums.

3.2. Consensus Segmentation of Yeast Transcriptome Data

To demonstrate the usefulness of consensus segmentations, we explored the yeast
transcriptome time series mentioned in the introduction. We computed the consensus of
segmentations obtained with widely different parameter choices [11]. We found that the
consensus segmentation appears to produce a robust representation of the transcriptome
and seems to fit better to the current annotation of the yeast genome than any particular
choice of segmentation parameters. The example in Figure 3 also shows that distinct
non-coding components, such as SRG1, are readily detectable. Short segments with very
low coverage are likely gaps between transcriptome units without relevant RNA products.
Consistently detectable elements, even if lowly expressed, on the other hand, may be of
interest for closer inspection.

https://github.com/Bierinformatik/consseg
https://github.com/Bierinformatik/consseg

Computation 2021, 9, 17 13 of 20

Computation 2021, 1, 1 13 of 20

Index

10−1
100
101
102
103

total signal

chromosome position

1
5

9
14

19
24

time points

2000 4000 6000

E:3_M:200_nui:3
E:3_M:200_nui:1
E:3_M:100_nui:3
E:3_M:100_nui:1
E:1_M:200_nui:3
E:1_M:200_nui:1
E:1_M:100_nui:3
E:1_M:100_nui:1

consensus

AIM9AIM9AIM9AIM9AIM9AIM9AIM9AIM9AIM9
SRG1SRG1SRG1SRG1SRG1SRG1SRG1SRG1SRG1

SER3SER3SER3SER3SER3SER3SER3SER3SER3
ncRNA

gene

Figure 3. Alternative segmentations of the yeast transcriptome data shown in Figure 1 (here, the coverage time-series is
shown as gray-values and the logarithms of the total coverage). Below, we show eight alternative segmentations computed
with segmenTier [11] with different parameter settings. The consensus segments, computed for potential e(z) = z2/2,
match very well with the expectations from visual inspection of the data and from the annotation of yeast the genome
(bottom). SRG1 is a non-coding RNA that represses the adjacent SER3 gene by transcriptional interference [35].

In order to evaluate the usefulness of consensus segmentations in a more quantitative
manner, we quantify the overlap of segments with annotated coding sequences. To this
end, we determine for each CDS C the segment B(C) with the largest Jaccard index and
then record the ratio r(C) of segment length and annotation length. In symbols:

r(C) := |B(C)|/|C| with B(C) := arg max
B∈S

|B ∩ C|
|B ∪ C| . (22)

The cumulative distribution function cdf(r) computed over a large set of known
transcripts C quantifies the congruence between segmentation and annotation. As a
reference we use here the transcripts harboring coding sequences annotated in Reference
[36]. A perfect overlap between a consensus segment and the annotated transcript is
indicated by r = 1, r < 1 indicates a segment that is shorter and r > 1 a segment
that is longer then the annotated transcript. Figure 4a shows the cumulative distribution
function cdf(r) for the 5171 CDSs of S. cerevisae IFO 0233 for five segmentations with widely
different parameters computed with segmenTier [11]. The red curve is the consensus
over these segmentations. It shows that the consensus segmentation is a robust method:
computed from a small sample of distinct segmentations, some of which do not perform
particularly well, it performs at least as well as the best individual segmentation obtained
from an extensive search of the parameter space in Reference [11]. Discrepancies between
annotation and consensus are not only limitations on the segmentation approach but also
derive from inaccuracies of the annotation, processing of transcripts, and the complexity of
the yeast transcriptome, which harbors abundant overlapping and polycistronic transcripts
[37]. The consensus performs as well as the best individual segmentation (according to the
benchmark in Reference [11]). Figure 4b shows that the individual segmentations share
between about 30% and 70% of the segments with the consensus (corresponding to the
height of the vertical jump at r = 1), i.e., the consensus does not simply recapitulate any

Figure 3. Alternative segmentations of the yeast transcriptome data shown in Figure 1 (here, the coverage time-series is
shown as gray-values and the logarithms of the total coverage). Below, we show eight alternative segmentations computed
with segmenTier [11] with different parameter settings. The consensus segments, computed for potential e(z) = z2/2,
match very well with the expectations from visual inspection of the data and from the annotation of yeast the genome
(bottom). SRG1 is a non-coding RNA that represses the adjacent SER3 gene by transcriptional interference [35].

In order to evaluate the usefulness of consensus segmentations in a more quantitative
manner, we quantify the overlap of segments with annotated coding sequences. To this
end, we determine for each CDS C the segment B(C) with the largest Jaccard index and
then record the ratio r(C) of segment length and annotation length. In symbols:

r(C) := |B(C)|/|C| with B(C) := arg max
B∈S

|B ∩ C|
|B ∪ C| . (22)

The cumulative distribution function cdf(r) computed over a large set of known tran-
scripts C quantifies the congruence between segmentation and annotation. As a reference
we use here the transcripts harboring coding sequences annotated in Reference [36]. A
perfect overlap between a consensus segment and the annotated transcript is indicated by
r = 1, r < 1 indicates a segment that is shorter and r > 1 a segment that is longer then the
annotated transcript. Figure 4a shows the cumulative distribution function cdf(r) for the
5171 CDSs of S. cerevisae IFO 0233 for five segmentations with widely different parameters
computed with segmenTier [11]. The red curve is the consensus over these segmentations.
It shows that the consensus segmentation is a robust method: computed from a small sam-
ple of distinct segmentations, some of which do not perform particularly well, it performs
at least as well as the best individual segmentation obtained from an extensive search of the
parameter space in Reference [11]. Discrepancies between annotation and consensus are
not only limitations on the segmentation approach but also derive from inaccuracies of the
annotation, processing of transcripts, and the complexity of the yeast transcriptome, which
harbors abundant overlapping and polycistronic transcripts [37]. The consensus performs
as well as the best individual segmentation (according to the benchmark in Reference [11]).
Figure 4b shows that the individual segmentations share between about 30% and 70%
of the segments with the consensus (corresponding to the height of the vertical jump at
r = 1), i.e., the consensus does not simply recapitulate any individual input segmentation.

Computation 2021, 9, 17 14 of 20

We, therefore, advocate to use the consensus segmentation as a robust and essentially
parameter insensitive method for transcriptome analysis in compact genomes.

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ratio: query length/target length

cu
m

.d
is

t.f
un

c.

queries:
consensus
E:1_M:200_nui:1
E:1_M:75_nui:1
E:2_M:150_nui:3
E:3_M:200_nui:3
E:3_M:75_nui:3

target: ORF

0.0 0.5 1.0 1.5 2.0 2.5
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

ratio: query length/target length

cu
m

.d
is

t.f
un

c.

targets:
E:1_M:200_nui:1
E:1_M:75_nui:1
E:2_M:150_nui:3
E:3_M:200_nui:3
E:3_M:75_nui:3

query: consensus

(a) (b)

Figure 4. Quantitative evaluation of the consensus of genome-wide transcriptome segmentations of RNA-seq data from S. cerevisae
from ref. [11]. (a) Cumulative distribution function of the length ratios r between overlapping segments and previously annotated
ORF transcripts [36]. A ratio of r = 1 indicates a good match. The consensus (black solid line) of five representative segmentations
(colored dashed lines) by segmenTier with widely different parameter settings (as indicated in Figure 2d of Reference [11]) is at least
on par with the best individual segmentation. (b) Overlap of the consensus with the five different input segmentations. The individual
segmentations share between about 30% and 70% of their segments with the consensus (vertical jump at r = 1). The consensus was
computed with e(z) = z2/2.

The consensus segmentation of the transcriptome of S. cerevisae IFO 0233 comprises
74,091 segments. After filtering for spacers using the input segmentations [11] and very
short segments that most likely correspond to small overlaps and noise in the RNA-seq
data, we retained 32,480 segments. Figure 5 shows the distribution of median coverage.
Not surprisingly, segments overlapping known protein-coding sequences (CDS) show
higher expression levels than other segments. Many segments overlap various types of
long non-coding RNAs, such as CUTs and SUTs [38,39]. We also observe many segments
with substantial expression levels that so far have remained unannotated, providing a large
pool of candidates for novel ncRNAs. Transcriptome segmentation is only the first step
towards an accurate and reliable genome annotation. The subsequent processing of the
segmentation data, however, is beyond the scope of this present contribution and will be
addressed in forthcoming work.

3.3. Consensus Segmentations of Growth Curves

The usefulness of consensus segmentations is by no means limited to transcriptome
data or segmentations of genomes. We, therefore, include here also a very different applica-
tion. The growth of a population of bacteria over time can be quantified by measuring the
apparent absorption, usually referred to as OD (optical density), in a spectrophotometer.
Growth curves typically show distinct growth regimes: an initial time lag that precedes a
phase of exponential growth, which is followed by a deceleration phase that finally settles
into saturation, see, e.g., Reference [40]. These can be separated by approximating the time
course of log OD by a sequence of line segments, i.e., as a continuous, piece-wise linear
function. The corresponding approximation problem is again a segmentation problem
that can be solved by dynamic programming [28]. Empirically, one observes that resulting
segmentations are quite sensitive to small difference in the growth curves. We show here

Computation 2021, 9, 17 15 of 20

that the consensus segmentation is a convenient way to extract a robust estimate for the
duration of the different phases.

Figure 5. Distribution of RNA expression across the consensus segmentation of S. cerevisae IFO
0233. We distinguish segments that overlap a coding sequence (CDS) or another annotation item
(Annotation) present in the current genome annotation taken from SGD (Saccharomyces Genome
Database), and unannotated segments (All). An overlap of at least 30% with an annotation item was
required. Densities are normalized to 1 for each class. Cumulative distributions are superimposed.

In Figure 6, we compare the growth curves of four Escherichia coli cultures grown in
minimal glucose medium at 37 ◦C. The R package dpseg [41] was used to segment the
individual growth curves. This package also uses a dynamic programming approach.
Instead of fixing the number of segments as in Reference [28], it uses a penalty parameter
to adjust the resolution of the segmentation. Considering the consensus of the individual
segmentations and the variation of the breakpoints across the replicates provides a more
realistic view of that data compared to the segmentation of an averaged growth curve.

3.4. Refinement Conjecture

Theorem 2 states that the union segmentation Ŝ refines the consensus segmentation C
for the class of boundedly convex consensus functions. Numerical simulations strongly
suggest that this is true also for many potentials with increasing positive curvature, despite
the failure of the proof technique for the general case. We simulated 10 segmentations of
length 50 and a maximum of 10 segments, using the base-R sample function to randomly
choose breakpoints in a given range. Figure 7 shows consensus segmentations for six
potential functions from negentropy to exponential.

We found that the consensus segmentation only contained breakpoints that are present
in at least one of the input segmentation. This suggests:

Conjecture 1. Ŝ appears to refine C for all superadditive potentials and possibly even for all
convex potentials.

This “Refinement Conjecture” is of considerable practical use. If true, (assumed as a
heuristic), it reduces the computational effort to O(s2) where s is the number of break points
in the input segmentations. We further observed a trend for faster-growing potentials to
yield more and, thus, shorter consensus segments. This is consistent with the fact that
the bound 1+α

√
2|B| on the length of the consensus intervals in the argument leading up

Corollary 5 decreases with the exponent α in polynomial potentials.

Computation 2021, 9, 17 16 of 20

0 10 20 30 40

0.
05

0.
20

0.
50

Time, h

O
D

60
0

nm

wells:
A4
B4
C4
D4

0 50 100 150 200
index

consensus

D4

C4

B4

A4

Figure 6. Four Escherichia coli cultures were grown at identical conditions (four replicates in a larger
experiment) in M9 medium with 0.2% glucose at 37 ◦C in a BMG Clariostar platereader and the
optical density at 600 nm, ln(OD600 nm was measured every 10 minutes. The growth curves of each
of the four replicates were segmented into intervals with constant slope by the dpseg algorithm with
the default jump penalty parameter P = 0 [41].

Figure 7. Consensus segmentation (shown by blue vertical lines) for a collection of 10 random segmentations with equal
weights for six different potential functions e(z). Note that only breakpoints of the input segmentations (marked by × appear
in the consensus segmentation.

Computation 2021, 9, 17 17 of 20

4. Concluding Remarks

In this work, we have extended and generalized previous work [24,33] on the segmen-
tation aggregation problem. We showed that for the class of boundedly convex potential
functions, including negentropies and powers z1+α with 0 < α ≤ 1, all consensus break-
points are breakpoints in at least one of the contributing segmentations. Furthermore, we
showed that for all superadditive potentials, consensus segments cannot be longer than
twice the longest input segment. This bound allows a further reduction of the computa-
tional effort.

Consensus segmentations as described here pertain to two major application scenarios:
(i) Reconciliation of segmentations of multi-dimensional data, comprising, e.g., indepen-
dent measurements, such as biological or technical replicates, or measurements of different
quantities, e.g., different histone modifications. (ii) Reconciliation of segmentations of the
same data set produced with different similarity measures. In principle, it is also possible
to compute the consensus segmentation of different segmentations produced, e.g., with
randomized algorithms or different heuristics using the same similarity measures. A major
advantage of consensus segmentations is that they can be computed without specific infor-
mation about the data underlying the input segmentations. Such knowledge is not needed
because the segmentation aggregation problem depends only on the distance function D
as a “parameter”. Empirically, we found that variations of the distance functions have only
very moderate consequence on the consensus segmentation.

In simulations, we found strong support for the Refinement Conjecture. This provides
support for approaches that utilize a dynamic programming segmentation method to select
be best segmentation from the union of segmentations that are computed with different
heuristics. Such a scheme has been proposed in Reference [42]. In this manner, one can
potentially achieve a substantial gain in computational efficiency compared to the full
dynamic programming segmentation. The C-KS approach [12] also restricts itself to the
union segmentation.

We considered two very different application scenarios. In applications to transcrip-
tome data consensus segmentations have the potential to substantially improve annotations.
A particular strength of the consensus approach is, by highlighting differences that are
consistent between data tracks, the ability to identify processing-related boundaries. This
is of particular interest in organisms with operons, poly-cistronic primary transcripts, or
no expression-free gaps between genes. In all these cases, it becomes difficult and often
impossible to distinguish transcriptional units from patterns of mapped RNA-seq reads
alone. Here, we have used data from yeast strain IFO 0233, which has been used previously
to illustrate transcriptome segmentation in Reference [11]. We have seen that the consensus
segmentation provides a robust prediction of transcriptomic units from a moderate number
of individual segmentations with very different parameters. We obtained thousands of
segments that may correspond to the non-coding transcripts in S. cerevisae IFO 0233. Since
the present contribution is intended to describe the method of consensus segmentation and
its mathematical justification, we will report elsewhere on a comprehensive analysis of the
IFO 0233 transcriptome.

Consensus formation is also of use to aggregate data from biological replicates. As
an example, we showed that consensus segmentations of growth curves can be used to
robustly determine distinct growth phases.

The consensus segmentation methods incorporate weights that refer to input segmen-
tations. This feature can be used, for instance, to weight individual transcriptome data by
coverage. In the case of growth functions, weights may be chosen to decrease with average
measurement error, quantified, e.g., as average deviation from the linear fit. It would also
be of interest to associate weights with individual segments. This can certainly be done in
the context of the Boundary Mover’s distance. Whether this can be also be achieved in the
potential-based approach, and to what extent the mathematics results of this contribution
will remain intact, however, is a question for future research.

Computation 2021, 9, 17 18 of 20

We observed that consensus segmentations are quite robust w.r.t. to the choice of the
potential on real data, while we observed a trend towards shorter consensus segments
with increasing α for the power potentials e(z) = zα−1 on i.i.d. random data. Conceptually,
consensus segmentations based on the comparison of segments are designed to handle
essentially arbitrary heterogeneity along the time or genome coordinate, while breakpoint-
centered approaches, such as C-KS, need to rely on statistical regularities of true breakpoints.
In order to assess the utility of different potentials e(.) and dissimilarity measures D(. , .),
and to compare the segment-centered dynamic programming approach with breakpoint-
centered alternatives, a principled way of benchmarking consensus segmentation methods
will be necessary. This will require, in particular, the development of a simulator for
correlated segmentations that mimic characteristics of different types of underlying data.
At present, such tools are not available.

Our analysis of consensus segmentations suggests several avenues for future research.
From a theoretical point of view, the most immediate open problem is the Refinement
Conjecture, and the characterization of the potential function and—more generally—the
dissimilarity measures for which the union segmentation refines the consensus segmenta-
tion. This is also of practical relevance since the recursions can be restricted to breakpoints
of the union segmentation in such cases; see Equation (15). In addition, a more detailed
understanding of the consensus segmentation would be useful. For instance, are there
potentials or dissimilarities that guarantee a breakpoint in the consensus within every inter-
val that contains a breakpoint in every input segmentation, or in the (weighted) majority of
the input segmentations? Such results could immediately be used to limit the scope of j in
Equation (8). More generally, one may ask whether the idea of consensus segmentation can
give rise to useful ways of measuring the local accuracy or reliability of consensus and/or
input break points.

Author Contributions: All authors jointly contributed the conceptualization of the study, the theo-
retical results, the interpretation of the results, and the writing of the manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the German Federal Ministry for Education and
Research (BMBF 031A538B as part of de.NBI and BMBF 031L0164C, RNAProNet, to P.F.S.), the
Deutsche Forschungsgemeinschaft (DFG proj. nos. AX 84/4-1 and STA 850/30-1), and the Lebanese
Association for Scientific Research (LASeR). H.S. receives a Landesgraduiertenstipendium of the Free
State of Saxony.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The RNA-seq data for the example in Figures 1 and 3 (SRG1 ncRNA
and SER3 protein coding gene) is available via the segmenTier R package (object tsd can be loaded
with data(primseg436)) and the bacterial growth curves in Figure 6 via the dpseg package (oddata
is available after loading the package). The genome-wide RNA-seq data will be made available at
a public repository with a full report on the data (in progress, work by RM, PFS and DBM). The
segmentations of the yeast IFO 0233 transcriptomes are available as Supplemental File in csv format.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
scientific content of this work.

Abbreviations

CDS Coding sequence
CUT Cryptic unstable transcript
ncRNA non-coding RNA
SGD Saccharomyces Genome Database
SUT Stable uncharacterized transcripts
ORF Open reading frame
i.i.d. independent and identically distributed

Computation 2021, 9, 17 19 of 20

Glossary of mathematical symbols:
A, B, ... Segments in a segmentation
[i, j] Interval of from to i to j (inclusive)
C Consensus segmentation (of a set of segmentations)
Sq (Input) segmentation
wq Weight of an input segmentation
Ŝ Union segmentation (of a set of segmentations)
D(. , .) Distance (dissimilarity) between segmentations
DB(. | .) Boundary movers distance
Fk Score of a partial segmentation on [1, k]
e(.) Potential of an interval
∆[i, j] Score on a consensus interval
δ<(i) Score contribution of segments ending no later than i
δ≤(i) Score contribution of segments beginning no later than i
δ∩<(i) Score contribution of r.h.s. part a segment spanning i
δ∩>(i) Score contribution of l.h.s. part a segment spanning i
δ∗(i, j) score correction for segments beginning before i and ending after j

References
1. Pirooznia, M.; Goes, F.S.; Zandi, P.P. Whole-genome CNV analysis: advances in computational approaches. Front. Genet. 2015,

6, 138. [CrossRef]
2. Yen, A.; Kellis, M. Systematic chromatin state comparison of epigenomes associated with diverse properties including sex and

tissue type. Nat. Commun. 2015, 6, 7973. [CrossRef]
3. Zeller, G.; Henz, S.R.; Laubinger, S.; Weigel, D.G.R. Transcript Normalization and Segmentation of Tiling Array Data. Pac. Symp.

Biocomput. 2008, 13, 527–538.
4. Hardcastle, T.J.; Kelly, K.A.; Baulcombe, D.C. Identifying small interfering RNA loci from high-throughput sequencing data.

Bioinformatics 2012, 28, 457–463. [CrossRef] [PubMed]
5. Bischler, T.; Kopf, M.; Voß, B. Transcript mapping based on dRNA-seq data. BMC Bioinform. 2014, 15, 122. [CrossRef] [PubMed]
6. David, L.; Huber, W.; Granovskaia, M.; Toedling, J.; Palm, C.J.; Bofkin, L.; Jones, T.; Davis, R.W.; Steinmetz, L.M. A high-resolution

map of transcription in the yeast genome. Proc. Natl. Acad. Sci. USA 2006, 103, 5320–5325. [CrossRef]
7. Danford, T.; Dowell, R.; Agarwala, S.; Grisafi, P.; Fink, G.; Gifford, D. Discovering regulatory overlapping RNA transcripts.

J. Comput. Biol. 2011, 18, 295–303. [CrossRef] [PubMed]
8. Braun, J.V.; Müller, H.G. Statistical methods for DNA sequence segmentation. Stat. Sci. 1998, 13, 142–162. [CrossRef]
9. Elhaik, E.; Graur, D.; Josić, K. Comparative Testing of DNA Segmentation Algorithms Using Benchmark Simulations. Mol. Biol.

Evol. 2010, 27, 1015–1024. [CrossRef]
10. Girimurugan, S.B.; Liu, Y.; Lung, P.Y.; Vera, D.L.; Dennis, J.H.; Bass, H.W.; Zhang, J. iSeg: An efficient algorithm for segmentation

of genomic and epigenomic data. BMC Bioinform. 2018, 19, 131. [CrossRef]
11. Machné, R.; Murray, D.B.; Stadler, P.F. Similarity-Based Segmentation of Multi-Dimensional Signals. Sci. Rep. 2017, 7, 12355.

[CrossRef] [PubMed]
12. Toloşi, L.; Theißen, J.; Halachev, K.; Hero, B.; Berthold, F.; Lengauer, T. A method for finding consensus breakpoints in the cancer

genome from copy number data. Bioinformatics 2013, 29, 1793–1800. [CrossRef] [PubMed]
13. Segal, M.R.; Wiemels, J.L. Clustering of Translocation Breakpoints. J. Am. Stat. Assoc. 2002, 97, 66–76. [CrossRef]
14. Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 1971, 66, 846–850. [CrossRef]
15. Fowlkes, E.B.; Mallows, C.L. A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 1983, 78, 553–569.

[CrossRef]
16. Ben-Hur, A.; Elisseeff, A.; Guyon, I. A stability based method for discovering structure in clustered data. Pac. Symp. Biocomput.

2002, 7, 6–17.
17. Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218. [CrossRef]
18. Mirkin, B. Mathematical Classification and Clustering; Kluwer Academic Press: Dordrecht, The Netherlands, 1996.
19. Van Dongen, S. Performance Criteria for Graph Clustering and Markov Cluster Experiments; Technical Report; Centrum voor Wiskunde

en Informatica: Amsterdam, The Netherlands, 2000.
20. Mirkin, B.G. On the Problem of Reconciling Partitions. In Quantitative Sociology: International Perspectives on Mathematical and

Statistical Modeling; Blalock, H.M., Aganbegian, A., Borodkin, F.M., Boudon, R., Capecchi, V., Eds.; Academic Press: New York,
NY, USA, 1975; pp. 441–449.

21. Barthélemy, J.; Leclerc, B. The median procedure for partitions. In Partitioning Data Sets; Cox, I., Hansen, P., Julesz, B., Eds.;
American Mathematical Society: Providence, RI, USA, 1995; Volume 19, pp. 3–34. [CrossRef]

22. Křivánek, M.; Morávek, J. NP-hard problems in hierarchical-tree clustering. Acta Inform. 1986, 23, 311–323. [CrossRef]
23. Wakabayashi, Y. The complexity of computing medians of relations. Resenhas IME-USP 1998, 3, 323–349.

http://doi.org/10.3389/fgene.2015.00138
http://dx.doi.org/10.1038/ncomms8973
http://dx.doi.org/10.1093/bioinformatics/btr687
http://www.ncbi.nlm.nih.gov/pubmed/22171331
http://dx.doi.org/10.1186/1471-2105-15-122
http://www.ncbi.nlm.nih.gov/pubmed/24780064
http://dx.doi.org/10.1073/pnas.0601091103
http://dx.doi.org/10.1089/cmb.2010.0267
http://www.ncbi.nlm.nih.gov/pubmed/21385035
http://dx.doi.org/10.1214/ss/1028905933
http://dx.doi.org/10.1093/molbev/msp307
http://dx.doi.org/10.1186/s12859-018-2140-3
http://dx.doi.org/10.1038/s41598-017-12401-8
http://www.ncbi.nlm.nih.gov/pubmed/28955039
http://dx.doi.org/10.1093/bioinformatics/btt300
http://www.ncbi.nlm.nih.gov/pubmed/23716195
http://dx.doi.org/10.1198/016214502753479239
http://dx.doi.org/10.1080/01621459.1971.10482356
http://dx.doi.org/10.1080/01621459.1983.10478008
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1090/dimacs/019/01
http://dx.doi.org/10.1007/BF00289116

Computation 2021, 9, 17 20 of 20

24. Mielikäinen, T.; Terzi, E.; Tsaparas, P. Aggregating Time Partitions. In Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining; Eliassi-Rad, T., Ungar, L., Craven, M., Gunopulos, D., Eds.; Association for Computing
Machinery: New York, NY, USA, 2006; pp. 347–356. [CrossRef]

25. Meilă, M. Comparing Clusterings: An Axiomatic View. In Machine Learning, Proceedings of the Twenty-Second International
Conference; De Raedt, L., Wrobel, S., Eds.; Association for Computing Machinery: New York, 2005; pp. 577–584. [CrossRef]

26. Meilă, M. Comparing clusterings by the variation of information. In Learning Theory and Kernel Machines; Schölkopf, B., Warmuth,
M.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2777, pp. 173–187. [CrossRef]

27. Vingron, M.; Sibbald, P.R. Weighting in sequence space: A comparison of methods in terms of generlized sequences. Proc. Natl.
Acad. Sci. USA 1993, 90, 8777–8781. [CrossRef] [PubMed]

28. Bellman, R. On the approximation of curves by line segments using dynamic programming. Commun. ACM 1961, 4, 284–286.
[CrossRef]

29. Bai, J.; Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econom. 2002, 18, 1–22. [CrossRef]
30. Fragkou, P.; Petridis, V.; Kehagias, A. A Dynamic Programming Algorithm for Linear Text Segmentation. J. Intell. Inf. Syst. 2004,

23, 179–197. [CrossRef]
31. Picard, F.; Robin, S.; Lavielle, M.; Vaisse, C.; Daudin, J. A statistical approach for CGH microarray data analysis. BMC Bioinform.

2005, 6, 27. [CrossRef]
32. Huber, W.; Toedling, J.; Steinmetz, L.M. Transcript mapping with high-density oligonucleotide tiling arrays. Bioinformatics 2006,

22, 1963–1970. [CrossRef] [PubMed]
33. Terzi, E. Problems and Algorithms for Sequence Segmentations. Ph.D. Thesis, Department of Computer Science Series of

Publications A Report A-2006-5, University of Helsinki, Helsinki, Finland, 2006.
34. Haiminen, N.H.; Mannila, H.; Terzi, E. Comparing segmentations by applying randomization techniques. BMC Bioinform. 2007,

8, 171. [CrossRef] [PubMed]
35. Martens, J.A.; Laprade, L.; Winston, F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene.

Nature 2004, 429, 571–574. [CrossRef]
36. Xu, Z.; Wei, W.; Gagneur, J.; Perocchi, F.; Clauder-Munster, S.; Camblong, J.; Guffanti, E.; Stutz, F.; Huber, W.; Steinmetz, L.M.

Bidirectional promoters generate pervasive transcription in yeast. Nature 2009, 457, 1033–1037. [CrossRef]
37. Pelechano, V.; Wei, W.; Steinmetz, L.M. Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 2013,

497, 127–131. [CrossRef] [PubMed]
38. Parker, S.; Fraczek, M.G.; Wu, J.; Shamsah, S.; Manousaki, A.; Dungrattanalert, K.; de Almeida, R.A.; Invernizzi, E.; Burgis, T.;

Omara, W.; et al. Large-scale profiling of noncoding RNA function in yeast. PLoS Genet. 2018, 14, e1007253. [CrossRef]
39. Till, P.; Mach, R.L.; Mach-Aigner, A.R. A current view on long noncoding RNAs in yeast and filamentous fungi. Appl. Microbiol.

Biotech. 2018, 102, 7319–7331. [CrossRef] [PubMed]
40. Hall, B.G.; Acar, H.; Nandipati, A.; Barlow, M. Growth Rates Made Easy. Mol. Biol. Evol. 2014, 31, 232–238. [CrossRef] [PubMed]
41. Machné, R.; Stadler, P.F. dpseg: Piecewise Linear Segmentation by Dynamic Programming. R Package Version 0.1.2. 2020.

Available online: https://cran.r-project.org/web/packages/dpseg/ (accessed on 1 December 2020).
42. Pierre-Jean, M.; Rigaill, G.; Neuvial, P. Performance evaluation of DNA copy number segmentation methods. Brief. Bioinform.

2015, 16, 600–615. [CrossRef] [PubMed]

http://dx.doi.org/10.1145/1150402.1150442
http://dx.doi.org/10.1145/1102351.1102424
http://dx.doi.org/10.1007/978-3-540-45167-9_14
http://dx.doi.org/10.1073/pnas.90.19.8777
http://www.ncbi.nlm.nih.gov/pubmed/8415606
http://dx.doi.org/10.1145/366573.366611
http://dx.doi.org/10.1002/jae.659
http://dx.doi.org/10.1023/B:JIIS.0000039534.65423.00
http://dx.doi.org/10.1186/1471-2105-6-27
http://dx.doi.org/10.1093/bioinformatics/btl289
http://www.ncbi.nlm.nih.gov/pubmed/16787969
http://dx.doi.org/10.1186/1471-2105-8-171
http://www.ncbi.nlm.nih.gov/pubmed/17521423
http://dx.doi.org/10.1038/nature02538
http://dx.doi.org/10.1038/nature07728
http://dx.doi.org/10.1038/nature12121
http://www.ncbi.nlm.nih.gov/pubmed/23615609
http://dx.doi.org/10.1371/journal.pgen.1007253
http://dx.doi.org/10.1007/s00253-018-9187-y
http://www.ncbi.nlm.nih.gov/pubmed/29974182
http://dx.doi.org/10.1093/molbev/mst187
http://www.ncbi.nlm.nih.gov/pubmed/24170494
https://cran.r-project.org/web/packages/dpseg/
http://dx.doi.org/10.1093/bib/bbu026
http://www.ncbi.nlm.nih.gov/pubmed/25202135

	Introduction
	Theory
	Dynamic Programming Algorithm
	Efficient Computation of the Segment Scores [i,j]
	Boundaries of Consensus Segments
	Length Bounds on Consensus Segments
	Special Potential Functions
	Generalization: Symmetrized Boundary Mover's Distance

	Computational Results
	Implementation
	Consensus Segmentation of Yeast Transcriptome Data
	Consensus Segmentations of Growth Curves
	Refinement Conjecture

	Concluding Remarks
	References

