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Abstract: Crime generates significant losses, both human and economic. Every year, billions of
dollars are lost due to attacks, crimes, and scams. Surveillance video camera networks generate
vast amounts of data, and the surveillance staff cannot process all the information in real-time.
Human sight has critical limitations. Among those limitations, visual focus is one of the most
critical when dealing with surveillance. For example, in a surveillance room, a crime can occur
in a different screen segment or on a distinct monitor, and the surveillance staff may overlook it.
Our proposal focuses on shoplifting crimes by analyzing situations that an average person will
consider as typical conditions, but may eventually lead to a crime. While other approaches identify
the crime itself, we instead model suspicious behavior—the one that may occur before the build-up
phase of a crime—by detecting precise segments of a video with a high probability of containing
a shoplifting crime. By doing so, we provide the staff with more opportunities to act and prevent
crime. We implemented a 3DCNN model as a video feature extractor and tested its performance
on a dataset composed of daily action and shoplifting samples. The results are encouraging as
the model correctly classifies suspicious behavior in most of the scenarios where it was tested.
For example, when classifying suspicious behavior, the best model generated in this work obtains
precision and recall values of 0.8571 and 1 in one of the test scenarios, respectively.

Keywords: 3D convolutional neural networks; crime prevention; pre-crime behavior method;
shoplifting; suspicious behavior

1. Introduction

According to the 2020 National Retail Security Survey (NRSS) [1], inventory shrink—a
loss of inventory related to theft, shoplifting, error, or fraud—had an impact of $61.7 billion
in 2019 on the U.S. retail economy. Many scams occur every day, from distractions and bar
code switching to booster bags and fake weight strategies, and there is no human power
to watch every one of these cases. The surveillance context is overwhelmed. Vigilance
camera networks generate vast amounts of video screens, and the surveillance staff cannot
process all the available information as fast as needed. The more recording devices become
available, the more complex the task of monitoring such devices becomes.

Real-time analysis of surveillance cameras has become an exhaustive task due to hu-
man limitations. The primary human limitation is the Visual Focus of Attention (VFOA) [2].
The human gaze can only concentrate on one specific point at once. Although there are
large screens and high-resolution cameras, a person can only pay attention to a small
segment of the image at a time. Optical focus is a significant human-related disadvantage
in the surveillance context. A crime can occur in a different screen segment or on a different
monitor, and the staff may not notice it. Other significant difficulties may be related to
attention, boredom, distractions, lack of experience, among others [3,4].
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Defining what can be considered suspicious behavior is usually tricky, even for psy-
chologists. In this work, the mentioned behavior is related to the commission of a crime,
but it does not imply its realization (Figure 1). For this research, we define suspicious
behavior as a series of actions that happen before a crime occurs. In this context, our
proposal focuses on shoplifting crime scenarios, particularly before the build-up phase
situations that an average person may consider as typical conditions. Shoplifting crimes
usually take place in supermarkets, malls, retail stores, and other similar businesses. Many
of the models for addressing this problem need the suspect to commit a crime to detect
it. Examples of such models include face detection of previous offenders [5,6] and object
analysis in fitting rooms [7]. In this work, we propose an approach to support the mon-
itoring staff to focus on specific areas of screens where crime is more likely to happen.
While existing models identify the crime itself, we model suspicious behavior as a way
to anticipate a potential crime. In other words, we identify behaviors that usually take
place before a shoplifting crime occurs. Then, the system can label a video: as containing
suspicious or normal behavior. By detecting situations in a video that may indicate that
suspicious behavior is present, the system indicates that a crime is likely to happen soon.
The former gives the surveillance staff more opportunities to act, prevent, or even respond
to such a crime. In the end, it is the security personnel who will decide how to proceed in
each situation.

Figure 1. Different situations may be recorded by surveillance cameras. Suspicious behavior is not the crime itself. However,
particular situations will make us distrust a person if we consider their behavior to be “suspicious”.

Overall, we propose a method to extract segments from videos that feed a model
based on a 3D Convolutional Neural Network (3DCNN) for classifying behavior (as normal
or suspicious). Once we train the model with such segments, it accurately classifies the
behavior on a video dataset composed of daily action samples and shoplifting samples.
Our results suggest that the proposed approach has applications in crime prevention in
shoplifting cases.

As a summary, this work contributes to the literature mainly in three aspects.

• It describes a methodology, the PCB method, to unify the processing and division of
criminal video samples into useful segments that can later be used for feeding a Deep
Learning (DL) model.

• It represents the first implementation of a 3DCNN architecture to detect criminal
intentions before an offender shows suspicious behavior.

• It provides a set of experiments to validate the results, confirming that the proposed
approach is suitable for such a challenging task: to detect criminal intention even
before the suspect begins to behave suspiciously.

The remainder of this document is organized as follows. In Section 2, we review vari-
ous approaches that range from psychology to deep learning, to tackle behavior detection.
Section 3 presents the methodology followed to extract the relevant video segments used
as input for our model, the PCB method, and the DL model architecture. The experiments,
results, and their discussion are presented in Section 4. Finally, Section 5 presents the
conclusions and future works derived from this investigation.
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2. Background and Related Work

A surveillance environment must satisfy a particular set of requirements. Those
requirements have promoted the creation of specialized tools, both on equipment and
software, to support the surveillance task. The most common approaches include mo-
tion detection [8,9], face recognition [5,6,10,11], tracking [12–14], loitering detection [15],
abandoned luggage detection [16], crowd behavior [17–19], and abnormal behavior [20,21].
Prevention and reaction are two primary aims in the surveillance context. Prevention
requires forestalling and deterring crime execution. The monitoring staff must remain alert,
watch as much as possible, and alert the ground personnel. Reaction, on the other hand,
involves protocols and measures to respond to a specific event. The security teams take
action only after the crime or event has taken place.

Most security support approaches focus on crime occurrence. Tsushita and Zin
presented a snatching-detection algorithm, which performs background subtraction and
pedestrian tracking to make a decision [22]. Their approach divides the frame into eight
areas and searches for a speed shift in one tracked person. Unfortunately, Tsushita and
Zin’s algorithm can only alert when a person has already lost their belongings. Ullah et al.
proposed a violence detection framework combining a trained MobileNet-SSD model [23]
for person detection and a C3D model [24]. Besides, they optimize the trained model with
the OPENVINO toolkit [25]. They test their model with three different violence datasets:
violent crowd [26], violence in movies [27], and hockey fight [27]. Sultani et al. presented a
real-world anomaly detection approach, training 13 anomalies, such as burglary, fighting,
shooting, and vandalism [28]. They use a 3DCNN for feature extraction and label the
samples into two categories: normal and anomalous. Their model includes a ranking
loss function and trains a fully connected neural network for decision-making. In a
similar context, Nassarudin et al. [29] presented a deep anomaly detection approach. They
implemented a bilateral background subtraction, use the pretrained C3D model [24] for
feature extraction, and attached a fully connected network to perform regression. Using
the UCF-Crime dataset [30], they trained their model on 11 complete classes and tested
their results on “robbery”, “fighting”, and “road accidents”. Ishikawa and Zin proposed a
system to detect loitering people [31]. Their system combines grid-based analysis, direction-
based analysis, distance-based analysis, acceleration based analysis, and a decision-fusion
stage of the people shown in the video to make a decision. Afra and Alhajj [32] proposed
a surveillance system that performs face detection and, according to the response, raises
the alarm or tries to evaluate the suspect social media. Through security cameras, they
collected images and processed them for face detection. They implemented the MobileNet-
v1 [23] architecture and trained on the WIDER face dataset [33]. After the face location,
they performed a face recognition by implementing two feature extraction techniques:
OpenFace [34] and Inception-Resnet-v1 [35], trained on MS-Celeb-1M [36].

Convolutional Neural Networks (CNN) have shown a remarkable performance in
computer vision and other different areas in the last recent years. Particularly, 3DCNNs—
an extension of CNN—focus on extracting spatial and temporal features from videos. Some
interesting applications that have been implemented using 3DCNN include object recogni-
tion [37], human action recognition [38], gesture recognition [39], and —particularly related
to this work— behavior analysis from customers in the baking sector [40]. Although all the
works mentioned before involve using a 3DCNN, each one has a particular architecture and
corresponding set of parameters to adjust. For example, concerning the number of layers,
many approaches rely on simple structures that consist of two or three layers [37,38,41],
while others require several layers for exhaustive learning [42–45]. Recently, Alfaifi and
Artoli [46] proposed combining 3D CNN and LSTM for human action prediction (HAP).
In their approach, the 3D CNN was used for feature extraction while the LSTM for classifica-
tion. The model’s strength relies on the robustness to pose, illumination, and surrounding
clutter. This robustness allows predicting human activity accurately. The architecture
consists of a single 3D Conv layer, a 3D max-pooling layer, an long short-term memory
(LSTM) layer, and two fully connected layers for classification.
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Concerning shoplifting, the current literature is somewhat limited. Surveillance
material is, in most cases, a company’s private property. The latter restricts the amount of
data available for training and testing new surveillance models. For this reason, several
approaches focus on training to detect normal behavior [47–50]. Anything that lies outside
the cluster is considered abnormal. In general, surveillance videos contain only a small
fraction of crime occurrences. Then, most of the videos in the data are likely to contain
normal behavior. Many approaches have experienced problems regarding the limited
availability of samples and their unbalanced category distribution. For this reason, some
works have focused on developing models that learn with a minimal amount of data. As a
reference, we include some representative works on the area of behavior detection in Table 1.

Table 1. Some relevant examples of works related to behavior detection, their dataset size, and the number of criminal
videos considered. * Ko and Sim’s work [51] presents many incident videos due to their behaviors as abnormal; however,
they do not represent a crime itself.

Paper Behaviors to Detect Dataset Size Criminal/Incident Videos

Bouma et al. [52] Theft and pickpocketing 8 videos 5
Ishikawa and Zin [31] Loitering 6 videos 6
Koller et al. [53] Theft 12 videos 12
Tsushita and Zin [22] Snatch theft 19 videos 9
Grant and Williams [54] Violent crimes against people or property 24 videos 12
Koller et al. [55] Bomb and theft 26 videos 18
Ko and Sim [51] Hand shaking, hugging, kicking, punching, pointing, and pushing 50 videos 50 *
Troscianko et al. [56] Fights, assaults, car crimes and vandalism 100 videos 18

Our work aims at developing a support approach for shoplifting crime prevention.
Our model detects a person that, according to their behavior, is likely to commit a shoplift-
ing crime. We achieve the latter by analyzing the people’s comportment in the videos
before the crime occurs. To the best of our knowledge, this is the first work that analyzes
behavior to anticipate a potential shoplifting crime.

3. Methodology

As part of this work, we propose a methodology to extract segments from videos where
people exhibit behaviors relevant to shoplifting crime. The methodology considers both
normal and suspicious behaviors, being the task to classify them accordingly. The following
lines describe the dataset used and how we split it for experimental purposes, the pre-
crime Behavior (PCB) method, and the 3DCNN architecture used for feature extraction
and classification.

3.1. Description of The Dataset

Among the many works related to surveillance security, the analysis of non-verbal
behavior is one of the less researched areas [57]. This generates a lack of enhancement of
security protocols and available information. Many works build their datasets using actors.
However, they cannot catch the essential behavioral cues that an offender may show in a
stressful situation. Some types of crimes have been more explored, such as crowd behavior,
vandalism, fights, or assaults. For non-violent crimes, such as shoplifting, pickpocketing,
or theft, it is harder to detect the crime in public places and get access to the videos.

In this work, we use the UCF-Crime dataset [28] to analyze suspicious behavior during
the build-up of a shoplifting crime. The dataset consists of 1900 real-world surveillance
videos and provides around 129 h of videos. The videos have not been normalized in length
and present a resolution of 320 × 240 pixels. The dataset includes scenarios from several
people and locations, which are grouped into 13 classes such as “abuse”, “burglary”, and
“explosion”, among others. We extracted the samples used in this investigation from the
“shoplifting” and “normal” classes from the UCF-Crime dataset.

To feed our model, we require videos that show one or more people whose activities
are visible before the crime is committed. Due to these restrictions, not all the videos in
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the dataset are useful. Suspicious behavior samples were extracted only from videos that
exhibit a shoplifting crime, but to be used by our system, such samples must not contain
the crime itself. Conversely, normal behavior samples were extracted from the “normal”
class. Thus, it is important to stress that the model we propose is a behavior classifier
(normal or suspicious) and not a crime classifier.

For processing the videos and extracting the suspicious behavior samples (video
segments that exhibit suspicious behavior), we propose a novel method, the Pre-Crime
Behavior (PCB) method, which we explain in the next section. Once we obtain the sus-
picious behavior samples, we applied some transformations to produce several smaller
datasets. First, to reduce the computational resources required for training, all the frames
were transformed into grayscale and resized to four resolutions: 160 × 120, 80 × 60,
40 × 30, and 32 × 24 pixels. As, by summing up normal and suspicious behavior samples,
we get 120 samples, we applied a flipping procedure to increase such a number. Such a
flipping procedure consists of turning over each frame of the video sample horizontally,
resulting in a video where the actions happen in the opposite direction.

Data augmentation techniques aim to increase the number of useful examples in the
training dataset, producing variations of the original images that the model is likely to see.
Examples of these techniques include flipping, rotation, zoom, and brightness. It is relevant
to mention that many of these techniques are not useful in our work. For example, vertical
flipping an image makes no sense in our system as the videos will never be watched upside
down. Rotation turns the image clockwise an arbitrary number of degrees, but it may
drop pixels out of the image and produce areas with no pixels, which have to be filled in
somehow. Zoom augmentation either adds new pixels around the image (zoom out) or
leaves out part of the original image (zoom in), leading to losing or altering the scene’s
information. The situations derived from using such data augmentation techniques could
potentially do more harm than good and, for that reason, were not considered for this
work. Given the reasons mentioned above, we considered that sticking only to horizontal
flips was the most suitable strategy for this work. It generates additional training samples
without adding or subtracting any information to the samples.

3.2. The Pre-Crime Behavior Method

Video sample segmentation does not follow a specific methodology in criminal inten-
tions and suspicious behavior analysis. This makes it unreliable for creating a benchmark
and testing a model across different video sets. For example, in some investigations,
the segmentation is left to the experts’ judgement [53,55]. In others, the researchers select
the frame before the criminal act [54,56]. In some particular cases, there is no segmentation
at all [22,31,51].

The Pre-Crime Behavior (PCB) method arises as a new proposal to unify moments,
such as the build-up phase and the crime itself, and provide a new segment to the analysis,
the suspect’s behavior before any aggression attempt. It is composed of four steps that
allow the identification of four specific moments in the video sample. The PCB method is
described as follows.

1. Identify the instant where the offender appears for the first time in the video. We refer
to this moment as the First Appearance Moment (FAM). The analysis of suspicious
behavior starts from this moment.

2. Detect the moment when the offender undoubtedly commits a crime. This moment is
referred to as the Strict Crime Moment (SCM). This moment contains the necessary
evidence to argue the crime commission.

3. Between the FAM and the SCM, find the moment where the offender starts acting
suspiciously. The Comprehensive Crime Moment (CCM) starts as soon as we detect
that the offender acts suspiciously in the video.

4. After the SCM, locate the moment where the crime ends (when everything seems to
be ordinary again). If the video sample started from this instant, we would have no
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evidence of any crime committed in the past. This moment is known as the Back to
Normality Moment (B2NM).

Please note that, as a sample video from the UCF-Crime dataset may contain more than
one crime, the PCB method is applied once for each crime occurrence. Then, sometimes
we can extract various suspicious behavior samples from the same video in the UCF-
Crime dataset.

The output of the PCB method comprises four moments per crime in the input video.
These four moments divide each sample into three relevant segments, as described below.

Pre-Crime Behavior Segment (PCBS). The PCBS is the video segment between the FAM
and the CCM. This segment has the information needed to study how people behave
before committing a crime, even acting suspiciously. Most human observers will fail
to predict that a crime is about to occur by only watching the PCBS.

Suspicious Behavior Segment (SBS). The SBS is the video segment contained between
the CCM and the SCM. The SBS provides specific information about an offender’s
behavior before committing a crime.

Crime Evidence Segment (CES). The CES represents the video segment included between
the SCM and the B2NM. This segment contains the evidence to accuse a person of
committing a crime.

For the sake of clarity, we present the four moments and the three segments derived
from the PCB method graphically, as depicted in Figure 2.

Figure 2. Video segmentation by using the moments obtained from the Pre-Crime Behavior Segment (PCB) method.

To extract the samples from the videos, we follow the process depicted in Figure 3.
Given a video that contains one or more shoplifting crimes, we identify the precise moment
when the offense is committed. After that, we label the different suspicious moments—
moments where a human observer doubts what a person in the video is doing. Finally, we
select the segment before the suspect is preparing to commit the crime. These segments
become the training samples for the Deep Learning (DL) model.

In a video sample, each segment has particular importance regarding the information
it contains (see Figure 2). The PCB segment has less information about the crime itself, but it
allows us to analyze the suspect’s normal-acting behavior when they appears for the first
time, even far from a potential crime. The SBS allows us to have a more precise idea about
who may commit the crime, but it is not conclusive. Finally, the CES contains the doubtless
evidence about a person committing a shoplifting crime. If we remove both the SBS and the
CES from the video, the result will be a video containing only people shopping, and there
will be no suspicion or evidence that someone commits a crime. That is the importance of
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the accurate segmentation of the video. From the end of a CES until the next SBS, there is
new evidence about how a person behaves before attempting a shoplifting crime.

Figure 3. Graphical representation of the process for suspicious behavior sample extraction.

For experimental purposes, we only use the frames from the PCBS in this work. As
these segments lack specific criminal behavior, they have no information about any trans-
gression. The PCB segments are ideal for feeding our 3DCNN model, aiming to characterize
the people’s behavior. The objective of the model is to identify when such behavior is
suspicious, which may indicate that a shoplifting crime is about to be committed.

3.3. 3D Convolutional Neural Networks

For this work, we use a 3DCNN for feature extraction and classification. 3DCNN is a
recent approach for spatio-temporal analysis that has shown remarkable performance in
processing videos in different areas, such as moving objects action recognition [37], gesture
recognition [39], and action recognition [38]. We decided to implement a 3DCNN in a more
challenging context, such as searching for patterns in video samples, which lack suspicious
and illegal visual behavior.

We employ a basic structure to explore the performance of the 3DCNN for behavior
classification. The model comprises four Conv3D layers (two pairs of consecutive con-
volutional layers for capturing long dependencies [43,58,59]), two max-pooling layers,
and two fully connected layers. As a default configuration, in the first pair of Conv3D
layers, we apply 32 filters, and for the second pair, 64 filters. All kernels have a size of
3 × 3 × 3, and the model uses an Adam optimizer and cross-entropy for loss calculation.
The graphical representation of this model is shown in Figure 4. The last part of the model
contains two dense layers with 512 and two neurons, respectively. This architecture was
selected because it has been used for similar applications [60], and it seems suitable as a
first approach for behavior detection in surveillance videos.

Figure 4. Architecture of the DL Model used for this investigation. The depth of the kernel for the 3D convolution is
adjusted to 10, 30, or 90 frames, according to each particular experiment (see Section 4).
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For handling the model training, we use Google Colaboratory [61]. This free cloud
tool allows us to write and execute code in cells and runs directly on a browser to train DL
models. We can upload the datasets to a storage service, link the files, prepare the training
environment, and save considerable time during the model training using a virtual GPU.

3.4. Metrics

As the decisive metric to analyze the results, we considered the accuracy (Equation (1)).
It considers the correct hits—true positive (TP) plus true negative (TN)—over the total
number of samples evaluated (FP and FN represent false positives and false negatives,
respectively).

accuracy =
TP + TN

TP + TN + FP + FN
(1)

As accuracy shows the general performance of the model, we complement its in-
formation by presenting the confusion matrices of the best runs. These matrices allow
checking, in detail, the model capability to classify suspicious and normal behavior. We
used two additional metrics for adequately analyzing the results from the confusion matri-
ces: precision (Equation (2)) and recall (Equation (3)). Precision indicates the proportion of
samples classified as suspicious that are, in fact, suspicious—a model with a precision of
1.0 produces no FP. Recall indicates the proportion of actual suspicious samples that were
correctly classified by the system—a model with a recall of 1.0 produces no FN.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

4. Experiments And Results

We conducted a total of six experiments in this work. These experiments are divided
into two categories: preliminary and confirmatory. The first four experiments are pre-
liminary as they focus on exploring the effect of different configurations under different
scenarios, aiming to find some suitable configurations that may lead to better model per-
formance. We refer to the last two experiments as confirmatory as we tested the system on
more challenging configurations derived from the preliminary experiments, to validate
the approach. Among all these experiments, a total of 708 models were generated and
tested. Although the specific details of each experiment are detailed in its corresponding
description, for the ease of the reader, we have provided an overview of our experimental
setup in Figure 5.

4.1. Preliminary Experiments

In this set of experiments, we explore different configurations for the system and esti-
mate their effect on its overall performance in terms of the accuracy obtained. The rationale
behind this first set of experiments is that we affect the model’s performance by introducing
small variations on its parameters. Then, finding a good set of input parameters is a way
to improve the overall performance of the model.

For this work, four parameters have been considered for tuning purposes. These
parameters, as well as their available values, are listed below.

Training set size. The percentage of the samples from the base dataset used for training.
The possible values are 80%, 70%, and 60%. Note that, as an attempt to test out
approach on different situations, the base dataset changes for each particular experi-
ment.

Depth. The number of consecutive frames used for 3D convolution. The values allowed
for this parameter are 10, 30, and 90 frames.
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Resolution. The size of the input images (in pixels). We used four different values for
resolution: 32 × 24, 40 × 30, 80 × 60, and 160 × 120 pixels.

Flip. As discussed before, to increase the number of samples, we applied a horizontal
flipping procedure to all the samples. By using this procedure, we doubled the
number of samples. Stating that a set has been flipped indicates that the frames in
those videos have been flipped horizontally.

Figure 5. Overview of the experimental setup followed in this work. For a detailed description
of the parameters and the relation of the samples considered for each experiment, please consult
Appendix A.

To evaluate the impact of varying the values for these parameters, we conducted five
independent experiments. Each of these experiments followed a factorial design with two
factors (one factor per parameter). In all the experiments, one of the factors was always
the resolution in pixels. We trained three independent models per combination of such
factors. The results are analyzed both from the statistical perspective (main effects and
interaction effects through a two-way ANOVA) and the practical one (by analyzing the
interaction plots and the average accuracy derived from the observations). It is relevant
to mention that all the cases satisfied both normality and homogeneity of the variances,
which are conditions required to apply the two-way ANOVA. We tested normality by
analyzing the residuals and through the Shapiro–Wilk test of normality, while we applied
the Levene’s test to check the homogeneity of variances within groups. The significance
value considered for all the statistical tests in this work was 5%.

4.1.1. Experiment P01—Effect of the Depth (In Balanced Datasets)

To analyze the impact of varying the depth size (number of consecutive frames
to consider) under different resolutions, we analyzed its effect on a balanced dataset
containing 30 normal behavior samples and 30 suspicious behavior ones, where 80% of
those samples were used for training the models. As there were, as explained before, three
values allowed for the depth: 10, 30, and 90 frames, and four values for the resolution:
32 × 24, 40 × 30, 80 × 60, and 160 × 120 pixels, the combinations of these parameters
resulted in 12 configurations. For each configuration, we conducted three independent runs
to generate three models. With this data, we ran a two-way ANOVA to analyze the effect
of depth and resolution on the accuracy of the model, given the base configuration. Table 2
presents the accuracy of the three independent models trained for each configuration and
their average accuracy per configuration.
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Table 2. Accuracy (%) of the models trained with the 12 different configurations from experiment
P01. Each cell presents the accuracy of three independent models per configuration and its average.
The best results per resolution are highlighted in bold.

Resolution (Pixels)

Depth (Frames) 32 × 24 40 × 30 80 × 60 160 × 120

10

83.3 75.0 66.6 50.0
75.0 66.6 83.3 50.0
91.6 75.0 83.3 41.6

83.3 72.2 77.7 69.3

30

83.3 83.3 83.3 83.3
75.0 66.6 75.0 50.0
50.0 75.0 50.0 75.0

69.4 75.0 69.4 69.4

90

83.3 66.6 50.0 50.0
75.0 75.0 75.0 50.0
50.0 50.0 58.3 75.0

69.4 63.9 61.1 58.3

By analyzing the statistical results, we found that neither the main effects are signif-
icant, nor their interaction (with a significance level of 5%). The p-values obtained from
the two-way ANOVA for the main effects of depth and resolution in this experiment were
0.1044 and 0.6488, respectively. The p-value for their interaction was 0.9502. As there is
no statistical evidence that suggests that changes in the depth or the resolution affect the
accuracy of the model, we extended the analysis and considered inspecting the interaction
plot, which is depicted in Figure 6. This interaction plot suggests that independently of
the depth considered, using 160 × 120 pixels as resolution obtains the worst results. Fur-
thermore, based only on the 36 observations analyzed, using ten frames and 32 × 24 pixels
obtains the best average results on the fixed values used for this experiment. For this
reason—and based on the fact that we could not derive any other conclusion from the
statistical perspective—we considered using ten frames as the best value for depth for the
next set of experiments.

Figure 6. Interaction plot of depth (10, 30, and 90 frames) and resolution (32 × 24, 40 × 30, 80 × 60,
and 160 × 120 pixels) using the accuracy values obtained from experiment P01.

4.1.2. Experiment P02—Effect of the Training Set Size (In Balanced Datasets)

In this experiment, we changed the proportion of samples used for training, combined
with four values of the resolution, as an attempt to estimate their effect on the model’s
accuracy. As in the previous experiment, the dataset is also balanced with 30 normal
behavior samples and 30 suspicious behavior ones. However, for this experiment, the depth
parameter was fixed to 10. This value was taken from the previous experiment since we
obtained the best results by using ten frames. We allowed three values for defining the
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training set size: 80%, 70%, and 60% of the total of samples in the dataset (that contains
60 samples as previously described). As in the previous experiment, the available values for
the resolution were 32 × 24, 40 × 30, 80 × 60, and 160 × 120 pixels. For each configuration,
we trained three independent models and used their accuracy to run a two-way ANOVA
to analyze both the main and interaction effects of the two variables, given the base sample
set. The accuracy of the three independent models per configuration is shown in Table 3.

Table 3. Accuracy (%) of the models trained with the 12 different configurations from experiment
P02. Each cell presents the accuracy of three independent models per configuration and its average.
The best results per resolution are highlighted in bold.

Resolution (Pixels)

Training 32 × 24 40 × 30 80 × 60 160 × 120

80%

66.6 75.0 66.6 50.0
75.0 75.0 58.3 50.0
75.0 66.6 75.0 41.6

72.2 72.2 66.6 47.2

70%

77.7 72.2 66.6 77.7
66.6 77.7 72.2 77.7
61.1 72.2 66.6 72.2

68.5 74.0 68.5 75.9

60%

62.5 66.6 70.8 72.2
58.3 66.6 50.0 66.6
70.8 70.8 62.5 72.2

63.9 68.0 61.1 70.3

The statistical analysis through a two-way ANOVA showed that the main effects,
the proportion of samples used for training and the resolution, are not significant with
α = 0.05 (the p-values were 0.0140 and 0.0771, respectively). However, their interaction
was statistically significant, with a p-value of 0.0004. Because the interaction effect was
statistically significant, we compared all group means from the interaction of the two
factors. The p-values were adjusted by using the Tukey method for comparing a family
of 12 configurations. The results suggested that the worst combination arose when using
80% of the base dataset for training and 160 × 120 pixels as resolution. The confidence
interval for the average accuracy (with 95% of confidence), lies between 36.6% and 57.8%.
Conversely, the remaining configurations are considered equally useful from the statistical
perspective, since their confidence intervals overlap.

To have a better look at the behavior of these configurations, we also analyzed the
interaction plot of the proportion of samples from the base dataset used for training and
the resolution (Figure 7). The interaction plot confirmed the idea that using 80% and
160 × 120 pixels harms the process. So far, we do not have an explanation for such behavior
yet. However, we can also observe how similar the remaining configurations are, in terms
of accuracy. As the best results in this experiment were obtained by using 70% of the
base dataset for training purposes, we kept this value as a recommended one for the
following experiments.
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Figure 7. Interaction plot of the proportion of the base set used for training (80%, 70%, and 60%) and
resolution (32 × 24, 40 × 30, 80 × 60, and 160 × 120 pixels) using the accuracy values obtained from
experiment P02.

4.1.3. Experiment P03—Effect of the Depth (In Unbalanced Datasets)

At this point, we had only explored the behavior of the models in balanced sets (same
proportion of normal behavior and suspicious behavior samples). For this experiment, we
analyzed the effect of the depth and the resolution (as we did in experiment P01), but this
time on an unbalanced set that contains 90 samples (60 normal behavior samples and
30 suspicious behavior ones). As we learned from the previous experiment, the models
obtained the best performance when 70% of the base dataset was used for training. Then,
we used such a value for this experiment. For the depth, three values were allowed: 10,
30, and 90 frames, while four values were available for the resolution: 32 × 24, 40 × 30,
80 × 60, and 160 × 120 pixels. The combinations of these parameters give 12 configurations.
For each of these configurations, we trained three independent models. The results from
this experiment, in terms of accuracy, are depicted in Table 4.

The statistical analysis through the two-way ANOVA suggests that the effect of the
depth is not statistically significant (p-value of 0.1786). However, the effect of the resolution,
as well as the interaction between the depth and the resolution, are statistically significant
with p-values of 7.09 ×10−5 and 0.0031, respectively. As the interaction between the depth
and the resolution is important in this case, we used the Tukey method for comparing a
set of 12 configurations and adjusting the p-values, as we did in the previous experiment.
The results show that the configurations can be classified into four groups, based on the
accuracy obtained. However, these groups overlap for many of the configurations. Based
on the confidence intervals for the average accuracy of the models (with 95% of confidence),
the configuration with the most promising confidence interval for the average accuracy
was using 90 frames and 80 × 60 pixels as resolution.

For clarity, we also included the interaction plot as we did for the previous experiments.
Figure 8 suggests that, in unbalanced sets, the combination of depth and resolution is
important to get a good accuracy. The information from the interaction plot seems to
indicate that, for large resolutions such as 160 × 120 pixels, increasing the number of
frames decreases the model’s accuracy. Conversely, for slightly lower resolutions such
as 80 × 60 pixels, increasing the number of frames improves the model’s accuracy. Then,
based on the statistical results as well as the analysis of the interaction plot, we can
recommend that, when dealing with unbalanced sets, the best configuration is to use
90 frames and 80 × 60 pixels.
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Table 4. Accuracy (%) of the models trained with the 12 different configurations from experiment
P03. Each cell presents the accuracy of three independent models per configuration and its average.
The best results per resolution are highlighted in bold.

Resolution (Pixels)

Depth (Frames) 32 × 24 40 × 30 80 × 60 160 × 120

10

66.6 70.3 62.0 74.1
66.6 62.9 66.6 77.7
66.6 70.3 77.7 85.1

66.6 67.8 68.8 79.0

30

70.3 55.5 81.4 77.7
66.6 66.6 77.7 77.7
70.3 74.0 81.4 85.1

69.1 65.4 80.2 80.2

90

66.6 62.9 81.4 66.6
70.3 62.9 81.4 66.6
70.3 70.3 81.4 66.6

69.1 65.4 81.4 66.6

Figure 8. Interaction plot of depth (10, 30, and 90 frames) and resolution (32 × 24, 40 × 30, 80 × 60,
and 160 × 120 pixels) using the accuracy values obtained from experiment P03.

4.1.4. Experiment P04—Effect of the Data Augmentation Technique (In Balanced Datasets)

Data augmentation techniques are an option to take advantage of small datasets.
For this reason, we tested the model performance using original and horizontally flipped
images in different runs. The training set has a size of 60% (Table 5 and Figure 9) and
70% (Table 6 and Figure 10) of the total dataset.

When 60% of the dataset was used for training, we found that the effect of using
data augmentation is not significant (its p-value was 0.1736). However, the effect of the
resolution is significant, given a p-value of 0.0050. The p-value for the interaction of these
two factors was 0.0176, which is significant, with a 5% of significance. To extend the
analysis, we also provide the interaction plot of these two factors, which is depicted in
Figure 9. As it can be observed, including the horizontally flipped samples, in general,
increases the model’s performance. The only configuration that seems to contradict this
trend is when the resolution is set to 160 × 120 pixels. We do not have a concrete explanation
of this behavior, but it could be related to the computing power related to learning at a
higher resolution.
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Table 5. Accuracy (%) of the models trained with the eight different configurations from experiment
P04 (using 60% of the dataset for training). Each cell presents the accuracy of three independent
models per configuration and its average. The best results per resolution are highlighted in bold.

Resolution (Pixels)

Flipped 32 × 24 40 × 30 80 × 60 160 × 120

FALSE

72.9 70.8 79.1 77.0
70.8 72.9 79.1 83.3
70.8 70.8 72.9 70.8

71.5 71.5 77.0 77.0

TRUE

70.8 77.0 83.3 72.9
75.0 75.0 87.5 68.7
75.0 79.1 79.1 70.8

73.6 77.0 83.3 70.8

Figure 9. Interaction plot of depth (10, 30, and 90 frames) and resolution (32 × 24, 40 × 30, 80 × 60,
and 160 × 120 pixels) using the accuracy values obtained from experiment P04 (using 60% of the
dataset for training).

When 70% of the dataset was used for training, we could not found evidence that
the main effects, and neither their interaction, were significant. However, the effect of
the resolution is significant with α = 0.05 (the p-values were 0.0.1797, 0.1051, and 0.2248,
respectively). To deepen this situation, we present the interaction plot of these two factors,
which is depicted in Figure 10. Based on the interaction plot, using 70% of the dataset
when horizontally flipped samples are included does not affect the model’s performance.
The only configuration that seems to contradict this idea is when the resolution is set to
80 × 60 pixels. In this case, we cannot explain why this situation occurred. Further research
in this regard will be needed to explain this behavior.

Table 6. Accuracy (%) of the models trained with the eight different configurations from experiment
P04 (using 70% of the dataset for training). Each cell presents the accuracy of the three independent
models per configuration and its average. The best results per resolution are highlighted in bold.

Resolution (Pixels)

Flipped 32 × 24 40 × 30 80 × 60 160 × 120

69.4 66.6 72.2 72.2

FALSE

77.7 72.2 75 83.3
80.5 75.0 66.6 83.3

75.9 71.3 71.3 79.6

80.5 66.6 75.0 77.7

TRUE

75 77.7 86.1 77.7
75 72.2 83.3 80.5

76.8 72.2 81.5 78.6
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Figure 10. Interaction plot of depth (10, 30, and 90 frames) and resolution (32 × 24, 40 × 30, 80 × 60,
and 160 × 120 pixels) using the accuracy values obtained from experiment P04 (using 70% of the
dataset for training).

As the experiments with 60% and 70% obtained similar results in terms of accuracy,
we considered that any of these configurations could effectively be used to train the
model. Then, we kept 70% as the proportion of samples to be used for training in the
remaining experiments.

4.2. Confirmatory Experiments

For the confirmatory experiments, we focused on analyzing our model on larger
datasets that include horizontally flipped samples. For this purpose, we analyzed the effect
of the depth and resolution (as we did in experiment P01) but this time on larger sets that
included horizontally flipped samples. The first dataset contains 240 samples (120 normal
behavior samples and 120 suspicious behavior ones) while the second contains 180 samples
(120 normal behavior samples and only 60 suspicious behavior ones). However, these
samples are not independent as they include flipped ones. When we refer to the number of
samples, we mean the number of available videos, regardless of being the original ones
extracted using the PCB method or their flipped versions. Based on the proportion of
normal and suspicious samples in each dataset, we can state that the first one is “balanced”,
while the second one is not. As we learned from the previous experiment, the training set
corresponds to 70% of the base dataset.

4.2.1. Experiment C01—Effect of the Depth (In Larger Balanced and Unbalanced Datasets
with Data Augmentation)

First, for the depth, three values were allowed: 10, 30, and 90 frames, while four values
were available for the resolution: 32 × 24, 40 × 30, 80 × 60, and 160 × 120 pixels. Then,
for each set, the combinations of depth and resolution produce 12 different configurations.
The results of this experiment are depicted in Tables 7 and 8.

In the case of the balanced dataset (Table 7), the best average results are mainly
obtained when 30 frames are used. If we consider the resolution, it seems that 80 × 60 is
the best choice. In general, it seems that using 90 frames affects the model’s performance.
The results are similar when the unbalanced dataset is used (Table 8). However, this time
there is one case where using 90 frames produced the best average results (when combined
with 40 × 30 pixels as resolution).
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Table 7. Accuracy (%) of the models trained with the 12 different configurations from experiment C01
(balanced dataset with data augmentation). Each cell presents the accuracy of the three independent
models per configuration and its average. The best results per resolution are highlighted in bold.

Resolution (Pixels)

Depth (Frames) 32 × 24 40 × 30 80 × 60 160 × 120

10

75.0 72.2 83.3 77.7
84.7 86.1 86.1 77.7
66.6 68.0 91.6 80.5

75.4 75.4 87.0 78.6

30

80.5 66.6 76.3 86.1
77.7 80.5 86.1 90.2
75.0 81.9 75.0 81.9

77.7 76.3 79.1 86.1

90

69.4 72.2 83.3 50.0
75.0 79.1 81.9 77.7
79.1 75.0 83.3 50.0

74.5 75.4 82.8 59.2

Table 8. Accuracy (%) of the models trained with the 12 different configurations from experiment
C01 (unbalanced dataset with data augmentation). Each cell presents the accuracy of the three
independent models per configuration and its average. The best results per resolution are highlighted
in bold.

Resolution (Pixels)

Depth (Frames) 32 × 24 40 × 30 80 × 60 160 × 120

10

83.3 68.5 81.4 79.6
64.8 70.3 77.7 77.7
57.4 66.6 79.6 79.6

68.5 68.5 79.6 79.0

30

72.2 66.6 87.0 87.0
81.4 70.3 61.1 74.0
74.0 62.9 81.4 68.5

75.9 66.6 76.5 76.5

90

68.5 74.0 59.2 70.3
83.3 74.0 70.3 66.6
70.3 72.2 81.4 66.6

74.0 73.4 70.3 67.8

4.2.2. Experiment C02—Aiming for the Best Model

Based on the results from the previous experiment, we analyzed the results to decide
which parameters might improve behavior classification, and selected the configurations
with the best performance. Then, the depth of 90 frames was excluded from this experiment.
We repeated the configurations used in the previous experiment (excluding the 90 frames
as depth), but this time running 30 times each configuration. Besides, this time we used
using cross-validation, to extend the results previously obtained.

Table 9 presents average accuracy and the standard deviation of each configuration
tested in experiment C02. Most of the results have an accuracy of around 70%. As observed,
there is no significant deviation in each training group. The results seem very similar
among them. However, the results when 10 frames and 80 × 60 pixels are used is slightly
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better than the rest. On an individual level, the best model was also obtained when this
resolution was used. The best model correctly classified 92.50% of the samples.

On a final test, we used the best model obtained to solve the four configurations
available when 80 × 60 pixels are used. This way, we tested the model on the balanced
dataset with 10 and 30 frames, and in the unbalanced dataset, also with 10 and 30 frames.
The results are presented in terms of the confusion matrices, as shown in Figure 11. To
deepen the results, we present the precision and recall for each class in isolation. For suspi-
cious behavior, the model presents a precision that ranges from 0.7826 (unbalanced dataset
with 30 frames) to 0.8571 (balanced dataset with 10 frames). This means that when the
model classifies a behavior as suspicious, it is correct in at least 78% of the cases. Regarding
the recall for suspicious behavior, it is equal to 1 in all cases. This means that the model
correctly classifies all the suspicious behavior samples in the test set (no suspicious sample
was classified as a normal one). For normal behavior, the model’s precision is always equal
to 1, meaning that whenever the model predicts that a sample is normal, the model is
always correct. Regarding the recall for normal behavior, the values range from 0.8055
(balanced dataset with 30 frames) to 0.8888 (unbalanced dataset with 10 frames), which
means that the best model correctly classifies 88% of the normal behavior samples in the
unbalanced dataset with 10 frames of depth.

Table 9. Accuracy (%) of the models trained with the 16 different configurations from the confirmatory experiment. Each
cell presents the average accuracy of 30 independent models per configuration and its standard deviation. The best results
per resolution are highlighted in bold.

Resolution (Pixels)

Number of Samples
(Normal/Suspicious) Depth (Frames) 32 × 24 40 × 30 80 × 60 160 × 120

120/120 10 70.3 (0.0476) 71.8 (0.0468) 73.0 (0.0717) 73.1 (0.0661)

30 70.1 (0.0574) 71.9 (0.055) 73.6 (0.0821) 71.6 (0.0999)

120/60 10 69.4 (0.0686) 68.7 (0.0569) 75.0 (0.0689) 75.7 (0.0638)

30 71.6 (0.0533) 69.1 (0.0576) 74.8 (0.0500) 73.9 (0.0543)

(a) Balanced dataset with 10 frames. (b) Unbalanced dataset with 10 frames.

(c) Balanced dataset with 30 frames. (d) Unbalanced dataset with 30 frames.

Figure 11. Confusion matrices for the best model generated for each configuration in the confirma-
tory experiment.
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4.3. Discussion

There are some aspects related to the proposed model and the results obtained so far
that are worth discussing:

• The system can be used to classify normal and suspicious behavior given the proper con-
ditions.

• The PCB method exhibits some limitations as it is yet a manual process.
• The time needed for training the models suggests that training time may not be related

to accuracy.
• There is an apparent relationship between the model’s performance and the number

of parameters in the models.

The following lines deepen into these critical aspects.
As the first experiment in this work, we selected a 3D Convolutional Neural Network

with a basic configuration as a base model. Then, we tried different configurations as a
means for parameter tuning. The result of this process was a configuration that improved
the performance of the model. From the parameter exploration phase, we found that
80 × 60 and 160 × 120 resolutions delivered better results than a commonly used low
resolution. This experiment was limited to a maximum resolution of 160 × 120 due to
processing resources. Another significant aspect to consider is the “depth” parameter. This
parameter describes the number of consecutive frames used to perform the 3D convolution.
After testing different values, we observed that small values, between 10 and 30 frames,
show a good trade-off between image detail and processing time. These two factors impact
the network model training and the correct classification of the samples. Furthermore,
the proposed model can correctly handle flipped images and unbalanced datasets. We
confirmed this idea through the experiments performed on a more realistic simulation
where the dataset has more normal behavior samples than suspicious behavior ones.

It is important to clarify the process for extracting the behavior samples from the UCF-
Crime dataset. We are aware of the problems that may arise from using a non-automated
method to extract the video segments from the original dataset. For example, (1) as it is a
manual process, it is restricted to small datasets, and (2) due to its subjectivity, different
executions may lead to different video segments (even if the same observer is involved).
Although the PCB method exhibits those limitations, no other investigation has addressed
this problem in the way we propose. Then, the PCB method is the only systematic technique
we have to extract behavioral information in the way we need it, from the original dataset.
For the sake of reproducibility, we have included a relation of the segments of videos
from the UCF-Crime dataset that we used as input for the DL models in this work. This
information can be consulted in the appendices, in Tables A1 and A2. Then, any future
work that wants to use our video samples can use such segments—without the need to
rerun the PCB method.

Regarding the processing time, we use Google Colaboratory to perform the experi-
ments in this work. This tool is based on Jupyter Notebooks and allows using the GPU.
The speed of each training depends on the tool demand. Most of the networks in this
investigation were trained in less than an hour. However, a higher GPU demand may
impact the training time. At the moment, we cannot establish a formal relationship be-
tween the resolutions of the videos and the training time, but we have an estimation of
how different depths impacted the training time. Table 10 shows the average training
times of models generated for experiment C01, as described in Section 4.2.1 (the results of
these experiments are shown in Tables 7 and 8). From these results, it is clear that using a
higher resolution and a larger depth increases the computational resources required for the
training. In our particular case, some of the runs on the higher resolution (160 × 120) and
maximum number of frames (90) took up to four hours. This information should be taken
into consideration for further studies as the training time is an essential factor and, in this
case, we are dealing with datasets that can be considered small. Besides, another point
to consider is the model’s accuracy against the training time required to generate such
a model. Although the training time drastically increases when the resolution increases,
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the accuracy does not increase in a similar proportion. Particularly, we found cases where
increasing the resolution worsen the accuracy of the models produced.

As the results from the confirmatory experiments suggest, the 80 × 60 input resolution
generates the best accuracy values. Although we have not confirmed our ideas, we
think the accuracy might be related to the network’s number of parameters and image
information. A balance between these two parameters may impact the final result. While
smaller resolutions mean fewer parameters, it also means less information to model the
offender’s behavior. On the contrary, a big resolution could give more details in visual data
to analyze, but also imply more processing and many more parameters to optimize. Thus,
we think this balance between resolution and parameters might cause an improvement in
the model’s accuracy. However, more research is required to support this claim.

Table 10. Average training times in seconds comparison between different depths and resolutions.

Resolution (Pixels)

Number of Samples
(Normal/Suspicious) Depth (Frames) 32 × 24 40 × 30 80 × 60 160 × 120

120/120
10 118 157 475 1714

30 257 364 1304 4952

90 688 1011 3879 15,415

120/60
10 96 126 369 1356

30 196 279 1027 3918

90 518 758 2929 11,655

5. Conclusions

For this work, we have focused on the behavior performed by a person during the
build-up phase of a shoplifting crime. The neural network model identifies the previous
conduct, looking for suspicious behavior, and not recognizing the crime itself. This behavior
analysis is the principal reason why we remove the committed crime segment from the
video samples, to allow the artificial model to focus on decisive conduct and not in the
offense. We implement a 3D Convolutional Neural Network due to its capability to
obtain abstract features from signals and images, based on previous action recognition and
movement detection approaches.

Based on the results obtained from the conducted experimentation, 75% of accuracy
in suspicious behavior detection. Then, we can state that it is possible to model a person’s
suspicious behavior in the shoplifting context. We found which parameters fit better for
behavior analysis through the presented experimentation, particularly for the shoplifting
context. We explore different parameters and configurations, and, in the end, we compare
our results against a reference 3D Convolutional architecture. The proposed model demon-
strates a better performance with balanced and unbalanced datasets using the particular
configuration obtained from previous experiments.

The final intention of this experimentation is to develop a tool capable of supporting
the surveillance staff, presenting visual behavioral cues, and this work is a first step to
achieve the mentioned goal. We will explore different aspects that will contribute to the
project development, such as bigger datasets, adding more criminal contexts that present
suspicious behavior, and real-time tests.

In these experiments, we used a selected number of videos from the UCF-Crimes
dataset. As future work, and aiming at testing our model in a more realistic simulation, we
will increase the number of samples, preferably the normal behavior ones, to create a bigger
sample imbalance between classes. Another exciting aspect of the development of this
project is expanding our behavior detection model to other contexts. It exists many situa-
tions where we can find suspicious behavior, such as stealing, arson intents, and burglary.
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We will gather videos of different contexts to strengthen the capability to detect suspicious
behavior. Finally, the automation of the PCB method for video segmentation stands out
as an interesting point to explore. This will reduce the preprocessing time, which would
allow analyzing a larger amount of data. For this reason, we consider this an important
path for future work derived from this investigation.
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Abbreviations
The following abbreviations are used in this manuscript:

3DCNN Three-Dimensional Convolutional Neural Network
ACC Accuracy
ANOVA Analysis of Variance
B2NM Back to Normal Moment
CCM Comprehensive Crime Moment
CES Crime Evidence Segment
DL Deep Learning
FAM First Appearance Moment
GPU Graphics Processing Unit
NRSS National Retail Security Survey
PCB Pre-Crime Behavior method
PCBS Pre-Crime Behavior Segment
SBS Suspicious Behavior Segment
SCM Strict Crime Moment
TN True Negative
TP True Positive
VFOA Visual Focus Of Attention

Appendix A. Experimental Description

• Preliminary experiment P01:

– Dataset: IDs 1 to 30 from Table A1 and IDs 1 to 30 from Table A2.
– Training set size: 80% of the base dataset.
– Depth: 10, 30, and 90 frames.
– Resolutions: 32 × 24, 40 × 30, 80 × 60, and 160 × 120.
– Epochs: 100.
– Runs: Three per configuration.

• Preliminary experiment P02:

– Dataset: IDs 1 to 30 from Table A1 and IDs 1 to 30 from Table A2.
– Training set size: 80%, 70%, and 60% of the base dataset.
– Depth: 10 frames.
– Resolutions: 32 × 24, 40 × 30, 80 × 60, and 160 × 120.
– Epochs: 100.
– Runs: Three per configuration.

• Preliminary experiment P03:

– Dataset: IDs 1 to 60 from Table A1 and IDs 1 to 30 from Table A2.
– Training set size: 70% of the base dataset.
– Depth: 10, 30, and 90 frames.
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– Resolutions: 32 × 24, 40 × 30, 80 × 60, and 160 × 120.
– Epochs: 100.
– Runs: Three per configuration.

• Preliminary experiment P04:

– Datasets: IDs 1 to 60 from Table A1 and IDs 1 to 60 from Table A2; and IDs 1 to 60
from Table A1 (horizontally flipped) and IDs 1 to 60 from Table A2 (horizontally
flipped).

– Training set size: 60% and 70% of the base dataset.
– Depth: 10.
– Resolutions: 32 × 24, 40 × 30, 80 × 60, and 160 × 120.
– Epochs: 100.
– Runs: Three per configuration.

• Confirmatory experiment C01:

– Datasets: IDs 1 to 60 from Table A1 and IDs 1 to 60 from Table A2, IDs 1 to 60
from Table A1 (horizontally flipped) and IDs 1 to 60 from Table A2 (horizontally
flipped); IDs 1 to 60 from Table A1 and IDs 1 to 60 from Table A2 and IDs 1 to 60
from Table A1 (horizontally flipped).

– Training set size: 70% of the base dataset.
– Depth: 10, 30, and 90 frames.
– Resolutions: 32 × 24, 40 × 30, 80 × 60, and 160 × 120.
– Epochs: 100.
– Runs: Three per configuration.

• Confirmatory experiment C02:

– Datasets: IDs 1 to 60 from Table A1 and IDs 1 to 60 from Table A2, IDs 1 to 60
from Table A1 (horizontally flipped) and IDs 1 to 60 from Table A2 (horizontally
flipped); IDs 1 to 60 from Table A1 and IDs 1 to 60 from Table A2 and IDs 1 to 60
from Table A1 (horizontally flipped).

– Training set size: 70% of the base dataset.
– Depth: 10, 30, and 90 frames.
– Resolutions: 32 × 24, 40 × 30, 80 × 60, and 160 × 120.
– Epochs: 100.
– Runs: Three per configuration.
– Cross validation: 10 folds.
– SBT_balanced_240_70t

Appendix B. Normal Behavior Samples

Table A1. List of normal behavior samples. Videos were taken from the UCF-Crime dataset [30].

ID File Begin End ID File Begin End

1 Normal_Videos001_x264.mp4 0:00 0:18 31 Normal_Videos023_x264.mp4 0:00 0:59
2 Normal_Videos002_x264.mp4 0:00 0:55 32 Normal_Videos024_x264.mp4 0:00 0:36
3 Normal_Videos003_x264.mp4 0:00 1:34 33 Normal_Videos029_x264.mp4 0:00 0:29
4 Normal_Videos004_x264.mp4 0:00 0:31 34 Normal_Videos030_x264.mp4 0:00 1:00
5 Normal_Videos005_x264.mp4 0:00 0:13 35 Normal_Videos034_x264.mp4 0:00 0:44
6 Normal_Videos006_x264.mp4 0:00 0:15 36 Normal_Videos036_x264.mp4 0:00 0:44
7 Normal_Videos007_x264.mp4 0:00 0:37 37 Normal_Videos039_x264.mp4 0:00 1:00
8 Normal_Videos008_x264.mp4 0:00 1:26 38 Normal_Videos041_x264.mp4 0:00 0:42
9 Normal_Videos009_x264.mp4 0:08 0:17 39 Normal_Videos043_x264.mp4 0:00 0:58

10 Normal_Videos010_x264.mp4 0:00 0:35 40 Normal_Videos044_x264.mp4 0:00 1:24
11 Normal_Videos011_x264.mp4 0:00 0:30 41 Normal_Videos047_x264.mp4 0:00 1:00
12 Normal_Videos012_x264.mp4 0:00 1:18 42 Normal_Videos048_x264.mp4 0:00 0:56
13 Normal_Videos013_x264.mp4 0:00 0:40 43 Normal_Videos049_x264.mp4 0:00 1:00
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Table A1. Cont.

ID File Begin End ID File Begin End

14 Normal_Videos014_x264.mp4 0:00 0:50 44 Normal_Videos051_x264.mp4 0:00 1:19
15 Normal_Videos015_x264.mp4 0:00 0:16 45 Normal_Videos052_x264.mp4 0:00 0:11
16 Normal_Videos017_x264.mp4 0:00 0:28 46 Normal_Videos053_x264.mp4 0:00 0:13
17 Normal_Videos020_x264.mp4 0:00 0:16 47 Normal_Videos054_x264.mp4 0:00 1:06
18 Normal_Videos021_x264.mp4 0:00 1:05 48 Normal_Videos055_x264.mp4 0:00 0:08
19 Normal_Videos022_x264.mp4 0:00 0:13 49 Normal_Videos056_x264.mp4 0:00 0:52
20 Normal_Videos025_x264.mp4 0:00 0:25 50 Normal_Videos057_x264.mp4 0:00 1:00
21 Normal_Videos026_x264.mp4 0:00 1:31 51 Normal_Videos058_x264.mp4 0:00 0:33
22 Normal_Videos027_x264.mp4 0:00 2:44 52 Normal_Videos059_x264.mp4 0:00 1:01
23 Normal_Videos028_x264.mp4 0:00 5:21 53 Normal_Videos061_x264.mp4 0:00 1:00
24 Normal_Videos032_x264.mp4 0:00 0:28 54 Normal_Videos062_x264.mp4 0:00 0:52
25 Normal_Videos033_x264.mp4 0:00 0:56 55 Normal_Videos063_x264.mp4 0:00 0:12
26 Normal_Videos035_x264.mp4 0:04 8:00 56 Normal_Videos064_x264.mp4 0:12 1:10
27 Normal_Videos037_x264.mp4 0:00 0:15 57 Normal_Videos065_x264.mp4 0:00 0:29
28 Normal_Videos038_x264.mp4 0:00 1:39 58 Normal_Videos066_x264.mp4 0:00 0:34
29 Normal_Videos042_x264.mp4 0:00 1:45 59 Normal_Videos067_x264.mp4 0:00 0:36
30 Normal_Videos045_x264.mp4 0:00 0:52 60 Normal_Videos073_x264.mp4 0:08 0:30

Appendix C. Suspicious Behavior Samples

Table A2. List of suspicious behavior samples. Videos were taken from the UCF-Crime dataset [30].

ID File Begin End ID File Begin End

1 Shoplifting001_x264.mp4 0:00 0:41 31 Shoplifting034_x264.mp4 2:56 3:08
2 Shoplifting005_x264.mp4 0:00 0:25 32 Shoplifting034_x264.mp4 3:12 3:39
3 Shoplifting006_x264.mp4 0:09 0:57 33 Shoplifting034_x264.mp4 3:42 3:43
4 Shoplifting008_x264.mp4 2:10 2:52 34 Shoplifting034_x264.mp4 3:47 4:04
5 Shoplifting009_x264.mp4 0:29 2:26 35 Shoplifting034_x264.mp4 4:09 4:34
6 Shoplifting010_x264.mp4 0:19 0:24 36 Shoplifting036_x264.mp4 0:56 1:44
7 Shoplifting010_x264.mp4 0:43 0:51 37 Shoplifting037_x264.mp4 0:00 0:38
8 Shoplifting012_x264.mp4 1:25 4:26 38 Shoplifting038_x264.mp4 0:50 1:20
9 Shoplifting012_x264.mp4 4:38 5:53 39 Shoplifting039_x264.mp4 0:14 1:10

10 Shoplifting014_x264.mp4 5:51 6:23 40 Shoplifting040_x264.mp4 0:00 0:27
11 Shoplifting014_x264.mp4 6:29 11:43 41 Shoplifting040_x264.mp4 0:34 1:00
12 Shoplifting014_x264.mp4 12:03 18:46 42 Shoplifting040_x264.mp4 1:06 2:24
13 Shoplifting014_x264.mp4 19:01 27:43 43 Shoplifting040_x264.mp4 2:36 4:39
14 Shoplifting015_x264.mp4 0:24 1:07 44 Shoplifting040_x264.mp4 4:50 5:38
15 Shoplifting016_x264.mp4 0:00 0:15 45 Shoplifting040_x264.mp4 5:48 7:12
16 Shoplifting017_x264.mp4 0:00 0:12 46 Shoplifting042_x264.mp4 0:00 1:04
17 Shoplifting018_x264.mp4 0:00 0:14 47 Shoplifting044_x264.mp4 0:00 6:09
18 Shoplifting018_x264.mp4 0:27 0:37 48 Shoplifting047_x264.mp4 0:00 0:32
19 Shoplifting019_x264.mp4 0:06 0:08 49 Shoplifting047_x264.mp4 0:34 0:43
20 Shoplifting020_x264.mp4 1:04 1:17 50 Shoplifting047_x264.mp4 0:47 0:50
21 Shoplifting021_x264.mp4 0:00 1:09 51 Shoplifting047_x264.mp4 0:53 0:59
22 Shoplifting024_x264.mp4 0:00 0:27 52 Shoplifting048_x264.mp4 0:11 0:25
23 Shoplifting025_x264.mp4 0:00 0:56 53 Shoplifting049_x264.mp4 0:00 0:33
24 Shoplifting028_x264.mp4 0:06 0:20 54 Shoplifting051_x264.mp4 0:15 2:32
25 Shoplifting028_x264.mp4 0:23 0:26 55 Shoplifting052_x264.mp4 0:07 0:29
26 Shoplifting029_x264.mp4 0:06 0:27 56 Shoplifting052_x264.mp4 0:34 0:54
27 Shoplifting031_x264.mp4 0:00 0:04 57 Shoplifting052_x264.mp4 1:04 1:29
28 Shoplifting033_x264.mp4 0:00 0:22 58 Shoplifting052_x264.mp4 1:35 2:12
29 Shoplifting034_x264.mp4 0:25 2:36 59 Shoplifting052_x264.mp4 2:16 2:39
30 Shoplifting034_x264.mp4 2:42 2:53 60 Shoplifting053_x264.mp4 0:00 0:43
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