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Abstract: In this paper, we consider an important problem for modeling complex coupled phenom-
ena in porous media at multiple scales. In particular, we consider flow and transport in the void space
between the pores when the pore space is altered by new solid obstructions formed by microbial
growth or reactive transport, and we are mostly interested in pore-coating and pore-filling type
obstructions, observed in applications to biofilm in porous media and hydrate crystal formation,
respectively. We consider the impact of these obstructions on the macroscopic properties of the
porous medium, such as porosity, permeability and tortuosity, for which we build an experimental
probability distribution with reduced models, which involves three steps: (1) generation of indepen-
dent realizations of obstructions, followed by, (2) flow and transport simulations at pore-scale, and
(3) upscaling. For the first step, we consider three approaches: (1A) direct numerical simulations
(DNS) of the PDE model of the actual physical process called BN which forms the obstructions, and
two non-DNS methods, which we call (1B) CLPS and (1C) LP. LP is a lattice Ising-type model, and
CLPS is a constrained version of an Allen–Cahn model for phase separation with a localization term.
Both LP and CLPS are model approximations of BN, and they seek local minima of some nonconvex
energy functional, which provide plausible realizations of the obstructed geometry and are tuned
heuristically to deliver either pore-coating or pore-filling obstructions. Our methods work with
rock-void geometries obtained by imaging, but bypass the need for imaging in real-time, are fairly
inexpensive, and can be tailored to other applications. The reduced models LP and CLPS are less
computationally expensive than DNS, and can be tuned to the desired fidelity of the probability
distributions of upscaled quantities.

Keywords: flow in porous media; pore-scale with obstructions; upscaling; reduced order model

1. Introduction

In this paper, we develop reduced computational models motivated by a particular
class of multiscale applications in porous media. Porous media are ubiquitous in nature
and technology, and flow and transport in porous media has important applications in
groundwater management, oil and gas reservoirs, modeling human tissue including lung
and bone, and in other materials including wood and paper products.

Porous media are made of solid grains surrounded by the fluid domain D f in pore
space; see Figure 1 for illustration. The modeling of processes in porous media proceeded
only at a Darcy scale of [cm] and above up until the year 2000. At Darcy scale, only the Darcy
properties, such as porosity φ (average volume fraction of the voids) and permeability K
(average proportionality coefficient in Darcy’s law for momentum equation), were studied
and experimentally obtained, and the details of D f were not recognized in practice, even if
they were recognized as important [1]. In particular, there are well known correlations for
K = K(φ) derived from idealizing the pore-scale geometry of D f as a bundle of tubes or
space between, e.g., periodically distributed spherical grains. In a more general context,
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the wide variety of porous media and the uncertainty of the actual values of φ and K in
heterogeneous reservoirs led to research on the stochastic modeling of φ(x, ω) and K(x, ω),
such as in [2–5], where ω is the random variable representing the uncertainty.

(a) 204× 204 (b) 100× 100 (c) 100× 100 (d) 150× 150

Figure 1. Different pore-scale domains without obstructions: Dv = D f in black, and Dr in white, with
resolution as shown. From left to right: one slice of µ-CT data processed in [6–8], respectively, for (a)
synthetic porous media (glass beads), (b) sandstone, (c) unconsolidated sand, and (d) proppant. Data
courtesy of D. Wildenschild, B. Lindquist, A. Trykozko, and M. Dohnalik; see [6–9].

Since about the year 2000, advances in imaging led to an explosion of micro-images of
D f and of its surrounding rock Dr—see, e.g., [10–12] and the Digital Rocks portal [13]. See
also efforts on pore network modeling [10,14,15], and [16] and references therein. Each D f
imaged by µ-CT is segmented and digitized as a collection of voxels. The voxel geometry
representing D f or its Representative Elementary Volume (REV) subset can be used as
a computational domain for direct numerical simulations (DNS) of flow and transport,
followed by upscaling of Stokes to Darcy’s law, to deliver φ and K for this particular D f .
This process is now fairly standard, and its many variants have been widely reported in
the literature, with many interesting and important algorithmic and application questions
resolved and many more raised. It is now recognized that modeling at the pore-scale and
upscaling of the properties of porous media are important for the qualitative understanding
and quantitative modeling of the processes at large scales. However, questions remain on
how to make use of K found for a particular D f , since the actual geometry of each D f is
completely random. One might, therefore, infer that, for a particular collection of samples
or corresponding REVs, φ = φ(ω) and K = K(ω). For perspectives on the randomness
of porous media, see [1,17]. See also our work on analysis and algorithms for anisotropic
non-Darcy flow to upscaling from pore-scale to Darcy scale in [7,8,18–20].

However, much less is known about φ and K in the important case when the pore
geometry changes in time due to chemical reactions or similar processes; see Figure 2
(bottom). Here, the recent work includes [9,21,22], which emphasize the multifaceted
challenges associated with pore-scale modeling and upscaling when the geometry changes.
In principle, one could attempt to image the evolving porous media in time t, observe
D f (t), find the corresponding φ(t), and K(t), and record information about some quantity
ξ associated with the process creating the solid obstructions. However, obtaining these
data are expensive in terms of both material and person–time efforts, as well as being
computationally intensive. It might also be technologically infeasible: in the case of
biomass, x-ray imaging requires stopping the reproduction, and if done continuously, the
process alters their ability to grow. Therefore, a typical workflow involves taking images
prior to and after the process is complete. In particular, Figure 2 shows pore-scale after
more than 50% of D f has been plugged up. In addition, the values of φ = φ(ξ; t; ω), and
K = K(ξ; t; ω) are further burdened with more uncertainty.



Computation 2021, 9, 28 3 of 43

layer 32 layer 34 layer 36 layer 38

layer 150 layer 250 layer 350 layer 510

Figure 2. Pore-scale data with obstructions present with data from [6] on biofilm. All images are
at resolution 204× 204. Region Dv is in black, Dr in white, and Do in gray. Shown are horizontal
slices of column data for different layers, layer 34, which is identical to (a) in Figure 1. The original
porosity φ0 ≈ 0.44 for this layer is decreased to φ ≈ 0.157 with the corresponding relative volume of
obstructions Vo ≈ 0.648.The obstructions are pore-coating at lower Vo as well as when vertical slices
are considered.

These challenges motivate the alternative methods we explore in this paper.
Aim of this paper. Our goal is to propose a practical method to approximate the

connection between φ and K, specific to a particular process which obstructs the pore space,
while allowing and taking advantage of the inherent randomness of the problem. We focus
on the case when the pore space is being obstructed by a new solid phase, leading to the
change in flow paths, clogging of the pores and the decrease in φ and K. In particular, we
consider microbial growth leading to the plugging of porous media as well as the process
of crystal formation and phase transitions. These two processes create obstructions of the
pore-coating and pore-filling type. Other important scenarios not explored in this paper
include the dissolution of the rock grains, which leads to the increase in φ(t) and K(t), or
to the rearrangement and local changes in φ and K due to mechanical deformation.

Our approach to connect φ to K includes three steps: (1) generation of independent
realizations of obstructions in D f , followed by (2) flow and transport simulations at pore-
scale, and (3) upscaling. Step (1), the generation of new solid obstacles appearing in some
original unobstructed D f , can be done in several ways, which exploit computations and
randomness in many different ways. Steps (2–3) to calculate φ and K for the given D f or
its REV subset are fairly standard, as we explain in Section 2. In all cases, the variable ξ
responsible for the solid appearance is correlated with φ.

We consider three methods (1A–1B–1C) for step (1), and we follow with the same
workflow for (2–3) for each.

First, we consider (1A) Direct Numerical Simulations (DNS) of the actual physical pro-
cess underlying the changing D f (t) for the microbial growth application and pore-coating
obstructions. Each instance i = 1, . . . I of the (Monte Carlo ensemble of) DNS requires an
initial condition, which is assumed to be random, and leads to an instance of D(i)

f (t) of D f .

After steps (2–3), each D(i)
f (t) gives φ(i)(t) and K(i)(t), which we collect in an experimental

probability distribution for K(φ; ω) built from
(

φ(i)(t), K(i)(t)
)

i
. Unfortunately, DNS are

extremely complex and depend on a multitude of parameters which may or may not be
possible to calibrate. Rephrasing, DNS give very specific answers to what may be a very
non-specific question.

Because of this complexity, we propose two new computational evolution algorithms
(1B, 1C) which are surrogates of DNS of lesser complexity and are designed to generate
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plausible independent realizations D(i)
f for a given fixed φ. These eventually give an

experimental probability distribution for K(φ; ω) from the collection
(

K(i)(φ)
)

i
. The two

new models produce results similar to the known experimental and imaging results as well
as to DNS. Both models share a design: they generate

(
D(i)

f

)
i

by finding stationary states
of an evolution towards local minima of a certain non-convex design functional, which
determines the quality of the fit of D(i)

f to a particular design of interest. We find these local
minima in one of two ways, which we call (1B) Constrained Localized Phase Separattion
(CLPS) and (1C) LP.

(1B) is the Constrained Localized Phase Separation (CLPS), which seeks stationary
solutions to a partial differential equation, a continuum gradient flow model, and is our
proposed modification of the well-known phase separation Allen–Cahn model. In turn,
(1C) is the (lattice at pore-scale (LP) model, a discrete model which finds the states of a
Metropolis algorithm adapted to pore-scale. Both CLPS and LP are initiated with a random
initial state and calibrated to the desired qualitative behavior, consistent with the images
from the literature. When run multiple times, we find as many independent realizations I
as desired.

Broader context. First, this work is an alternative to traditional multiscale mod-
els which use a fixed pore-scale geometry [7,8,16,20,23] to calculate the corresponding
Darcy properties. Instead, we consider ensembles of geometries which change to reactive
transport. Our entire process is equivalent to creating off-line reduced models of certain
quantities of interest, and is a computationally attractive alternative to DNS, which itself is
an in silico alternative to imaging and experiments.

This work therefore fits in the area of reduced models [24] as well as in the emerging
area of multifidelity approaches [25]. These create a hierarchy of models which approximate
the same output but with a different fidelity or modeling accuracy. Our paper addresses the
specific challenges of multifidelity and reduced models in the area of pore-scale modeling
and upscaling. Specifically, the outputs of our models are pore geometries produced by the
DNS, CLPS, and LP models (high-, intermediate-, and low-fidelity models, respectively).
While we do not define any metric to compare these outputs, i.e., the geometries, directly,
we do so indirectly after upscaling when we compare the Darcy-scale quantities.

We find that, overall, the reduced models CLPS and LP produce geometries which
are visually similar to those generated by DNS. Furthermore, the Darcy scale quantities
calculated by upscaling are naturally also very similar between DNS and the reduced
models. The LP method is very fast but is also somewhat sensitive to the grid resolution
and may produce rugged structures at a low obstruction volume. The CLPS method is a bit
harder to calibrate and more computationally involved but produces results closer to the
DNS. All methods produce upscaled quantities which agree well with those known from
the literature for pore coating (mild decrease in K) and pore filling scenarios (dramatic
decrease in K).

For upscaling, we draw upon our prior work in collaboration with physical scien-
tists [6,18]. In particular, we set up flow experiments with flow rates in the linear laminar
regime, as established in [1,7], and we compare the resulting permeability reduction to
those cited in [26,27].

We see possibilities to expand on this work in the future and, in particular, the need
to define precise metrics of comparison between the geometries with some form of shape
analysis, as well as to connect these results to the data from imaging. Finally, the calibration
of the LP and CLPS models was done heuristically, but we envision that it could be guided
by some of the emerging data science approaches.

Overview. The outline of this paper is as follows. In Section 2, we define the notation
and motivate our interest in the obstructions of two particular types, called “pore filling”
and “pore coating”. These are important in two separate fields, respectively, hydrate crystal
and biofilm modeling. We also explain how to post-process our geometry with steps (2)
and (3). In Section 3, we present our (1A) DNS model for pore-coating associated with
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microbial growth. In Section 4, we present the (1B) CLPS model, and in Section 5, we
present (1C) the LP model. In Section 6, we present our results and discuss the complexity
of the three methods and sensitivity to the parameters. We close with a Summary and an
Appendix with auxiliary tools and details.

2. Motivation and Notation on Modeling Obstructions

In this section, we explain the specifics of porous media and define the notation. A
physical process taking place in porous media can be modeled at Darcy scale and at pore
scale. The Darcy-scale models rely primarily on empirical data obtained for cores extracted
from soil and rock, and the pore-scale models rely primarily on imaging and micro-fluidics
experiments. In this paper, we focus on fluid flow of water, with viscosity µ, and reactive
transport with phase transitions.

Numerical simulation of flow and transport aids in the understanding of and helps
to optimize human-engineered systems involving porous media, including oil and gas
recovery, remediation of contaminated aquifers, and biomedical applications in human
body. Traditional practical models of porous media such as aquifers or hydrocarbon
reservoirs [1,28] are posed at the Darcy scale.

In principle, one can also simulate various processes at the pore-scale, which delivers
more precision. However, the complexity of the transient flow and transport computations
is enormous; see [6] for various simulations of flow alone in realistic 3D pore geometries
of synthetic porous media and sandstone. See also [29] for the repository of 3d pore-
scale images.

In this paper, we propose reduced models for the multiscale connection between the
pore scale and Darcy scale. We consider a porous domain D ⊂ Rd, an open-bounded
set with 1 ≤ d ≤ 3. The position variable x = (xi)

d
i=1 ∈ D has d components, and so do

vector valued variables such as velocity u. We denote by 1.7em(x, A) = min
a∈A
||x− a||, with

1.7em(A, B) = mina∈A,b∈B ||a− b||, where ||a− b|| is the usual Euclidean distance between
the points a, b ∈ D.

2.1. Porous Media: Pore Scale and Darcy Scale

Porous media are materials in which the space D f available to fluid flow and transport
is mixed up with solid impermeable particles (rock) aggregated in Dr.

The pore scale is the scale of O(1[nm]) to O(1[¯m]) at which one recognizes the pore
walls, e.g., the interface Γ = ∂D f ∩ ∂Dr between the pore (void) space and the solid matrix.
We have that

D = Dr ∪ D f ∪ Γ, (1)

where Γ = ∂Dr ∩ ∂D f .
The Darcy scale is the scale of x = O(1[cm]) or above, at which the study of flow and

other properties does not recognize Dr and D f but rather relies on average properties
found experimentally in a laboratory using core samples. In particular, porosity φ (volume
fraction) is of interest, and permeability K, the coefficient of proportionality in Darcy
flow between volumetric flow and pressure gradient. The coefficients φ and K lump the
geometrical information about Dr and D f . In practice, one uses the probability distributions
K(φ; ω) around some known mean; here, ω refers to the uncertainty.

Imaging. In this paper, we work with geometries of D f and Dr found from imaging.
See Figures 3 and 4 for illustration of a d = 2 slice D from x-ray ct or (micro) µ-CT
tomography. In such an image, D is covered by a union of cells djl , also called voxels. For
simplicity, we will assume henceforth that every voxel is a cube of volume hd, with the
side length h fixed by the µ-CT equipment used. For simplicity, we also assume that every
D is rectangular. In particular, as in Figure 3 D =

⋃
jl djl , j = 1, . . . Mx, l = 1, . . . My with

M = Mx My denoting. Notation when d = 1 or d = 3 is analogous.
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Figure 3. Many-pore geometry with obstructions. D is a vertical slice from µ-CT column, with M = 152× 114 voxels. With
voxel size equal h× h, we have |Dr| = 9404 h2, |D f | = 7924 h2, and φ0 ≈ 0.457. Rock Dr is in black, fluid space Dv is in
blue, and obstructions Do are yellow. Left: unobstructed pore geometry with D f = Dv and Do = ∅. Middle, right, and far
right: pore-filling (middle) and pore-coating (right) obstructions |Do| = 396 h2 and Vo ≈ 0.05 generated by lattice at pore
scale, LP algorithm. Far right: pore-coating obstructions simulated with direct numerical simulation (DNS) method for
biofilm nutrient denoted later as BN.

Figure 4. Single pore geometry with M = 50× 50 voxels. Left: unobstructed pore with Do = ∅, and D f = Dv. Middle:
pore-filling obstructions Do (hydrate-like). Right: pore-coating obstructions Do (biofilm-like).

Obstructions and their volume. In many important applications, the pore-scale
geometry changes due to various bio-chemical processes, e.g., due to microbial growth, or
crystal precipitation. The flow domain D f itself is thus made of the void space Dv, which
is filled with ambient fluid, and of the obstructions in Do , which are impermeable or
partially permeable to the flow and transport. We have that

D f = Do ∪ Dv ∪ Γov, (2)

where Γov = ∂Do ∩ ∂Dv. In this paper, we consider solid obstructions which form due to
the particular bio-geochemical reactions such as crystal precipitation, or biofilm growth.
We motivate and describe these below, and illustrate these first in Figure 3.

To quantify the presence of the solid obstructions, we define

φ =
|Dv|
|D| , φ0 =

|D f |
|D| , Vo =

|Do|
|D f |

= 1− |Dv|
|D f |

= 1− φ

φ0
. (3)

The reference porosity φ0 is the initial value of porosity before obstructions form, the
current porosity φ is the volume ratio of space available to fluid, excluding obstructions to
the entire porous domain, and Vo is the obstruction volume ratio relative to the original
volume of D f .
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2.2. Motivation and Models for Pore Coating and Pore Filling Obstructions

Our main interest is to consider pore-coating and pore-filling obstructions. These two
completely opposite characteristics are motivated by our long-term modeling projects with
an impact on environmental and energy resource studies involving computational models
of microbial growth [6,30] and methane hydrate modeling [31–33] in porous media.

2.2.1. Pore Coating Obstructions: Biofilm

Scientists and engineers use microbes to alter the flow paths in porous media in
various applications. The understanding and quantitative modeling of microbial growth in
porous media is important, e.g., in selective plugging for the needs of enhanced oil and gas
recovery, as well as in carbon sequestration [34–37]. The microbial growth is promoted by
providing nutrients. The microorganisms form a special extracellular polymer substance
(EPS) of high density, which is impermeable or almost impermeable to the external flow,
and which typically clings to the pore walls. EPS protects the microbes but clogs the pore
void space. In particular, a reduction in permeability is significant; see, e.g., [6,38–40].

The experiments and DNS show that the biofilm growth and the Darcy-scale properties
depend on various conditions at which the growth occurs, e.g., on flow rate. However,
imaging biofilm is intrusive and harmful; thus, it is close to impossible to predict K(φ; ω) for
the growth in a variety of different conditions. We present a DNS model of biofilm-nutrient
(BN) dynamics at pore scale in Section 3.

2.2.2. Pore Filling Obstructions: Hydrate Crystals

Methane hydrate is a naturally occurring and highly concentrated form of methane: a
crystal lattice comprised of frozen water cages trapping gas molecules. It holds significant
quantities of carbon in the global system but forms in areas of low temperature and high
pressure and is abundant in permafrost and marine sediments. It is important in energy
and environmental studies as an energy source and potential climate accelerant, and some
modeling and experiments have been forthcoming [27,31,33,41–43]. In particular, it is
known that, at low Vo, the hydrate grows in the pore centers and causes significant changes
to the permeability and sediment strength; see, e.g., the experiments in [44].

However, observations and experiments on the impact of hydrate on permeability are
challenging due to the requirements of low temperature and high pressure needed for their
stability [41,45–47]. Thus, it is difficult or very expensive to obtain K(φ; ω) experimentally
or to image Dv for hydrates.

In turn, DNS for phase field models for hydrate are very complex and dependent on a
multitude of parameters, as shown in [48,49]. We have forthcoming work on the pore-scale
models of pore-filling crystal formation, but providing DNS here is out of scope.

2.3. Obtaining Darcy Permeability K with Computations

K depends on the connectivity within D f in a nontrivial way. Some experimental
algebraic correlations for K(φ) assume a particular simple form of D f . For example, the
Carman–Kozeny relationship assumes that D f is a bundle of capillaries and postulates
K(φ) ∼ φα, where α ≥ 2; see [1,28].

For more general D f , the workflow to obtain φ, K from fluid flow simulations in D f
is called upscaling or numerical homogenization. For laminar flow, the permeability K is
found by (2) finding the solutions (u, p) to a viscous flow model at the pore-scale, and (3)
upscaling (u, p).

One additional consideration in pore-scale simulations is whether D used in Algorithm
[Pore2K] (Algorithm 1) is a Representative Elementary Volume (REV) large enough for it
to make sense to consider its Darcy scale properties as representative. This important issue
was considered in, e.g., [20]. For example, consider the illustration in Figure 5, in which
we show a realistic image from µ-CT as well as an idealized single-pore geometry. With
studies in [50], we find that the one-pore domain is sufficient for the study of quantities of
interest related to the flow, but may not be adequate for transport-related quantities.
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(a) single-pore 50× 50 (b) many-pore 152× 114

Figure 5. Notation for pore-scale domains used in simulations. Domain D f = Dv is blue, Dr is black.
Left: domain D for single-pore experiments. Right: domain D for many-pore experiments, an imaged
representative elementary volume (REV) from [6]. The single-pore domain on the left is an idealized
subset of the many-pore domain on the right.

Algorithm 1. Algorithm [Pore2K] for obtaining φ, K from Dv.
Given Dv we calculate φ from (3). Next, we solve the velocity u(x) = (u1(x), u2(x))

and pressure p(x) satisfying the Stokes system in Dv with the no-slip boundary condition
on the pore walls, inflow condition on the portion Γin of ∂D, and a natural outflow condition
on the outflow part Γout

−µ∆u = −∇p; ∇ · u = 0, x ∈ Dv, (4a)

u(x) = 0, x ∈ ∂Dv ∩ ∂Dr, (4b)

u(x) = uin(x), x ∈ Γin, (4c)

µ∇u · n− pn = 0, x ∈ Γout. (4d)

where n is the unit outward normal to Γout. In simulations, we typically choose Dirichlet
inflow velocity uin of parabolic shape with average ūD.

To approximate the solutions to (4), we use an MAC scheme extended to Brinkman
flow, which we implemented in MATLAB as described in [30], or the computational
environment HybGe-Flow3D [16,51].

The approximations to (u, p) are averaged over D to U and P, respectively, and fit to
the Darcy model

µU = −K∇P, ∇ ·U = 0, x ∈ D. (5)

In particular, we find U by averaging over D f

U = 〈u〉D f φ, (6)

From these, the permeability tensor K is calculated. See, e.g., [7,19,20] for a detailed
description of this workflow, including setting up multiple flow scenarios to provide
sufficient information to calculate the full tensor K. In this paper, we report only on one
scalar value of K, the component corresponding to the flow from left to right.

Example 1. We simulate flow with (4) in a “many–pore” geometry D = (0, 1)2[mm2]. We
consider the case with and without obstructions, and consider Do of both pore-filling and pore-
coating type. We set the flow to go from left to right, with the average uin = 3.6× 10−3[mm/h] of
uin through Γin on the left, and Γout on the right; see Figure 6. The flow rate is in the linear laminar
regime and is similar to that used in [6]. The parameters used are in Table 1.
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Table 1. Parameters for the flow example in Example 1.

Parameter Description Value/Units Ref.

Model parameters

Lx × Ly Dimensions of domain D 1× 1[mm] [6]

Dr
Many-pore geometry Figure 5b
(slice of image) [6]

Do
Do = ∅ or pore-filling or
pore-coating N/A simulated

µ Fluid viscosity 8.9× 10−4 [Pa · s] [6]

Case set-up

Inflow boundary: left. Outflow
boundary: right N/A N/A

uin Average inflow velocity 3.6× 10−3[mm/h]

Discretization

Mx ×My Grid 152× 114

(a) (b) (c)

Figure 6. Illustration of flow in Example 1 with M = 152× 114, (a) no obstructions and Dv = D f , (b) hydrate-like pore-
filling obstructions, (c) biofilm-like pore-coating obstructions. In (b–c) Vo = 0.05. Shown are normalized velocity magnitude
|u|(x) as well as the streamlines. We follow up with calculation of permeabilities and obtain (a) K = 6.64× 10−5 [mm2],
(b) K = 5.66× 10−5 [mm2], and (c) K = 5.87× 10−5 [mm2].

2.4. Flow: from Pore-Scale to Darcy Scale with Obstruction Formation

When obstructions appear in Do ⊂ D f , they clog the pore space and significantly alter
the flow and transport paths in Dv, and the quantities φ and K decrease from φ0 and K0,
respectively, see illustration in Example 1 and Figure 6.

To quantify this change, one can run physical flow experiments or imaging in parallel
to the obstruction formation to obtain φ(t) and K(t). However, to our knowledge, such a
set-up is extremely challenging, since it requires stopping the reactions somehow at fixed
time intervals to run the flow experiment. In consequence, it involves large uncertainty.
Therefore the sampling is frequently limited to only few time steps: the beginning and
the end of experiment; see, e.g., [6,41] for the study of (φ, K) for hydrate crystal formation
and of biofilm clogging, respectively. However, such imaging efforts in real time are very
costly and time consuming and pose additional technical challenges, including how to stop
the process for the purposes of imaging. For the applications of interest, including both
the biofilm and hydrate applications, as detailed in Section 2.2, it is close to impossible to
image Do(t) at a fine resolution of t.

Instead, an unobtrusive way to understand how the pore-scale geometry Dv is chang-
ing with time is to use Direct Numerical Simulations (DNS) of the underlying bio-chemical
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process at the pore-scale; see, e.g., the models in [52] or [6,30]. DNS are very appealing be-
cause they seem to closely represent the physical reality. However, they involve a multitude
parameters with large uncertainty, including the initial conditions. Unfortunately, their
complexity is also enormous: they require 3D simulations with O (10 M) cells and many
time-steps, and thus cannot be used easily in multiscale scenarios involving simulations of
complex coupled systems.

The general strategy to overcome this complexity is to consider reduced or surrogate
models [24]; see also our pore-scale-related work in [16]. Reduced models exploit data
collected or produced off-line in a library of simulation results to provide answers to
queries on some desired quantities of interest. For the case considered in this paper, such a
library can provide answers to a query on, say, sampling K from φ for a given φ0, K0 and a
given type of process, e.g., microbial growth or hydrate growth. More generally, answers
can be provided for pore-coating or pore filling scenarios, with an associated measure of
uncertainty. In the current era of data science, these models or queries can be replaced by
neural networks.

The methods proposed in this paper are the third way (iii) to create experimental
distributions of K(φ; ω). In an abstract setting, they deliver surrogate or reduced models of
the true DNS–derived distributions, and they do so very efficiently. While our simulations
are not based on first principles, the geometries we generate are similar to those found by
µ-CT imaging.

2.5. Transport from Pore-Scale to Darcy Scale

The Darcy coefficients φ and K are important for modeling the flow. For transport,
other important quantities of interest at Darcy scale are the tortuosity T and breakthrough
curves relevant for transport models.

First, we recall the transport model at pore-scale. Once the velocity u(x) is known
from (4), we can simulate the advective transport, the first-order PDE

ct +∇ · (uc) = 0, x ∈ Dv, t > 0, (7a)

c(x, 0) = cinit(x), x ∈ Dv, (7b)

c(x, t) = cD, x ∈ Γin, t > 0. (7c)

The inlet value cD > 0 is constant, and in our experiments, we set cinit ≡ 0.
To understand the impact of geometry of pore-scale Dv on the transport at the Darcy

scale, we can upscale the transport solution c by averaging over D to obtain

φC + U · ∇C = 0, x ∈ D, t > 0, (8)

but a lot of information is lost in this step. As is widely known, it is useful in this context to
consider the notion of tortuosity discussed in detail, see, e.g., [1,53] for various definitions
and uses. In particular, the tortuosity helps to distinguish channel-like pores from those
of more intricate shapes. For the left-to-right flow considered here, we calculate hydraulic
tortuosity T = leh

L , where L is the “straight-line” distance in D from left to right, and leh
is the effective path length taken by the fluid through Dv. The path length ls

eh for each
streamline (s) is easy to find, and leh is found by averaging over all streamlines. In addition,
we recall the breakthrough curves which assess the average time it takes to travel through D

B(t) =
∫

Γout
(u(x) · n)c(x, t) dx, (9)

To compare the breakthrough curves, we also define

T(α) = t such that

∫
Γout

(u · n)c(x, t)∫
Γin

(u · n)c(x, t)
= α, α; 0 ≤ α ≤ 1. (10)
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This α-breakthrough time T(α) is the time when the pore is at α ∗ 100 percent of the
total possible outflux.

The tortuosity and breakthrough curves provide information on the transport that
is partly lost in upscaling. In particular, tortuosity is used to identify dispersion in the
porous medium.

To find T and the breakthrough curves, we apply Lagrangian and Eulerian methods,
respectively. In the Eulerian frame, we approximate the solutions to (7a), and calculate Cn

jl ≈
c(xjl , tn) with an explicit upwind Finite Volume scheme known as Donor in Cell [54]. The
method is stable if the time step τ satisfies the Courant–Friedrichs–Lewy (CFL) condition.
In the Lagrangian frame, we first find Ns streamlines for the flow by explicit time-stepping
of dx

dt = u starting from Γin, and using the approximation to u interpolated on each cell
from the solution to (4). Next, we propagate the constant value of c along the streamlines
from Γin to Γout. In the Eulerian frame, we approximate B(tn) by summing cn

jl over the cells
Djl adjacent to Γout. In the Lagrangian frame, we track the position ξn

s of the front of each
streamline s at time tn, and approximate B(tn) by summing the number of streamlines that
have reached the outlet before tn.

Summary. We have identified the important quantities that will be used to study
average properties of porous media at Darcy scale from the knowledge of the pore-scale
geometry of the void domain Dv. In the sections below, we present methods (1A–1B–1C),
respectively, which generate the realizations of D(i)

v . We denote the upscaled quantities
with subscript i. In addition to porosities φ(i) and permeabilities K(i), we consider T(i)
and T(α)

i .

3. DNS for Single-Pore Geometry with Obstacles of the Pore-Coating Type

In this section, we generate multiple realizations of obstructions using the DNS of the
process of biomass-nutrient (BN) dynamics. This process creates pore-coating obstructions,
as noted in [6]. We consider a fixed D = (0, Lx)× (0, Ly) and a fixed D f . Our DNS produces

the domains (D(i)
o )i and, equivalently, their complements (D(i)

v )i in D f .
The model we use was first proposed in [6], recently refined in [30], and is further

modified to reinforce the pore coating behavior.

3.1. Biomass-Nutrient Model

Let (B, N) represent biomass and nutrient concentrations, respectively, chosen in
convenient non-dimensional units. Let B∗ = 1 denote the maximum possible biomass
density, and B∗ = 0.9B∗ the threshold, such that the region x : B∗ ≤ B(x, t) ≤ B∗ represents
the mature biofilm phase, which contains microbes as well as the biomass-produced
extracellular polymer substance (EPS). This substance is beneficial to the microbes as it
provides a safe environment for growth. For the purposes of this pape,r we therefore
consider that obstructions are the same as the quite dense phase

Do = {x : B∗ ≤ B(x, t) ≤ B∗}. (11)

To model biomass growth and formation, we consider the model simplified from that
in [6,30]

∂tB−∇ · (dB(B)∇B) + Λ(B) = rB(B, N, x), x ∈ D f , (12a)

∂tN −∇ · (dN(B)∇N) = rN(B, N), x ∈ D f , (12b)

dB∇B · n|∂D f
= 0, (12c)

dN∇N · n|Γ = 0, N|∂D f \Γ = ND, (12d)

B(x, 0) = B0χDb(x), x ∈ D f , (12e)

N(x, 0) = ND, x ∈ D f . (12f)
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Here, the nearly singular diffusivity is parametrized by γ = 2, motility dB,0 and
B̄∗ = 1.01B∗, and given by

dB(B) = dB,0

(
B

B∗ − B

)γ

. (12g)

The Lagrange multiplier Λ(B) = ∂I(−∞,B∗ ](B) enforces the constraint B(x, t) ≤ B∗.
(Here, ∂IS denotes the subgradient of the indicator function of a set S). A numerical
solution of (12) is challenging due to the nearly singular behavior of dB, and the presence
of ∂I(−∞,B∗ ](B), which makes (12) a nonlinear parabolic variational inequality.

We use the linear diffusivity model for N

dN(x, t) = (B∗ − B(x, t))dN,v + B(x, t)dN,o, (12h)

where the nutrient diffusivity in Dv dN,v = 6 [mm2/h], which is close to the molecular
diffusivity of water, and dN,o = 0.1dN,v in Do.

We also have the biomass growth, and the nutrient consumption rates are given as

rB(B, N, x) = κa(x)B(x, t)m(N), rN(B, N) = −B(x, t)m(N), (12i)

a(x) =


2

1 + e10ao(x)/‖ao‖∞
, if A = 1,

1, if A = 0,
, m(N) = κN

N
N + N0

, (12j)

with the utilization rate κ in O([1/h]), the specific substrate uptake rate κN ≈ 0.5, and the
Monod half N0. In this paper, we focus on the nutrient rich case and assume that ND is
large enough.

The role of a(x) in (12j) is to “promote” the pore-coating behavior of biofilm. This is a
well known feature of microbial growth: the microbes stay close to the wall, which provides
protection to the community from detachment and other mechanical deformation due to
large flow rates; they achieve this by excreting an adhesive substance which supports this
mechanism. However, this pore-coating behavior is difficult to calibrate quantitatively,
and we choose to do this by heuristically decreasing the reaction rates from Γ according to
the following model, depending on a parameter A, as in (12j), where ao is the solution to
the Poisson equation −∇2ao = A with homogeneous Dirichlet boundary conditions on
Γ and Neumann boundary conditions on ∂D ∩ ∂D f = Γin ∪ Γout ∪ Γwall . For illustration,
we provide the plot of a(x) in Figure 7. With A = 0, a ≡ 1, and the rate rB(B, N, x) =
κB(x, t)m(N). However, with A = 1, we see that as the distance from the wall γ increases,
a ↓ 1.

Finally, we close the system with initial conditions (12e) and (12f), and we choose Db to
include only the voxels djl immediately adjacent to the wall Γ of D f , so that |Db|/|Dv| = Vb
with a given Vb. This choice is consistent with the usual assumption that the porous domain
is inoculated with microbes which settle down next to the wall Γ.

A = 0, M = 50× 50 A = 1, M = 50× 50 A = 1, M = 152× 114

Figure 7. Contours of the attraction coefficient a(x) defined by (12j) in single–pore geometry and many-pore geometry.
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3.2. Results of the DNS Model for (B, N) Dynamics

We start with a single-pore geometry D = (0, Lx)× (0, Ly)[mm2], in which we let
B(x, t) evolve from initial state B(x, 0).

We use parameters listed in Table 2 and perform Monte Carlo Simulations with a
collection of I realizations of D(i)

b , which lead to the biofilm evolution and formation

of obstructions D(i)
o . A few examples are shown in Figure 8 (top) for Vb = 0.0045 and

Vb = 0.03.

Table 2. Parameters for the DNS model and simulations of (B, N) described in Section 3.1. Simula-
tions cases (a,b,c,d) are presented.

Parameter Description Value/Units Ref.

Model parameters (fixed)

Lx × Ly Dimensions of domain D 1× 1 [mm] [6]

γ Exponent in diffusivity, Equation (12g) 2 [30,55]

dB,0 Motility coefficient of microbe 10−4 [mm2/h] [30,55]

κ Utilization rate O([1/h]) [55]

κN Specific substrate update rate 0.5 [55]

N0 Monod half-life 1.18× 10−3 [−] [55]

B∗ Maximum density of biofilm (relative) 1[−] [6]

B∗
Threshold for B > B∗ which determines
Do

0.9B∗ [6]

Model parameters (varying)

Db Localization of initial biomass random

Vb Ratio of |Db| to |Dv| in initial conditions 0.0045 (a,b), 0.03 (c,d) ad-hoc
B0 Initial biomass density 0.6 (a,b), 0.8 (c,d) ad-hoc

A Attraction parameter in (12j) from {0, 1} ad-hoc

Discretization parameters

Mx ×My Spatial grid 50× 50 N/A

h Spatial discretization parameter 0.02 [mm] N/A

τ Time step 10−2 [h] N/A

The biomass in each case evolves first, and the biofilm phase becomes mature and
impermeable when B∗ ≤ B(x, t) ≤ B∗. Next, this phase continues growing by interface
creating new obstructions Do(t), whose volume increases over time. The growth pattern
depends on the initial state. Figure 8 (middle) and (bottom) show biofilm distribution
evolved from the initial states Figure 8 (top) with A = 0 and A = 1, respectively.

With A = 0 and small Vb, we see that the biofilm tends to grow spherically without
strictly adhering to the walls. However, when we increase Vb to cover Γ evenly, the biofilm
sticks together but grows gradually away from walls.

On the other hand, with A = 1, the growth away from the walls is suppressed to
promote growth near the walls. We see a dramatic difference as compared to the case when
A = 0.
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(a) (b) (c) (d)

A = 0

A = 1

Figure 8. Generation of Do with DNS for single-pore geometry M = 50× 50, with simulation parameters for cases (a–d)

are given in Table 2. Top row: randomly chosen regions D(i)
b used for initialization in (12e) for each case (a–d), with small

relative volume Vb = 0.0045 in (a,b) and larger volume Vb = 0.03 in (c,d). Middle and bottom rows: regions D(i)
o obtained

with BN model at the time t(i) when the corresponding obstruction volume Vo(t(i)) = 0.3; each region was obtained by
simulation with initial conditions shown in the top row, respectively. Smaller Vb and A = 0 corresponds to less pronounced
coating behavior.

4. Reduced CLPS Model: Constrained Localized Phase Separation

In this section, we describe our phase separation model. We work with a function
ψ(x, t), x ∈ D f , t > 0 called the phase or order parameter, defined in the pore-scale domain
D f and evolving in time t. The function ψ(x, t) is a solution of a certain partial differential
equations called phase separation model. We approximate ψ(x, t) with a finite difference
scheme on the grid (djl)jl covering D f ; see Appendix. We post-process the numerical
solution to obtain Do.

The phase separation models in the literature include the Allen–Cahn (AC) and the
Cahn–Hilliard (CH) Equation [56], often studied together as gradient flows of the functional

J(ψ) :=
∫

D f

(
ε

2
|∇ψ|2 + 1

ε
W(ψ)

)
. (13)

The parameter ε has the physical meaning of the interface width, which arises due
the competition between the diffusion and coarsening; it also affects the time scale of the
evolution; see, e.g., [56,57]. The potential energy density W(ψ) part of (13) is typically a
non-convex function with two stable minima ψ∗ and ψ∗, and an unstable local maximum
between these. One common choice is ψ∗ = −1, which corresponds to the solid phase,
and ψ∗ = 1, which corresponds to the liquid phase, with the energy density given by
the “double well” function ∼ (1− ψ2)2. Non-polynomial functions, such as in Ginzburg–
Landau models, are also possible [56].
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The gradient flow

dψ

dt
+

dJ(ψ)
dψ

= 0 (14)

for J(ψ) in (13) is the Allen–Cahn (AC) equation which describes the evolution of ψ(x, t)
towards one of many stationary solutions ψ(x, ∞) = limt→∞ ψ(x, t); these are the local
minima of J(ψ). The dynamics of the resulting semilinear parabolic PDE are well known:
the stationary solutions feature patterns with aggregation in the regions

D∗ = {x : ψ(x, ∞) ≈ ψ∗}, D∗ = {x : ψ(x, ∞) ≈ ψ∗}, (15)

with some diffuse interface region Dε separating D∗ and D∗ of width proportional to ε, due
to the competition of diffusive and reaction terms associated with −∆ψ and f (ψ) = dW

dψ ,
respectively. Various rigorous analyses are available; see, e.g., [58]. With bounded initial
data in L2(D f ) ∩ L∞(D f ), the solutions ψ ∈ L2(0, T; H1

0(D f )) ∩ C[0, T; L2(D f )] evolve
towards one the (multiple) equilibria for J(ψ).

In this paper, we exploit the ability of AC model to produce patterns as the main
design idea, but we modify the model to fit the interactions with the boundary of D, as
described next.

4.1. Volume Constrained Phase Separation CLPS Model

We exploit the non-convexity of J(ψ) and the non-uniqueness of the stationary so-
lutions to the AC model as the main design idea. We aim to generate patterns of region
Do with obstructions with a certain given prescribed volume V(0), and we aim towards
|Do| = V(0). We choose ψ∗ = 1 to denote cells with obstructions and ψ∗ = 0 (no obstruc-
tions). With these, we obtain that

|Do| ≈ V(t) =
∫

D f

ψ(x, t) dx. (16)

We pose the AC model, the gradient flow of (14) in L2(D f )

ψt − ε∆ψ +
1
ε

f (ψ) = 0, x ∈ D f , t > 0, (17a)

∇ψ · n = 0, x ∈ ∂D f , t > 0, (17b)

ψ(x, 0) = ψinit(x), x ∈ D f , (17c)

where, for ψ∗ = 1, ψ∗ = 0, we use the double-well potential density W(ψ) and its derivative
f (ψ)

W(ψ) =
1
4

ψ2(ψ− 1)2; f (ψ) =
dW
dψ

= ψ

(
ψ− 1

2

)
(ψ− 1). (17d)

The solutions to (17) aggregate in the regions

Do ≈ D f ,∗(t) = {x : ψ(x, t) = ψ∗}, Dv ≈ D∗f (t) = {x : ψ(x, t) = ψ∗}. (18)

Typically, these regions D f ,∗(∞), D∗f (∞) are non-empty and they stabilize as t ↑ ∞,
and as the values of ψ(x, t) separate on the path to stationary solutions. However, the
volume of obstructions is not preserved. This can be seen by integrating (17) over D f × [0, t]
and applying Neumann boundary conditions.

As part of our algorithm, we aim to maintain

V(t) = const = V(0). (19)
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We impose this equation as a constraint, and follow the general strategy outlined
in [59]. We augment J(ψ) by the term −λ(V(t)−V(0)) with a Lagrange multiplier λ(t).
The resulting evolution model for J(ψ)− λ(V(t)−V(0)) reads

ψt − ∆ψ + f (ψ)− λ(t) = 0, x ∈ D f , t > 0, (20a)

∇ψ · n = 0, x ∈ ∂D f , (20b)

ψ(x, 0) = ψinit(x), x ∈ D f , (20c)∫
D f

ψ = V(0), t > 0. (20d)

Independently, a similar strategy is considered in [60], framed as a non-local order
conserving gradient flow model in which one substitutes λ(t) = 1

|D f |
∫

D f
f (ψ) in (20a), and

skips (20d).

4.2. Controlling the Location of Obstructions in CPS with Localization in CLPS

Consider now a given pore-scale domain D, with Dr and Γ known, as shown in
Figure 4, and a simulation of the CPS model (20) in D f . Starting with some initial condi-
tion, the model will produce aggregated patterns of obstructions indicated in (18), but with
the aggregates in Do somewhat randomly located in D f . In particular, these aggregated
domains may be close or far from Γ, and therefore will not adhere to a pattern with qualita-
tive properties consistent with the “pore-coating” or “pore-filling” behavior illustrated in
Figure 4.

To rectify this, we modify the CPS model to promote the desired qualitative properties
of ψ(x, ∞). In particular, we want to control the shape of Do and its distance 1.7em(Do, Γ) to
Γ, as we promote the formation of obstruction with the “pore-coating” or the “pore-filling”
behavior. In the pore–coating behavior, the obstructions aggregate adjacent to the solid
matrix so that the distance 1.7em(Do, Γ) is small. In the pore-filling behavior, they aggregate
away from the solid matrix and 1.7em(Do, Γ) is as large as possible. In other words, in
the pore-filling behavior, D∗f , is “repelled” from Γ, and in the pore-coating behavior it is
“attracted” to Γ.

Such behavior can be realized by an application of some form of physically motivated
“taxis” towards or away from Γ. In particular, one could set up the taxis with the gradient
of an electrostatic or van der Waals potential to model the actual physical attractive or
repulsive forces towards or away from Γ. In particular, such taxis can involve electrochemi-
cal interactions such as those included in the work on Poisson–Nernst–Planck models as
in [61–63]. These complex models require a multitude of physical parameters that might
be difficult to measure and require additional computations.

To avoid this additional complexity, we choose instead a simpler heuristic approach,
which we call the Constrained Local Phase Separation (CLPS). The model modifies (20)
and reads

ψt − ε∆ψ +
1
ε

f (ψ) + θgδ(x, ψ)− λ = 0, x ∈ D f , (21a)

∇ψ · n = 0, x ∈ ∂D f , (21b)

ψ(x, 0) = ψinit(x), x ∈ D f (21c)∫
D f

ψ(x) = V(0), (21d)

and is a modification of (20), which we amend with a spatially varying source function
θgδ(x, ψ) = rδ(x)q(ψ), with parameter θ ∈ R, allowing additional control on the localiza-
tion, and define

rδ(x) =

{
1− 1

δ 1.7em(x, Γ), 1.7em(x, Γ) < 2δ,
−1, 1.7em(x, Γ) ≥ 2δ.

, q(ψ) = ψ(ψ− 1)χ[0,1](ψ). (21e)
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See Figure 9 for illustration.

Figure 9. Components rδ(x) and q(ψ) of the auxiliary function gδ(x, ψ) = rδ(x)q(ψ) from (21e) with
δ = 0.5 and Γ = {0}. As x → Γ, rδ(x) → 1 and gδ(x, ψ) ≥ 0. In contrast, away from Γ, we have
rδ(x) ≈ −1 and gδ(x, ψ) ≥ 0.

Properties of the Solution to CLPS

The dynamics of (21) are competition of coarsening due to f (·), diffusive action of
−∆ψ, and the localization function gδ(x, ψ), which is only active when ψ(x) ∈ (0, 1). The
solution to (21) maintains its total volume due to the Lagrange multiplier construction
and Neumann boundary conditions. Additionally, the interplay of f (·) and gδ(·) is most
interesting.

When θ = 0, we work with the dynamical system ψt + f (ψ) = 0 to see that at each x,
the solutions tend towards one of the two stable equilibria ψ∗ and ψ∗, but may also remain
at the unstable local maximum 1

2 = (ψ∗ + ψ∗)/2 of W(ψ). The action of −∆ψ as in (17)
provides spatial variability and allows the patterns of the sets D f ,∗ and D∗f to emerge and
coalesce.

When θ 6= 0, the dynamics of individual components of (21) are nontrivial. In
particular, even the stationary problem in 1d −εψxx + q(ψ) = 0 alone, with homogeneous
Neumann conditions, has exactly two solutions ψ(x) = 1, and ψ(x) = 0.

More generally, consider θ > 0 and the ODE ψt + θq(ψ) = 0, with a stable equilibrium
ψ∗ = 1, and an unstable one at ψ∗ = 0. Adding − f to the right hand side, as in the ODE
ψt + f (ψ) + θq(ψ) = 0, does not change the qualitative nature of this evolution towards
the stable equilibrium ψ∗ = 1. In contrast, if θ < 0 and |θ| is large enough, the stable
equilibrium ψ∗ = 0 is “promoted” in spite of the competition between f (ψ) and θq(ψ). The
presence of −∆ψ leads to the formation of patterns.

Finally, consider the term θgδ with θ > 0. Close to Γ, the effect of gδ(x, ψ) is to
“encourage” ψ ↑ ψ∗ = 1. Away from Γ, we see that ψ ↓ ψ∗ = 0; thus, this choice leads to
the formation of patterns with “pore-coating” behavior.

On the other hand, if θ < 0 we obtain “pore-filling behavior”. If |θ| is large, then, close
to Γ, we encourage ψ ↓ ψ∗ = 0, and away from the boundary towards ψ ↑ ψ∗ = 1. In other
words, we obtain the pore-filling behavior.

4.3. CLPS Model to Generate Multiple Realizations of Obstructions in Pore-Scale Domain

Consider now simulations of (21) in a domain which is a realistic 2D slice of a pore-
scale domain from µ-CT experiments from [6–8], with rock domain Dr, shown in Figure 3.
For this domain, we have a discretization parameter h = 0.05 relative to the domain size
Lx = 7.6, Ly = 5.7; we provide an outline of the numerical scheme in Appendix A.

We must choose the desired volume of obstructions V(0), and the parameters δ, ε,
and θ, which control the qualitative nature of the domain Do with obstructions. We recall
that δ controls the width of the interface close to Γ. With θ > 0, we promote pore coating,
and with θ < 0, we promote pore filling. The choice of ε and δ is guided by heuristics and
intuition, so that Do has the desired characteristics when assessed visually. In the future,
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we plan to guide the choice of parameters by a systematic approach guided by data science.
Typically, we choose ε = O(0.1diam(D f )) and δ = O(h). See Table 3 for a summary of all
the parameters.

Table 3. Parameters for CLPS model from Section 4.3 in single-pore and many-pore geometry. The
model uses nondimensional rather than physical units.

Parameter Description Value/Units Ref.

Model parameters (fixed)

Lx × Ly Dimensions of domain D: single-pore 1.0× 1.0[−] N/A

Lx × Ly Dimensions of domain D: many-pore 7.6× 5.7[−] N/A

Vo Volume of obstruction (initial and final) varies

Discretization parameters

h Spatial step 0.05

τ Time step range [0.05, 0.1]

Model parameters (varying between pore-filling and pore-coating, chosen heuristically)

ε Coefficient of diffusion (smearing the front) range [0.1, 0.3] N/A

θ Amplitude of localization function gδ range [−0.5, 0.5]

δ Distance in localization function range [0.1, 0.15]

Single-pore ε θ δ

Pore coating 0.1 0.25 0.1

Pore filling 0.28 −0.3 0.1

Many-pore ε θ δ

Pore coating 0.3 0.5 0.15

Pore filling 0.2 −0.5 0.1

The Algorithm CLPS (Algorithm 2) has (A) a pre-processing stage in which we choose
parameters, (B) simulation of ψ(x, t), and (C) post-processing step, in which we use ψ(x, T∞)
to determine Do.

Algorithm 2. Algorithm CLPS [A-B-C]: for a given D f and V(0), generate a possible Do.
CLPS [A]. Set parameters ε, δ, θ.
Pore–coating: set θ > 0.
Pore–filling: set θ < 0.
CLPS [B]. Choose some random ψinit(x) and run the transient simulation of (21) until

t = T∞, when the system seems to reach a stationary solution. In practice, we run the
simulations until reaching large T∞, such that for t > T∞, the solution ψ(x, t) does not
change significantly.

CLPS [C]. Post-process ψ(x, T∞) and set Do ≈ D∗f (T∞) and D(i)
v ≈ D f ,∗(∞) based on

the value ψjl ≈ ψ(xjl , T∞) of the cell-centered approximation to ψ(x, T∞) found in (B) on
the voxel grid {djl}jl covering D f .

Now, as seen in (18), the stationary solution ψ(x, T∞) is close to the characteristic
function of D∗f (t) ≈ Do(t). Thus, we assign the cell djl to Do when ψjl = ψ∗ = 1, and to
Dv whenever ψjl = ψ∗ = 0. However, when ψjl ∈ (ψ∗, ψ∗), we must make a choice so as
to honor (19) with the fixed V(0). We can do so by assigning djl to Do if ψjl ≥ ψ̄, and to
Dv, otherwise, where ψ̄ ∈ (0, 1) is some threshold value chosen depending on V(0): this
strategy supports the interpretation that ψjl represents the amount of obstruction material
contained in cell djl . Alternatively, we assign a certain number of cells to Do with the
highest value of ψjl selected randomly; this strategy is easier to implement than the former.

We can repeat the algorithm CLPS as many times as desired. Since we aim to obtain
a large number of realizations, we consider a collection of “white noise” random initial
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conditions ψ
(i)
init(x) which satisfy (19), and which are generated by a uniform random

generator on the voxel grid for D f . We seek a collection of stationary solutions ψ(i)(x, T∞),

where i = 1, . . ., and the corresponding post-processed obstruction region D(i)
o .

Example 2. Consider the parameters in Table 3. and the many-pore geometry shown in Figure 3,
and set V(0) = 0.05. In Figure 10, we present two of the many stationary solutions obtained
for each case, where we choose and apply algorithm CLPS. We plot the contours of the stationary
solutions ψ(i)(x, T∞) ∈ [0, 1], i = 1, 2, which satisfy V(T∞) = V(0). These are later used in flow
simulations with the post-processed results discussed in Section 6.

Pore coating obstructions

Pore filling obstructions

Figure 10. Contours of selected stationary solutions ψ(i)(x, T∞), to (21) found with CLPS model from Section 4.3. The

solutions ψ(i)(x, T∞) are post-processed to give D(i)
o as described in Section 4.

5. The LP Method from Statistical Mechanics to Generate Obstructions

In this section, we present a method called the LP method to generate geometries
with obstructions. Unlike CLPS (21), which is a PDE for the minimizer(s) of the functional
J(ψ) in (13) under constraints, the LP method does not use any differential equation, and is
motivated by statistical mechanics models of phase transitions from the class of dynamic
discrete lattice models from [64,65].

We recall the Markov Chain Monte Carlo (MCMC) method, and, in particular, the
Metropolis algorithm [66–68], in a setting similar to the Ising model, as in [67]. The Ising
model is widely known as a tool for generating arrangements of spins on a lattice, with
applications in the study of phase transitions. In this paper, we apply it to the pore-scale
geometries represented on a lattice, hence the name LP. We are motivated by the work
in [69,70], which in [71], we adapted to multi-component adsorption. We modify the setting
from [71] to the present case of pore-coating and pore-filling geometries from µ-CT. We
explain the case of d = 2 lattice, but an extension to d = 3 is immediate.

We start with a given digitized rock image D from µ-CT, and a given V(0) = |D f |Vo.
The practical objective is to assign each voxel djl of the voxel grid covering D f to either
Dv or Do. This is equivalent to setting an indicator variable x〈j,l〉 ∈ {0, 1, 2} to one of three
values indicating the void region, rock, and obstructions, as follows

x〈j,l〉 =


0, djl ⊂ Dv,
1, djl ⊂ Dr,
2, djl ⊂ Do.

(22)
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Now, each x〈j,l〉 can be considered as a node of a lattice, and we collect these in the
vector X = (x〈j,l〉)〈j,l〉. For a collection of realizations, we denote the i’th realization by X(i),

with the corresponding D(i)
o , i = 1, . . . I. We start from some initial configuration X(i)

init, and

we seek its stationary state, X(i)
T∞

, a local minimum of a certain non-convex Hamiltonian
functional H(X), which determines the quality of the fit to our particular design of interest.
We find these local minima using the Metropolis algorithm.

After the ensembles of geometries (X(i)
T∞

)i are found, we post-process each one to get

D(i)
o and to calculate the porosity φ(i), permeability K(i) and tortuosity T(i).

5.1. LP Model for Minimization of a Hamiltonian Functional Defined on a Lattice

Next, we define the Hamiltonian energy functional H(X), which assigns some energy
to each X. This Hamiltonian depends on various parameters which eventually lead to
different cell aggregation patterns. In particular, we consider the aggregation patterns of
the pore-coating or pore-filling character.

5.1.1. Hamiltonian for Generation of Obstructions

In the design of H(X), we include weights for the interaction at each type of inter-
face between the lattice nodes in Dr, Do and Dv. The weights allow control over the
qualitative character of the configuration of obstructions, such as in the pore-filling or
pore-coating patterns.

Consider the node 〈i, j〉 and let Λ〈i,j〉 = {〈i + 1, j〉, 〈i− 1, j〉, 〈i, j + 1〉, 〈i, j− 1〉} denote
its immediate neighbors. Let the next nearest neighbors be defined as

Λ2
〈i,j〉 ={〈i + 2, j〉, 〈i− 2, j〉, 〈i, j + 2〉, 〈i, j− 2〉,

〈i + 1, j + 1〉, 〈i− 1, j + 1〉, 〈i + 1, j− 1〉, 〈i− 1, j− 1〉}.

We use periodic boundary conditions; thus, any of the nodes in Λ〈i,j〉 and Λ2
〈i,j〉 are

well defined.
Next, we set some weights wro, wrv, and wvo ∈ R and associate these with the rock–

obstruction, rock–void, and void–obstruction interfaces, respectively. Now, we define

w(x〈i,j〉, x〈r,s〉) =


0, if x〈i,j〉 = x〈r,s〉, (23a)

wro if x〈i,j〉 = 1, x〈r,s〉 = 2, (23b)

wrv if x〈i,j〉 = 1, x〈r,s〉 = 0, (23c)

wvo if x〈i,j〉 = 0, x〈r,s〉 = 2. (23d)

We also let W ≥ be the weight of the next-nearest neighbor interactions, and define
the Hamiltonian

H(X) =
1
2 ∑
〈i,j〉

 ∑
〈r,s〉∈Λ〈i,j〉

w(x〈i,j〉, x〈r,s〉) + W ∑
〈r,s〉∈Λ2

〈i,j〉

w(x〈i,j〉, x〈r,s〉)

, (24)

As usual, we use the Boltzmann distribution e−H(X))/kB
Z where Z is the normalizing

factor, kB is the Boltzmann constant, and β = 1
kB

is the inverse temperature. We follow the
literature closely [64,65,67,68].

5.1.2. Metropolis Algorithm for Pore-Coating and Pore-Filling Obstruction Patterns

The Metropolis algorithm for minimization of H(X) starts from some random initial
configuration Xinit to produce the chain, which evolves towards one of the local minima
of H(X). The algorithm is inherently stochastic. In each step, the method rearranges the
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assignment of the cells to Do to find the configurations which are more likely, i.e., have a
lower value of energy represented by the Hamiltonian (Algorithm 3). The process is similar
to fixing the net magnetic spin in the Ising model and flipping randomly chosen spins so
as to find a configuration corresponding to finding one of the local minima of H(X).

Algorithm 3. Algorithm LP [A-B-C].
LP [A]. Generate the initial state X0 = Xinit randomly for the given Vo.

Choose parameters β and W, wro, wrv, wvo; see Table 4.
LP [B]. and follow with iteration for updating Xt 7→ Xt+1 for t = 0, 1, . . . as follows.

Let x = Xt.

1. Select the pair of cells x〈i,j〉, x〈r,s〉 uniformly from D f ;
2. Propose a new state y, similar to x but with the values x〈i,j〉 of x〈r,s〉 swapped;
3. Calculate the change ∆H = H(x) − H(y) to the Hamiltonian. (This step is very

inexpensive);
4. Accept the new state y with probability h = min{1, exp(β∆H)}

(a) Select u ∼ U(0, 1);
(b) If u ≤ h, then Xt+1 = y;
(c) If u > h, then Xt+1 = x.

Continue the Markov chain t → t + 1 until satisfied that the so-called “burn-in”
process is completed. Stop the iteration at some t = T∞.

LP [C]. Postprocess the final state XT∞ which corresponds to one realization of Do pore
geometry with an obstruction. Specifically, the nodes corresponding to x〈j,l〉 = 2 identify
the voxels in Do.

Notice that a different X(i)
init corresponds to a different X(i)

T∞
, i.e., a different realization

of D(i)
o .

Table 4. Parameters for the reduced model LP used in single-pore and many-pore experiments in
Section 5.2. This lattice model uses no physical units.

Parameter Description Value/Units Ref.

Domain (discrete lattice) parameters

Mx ×My Single-pore domain D from Figure 5a 50× 50 N/A

Mx ×My Many-pore domain D from Figure 5b 152× 114 N/A

Model parameters (fixed)

W Next-nearest neighbor weight 1/2 [64,65]

β Inverse temperature in Ising model 1 [68]

Model parameters (chosen heuristically): weights in Hamiltonian energy

wvr Weight for void-rock interaction varies N/A

wro Weight for rock-obstruction interaction varies N/A

wvo Weight for void-obstruction interaction varies N/A

Single-pore wvr wro wvo

Pore coating 100 1 50

Pore filling 1 100 50

Disaggregated −1 −1 −1

Many-pore wvr wro wvo

Pore coating 1.2 1 1

Pore filling 1 10 5
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5.2. Results of LP Model for Single-Pore Geometry

We now illustrate the algorithm for Dr as shown in Figure 4. The µ-CT data provide
the resolution with Mx = My = 50. We also choose β = 1, W = 1/2. To obtain pore-filling
and pore-coating obstructions, we set set the weights, as in Table 4, which avoid or promote
the clinging to rock matrix and tend towards clumping.

In Figure 11 we show the progression of the LP model for generating the obstructions
for pore-filling. We see that the obstruction cells quickly aggregate. However, it takes many
steps for the process to stabilize with a single clump.

(a) Initial state X0; (b) State X200000; (c) State X400000.

(d) State X600000; (e) State X2000000; (f) Hamiltonian H(Xt).

Figure 11. States of the LP process for the formation of an obstruction with weights given in
Table 4. Rock matrix Dr is black and void space Dv is blue, while the obstructions in Do are yellow.
M = 50× 50.

We next consider the generation of obstructions that favor adjacency to the rock matrix.
The chosen weights also discourage the formation of fingers of obstruction. In Figure 12,
we show the progress of the LP model. We can see that the obstruction cells form a thin
layer along the rock matrix. The burn-in time for this process is much shorter than in our
previous example.
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(a) Initial state X0; (b) State X20000; (c) State X40000.

(d) State X60000; (e) State X200000; (f) Hamiltonian H(Xt).

Figure 12. States of the LP model process for the formation of an obstruction from Section 5.2. Rock
matrix Dr, is black, void space Dv is blue and the obstruction Do is yellow. M = 50× 50..

6. Results and Comparison of DNS and Reduced Models

In this section, we compare the three methods of generating domains with obstructions.
For the pore-coating scenario, we compare a method of generating obstructions from (1A)
DNS (BN) from Section 3, (1B) CLPS from Section 4 and (1C) LP from Section 5. For the
pore-filling scenario, we only consider (1B) and (1C).

The workflow in our experiments is as follows. We start with a porous domain
D = Dr ∪ D f ∪ Γ with some known D f , i.e., with some known initial porosity φ0. This
domain may be either a many-pore model, such as from µ-CT imaging, as shown in
Figure 3, or a smaller idealized single-pore model, such as in Figure 4. We choose the type
of obstructions from either biofilm (pore coating) or hydrate (pore filling). The generation
of obstructions is followed by simulations of flow and transport in Dv and upscaling to
Darcy-scale parameters φ, K, T , T(α) impacted by the presence of obstructions; these steps
are as described in Section 2. Of interest is the relative change in the upscaled quantities
from their unobstructed values denoted with subscript “0”, e.g., φ0, K0 or T0, corresponding
to Do = ∅.

The first method (1A) produces I independent realizations D(i)
o (t) with DNS for

the pore-coating scenario, with the associated K(i)(t). The simulations start with initial
conditions Binit,(i)(x) localized in randomly chosen grid cells close to Γ, with a fixed initial
amount given by parameter Vb, which indicates the total initial biomass amount. We
simulate each case up until the timepoint t at which the desired ratio Vo in |Do(t)| =
Vo(t)|D f | is obtained, or until clogging, whichever occurs first.

The method (1B) CLPS produces I independent realizations D(i)
o corresponding to

a given chosen V(0) = Vo|D f |, with a given Vo, starting from random initial condition

ψ
(i)
init. The result of each simulation is a corresponding stationary solution for the evolution,

which we post-process to obtain the collection
(

φ(i), K(i)

)
i

for each Vo. For (1C), the LP

model, we set V(0) = |Do| = Vo|D f | = ∑x〈j,l〉=2
1 and randomly select the desired number

of cells out of the voxels in D f ; this choice gives the random collection of X(i)
init. We run the

evolution until the stationary solutions are found.
The first overall observation is that we find a qualitative agreement between the DNS

model BN and the reduced models CLPS and LP both by visual inspection of geometries
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and through the probability distribution of upscaled properties. There are also some
differences, which we discuss in detail. This is of primary importance for our purposes, as
we aim towards the creation of reduced models.

We also present additional interesting features for the pore-coating and pore-filling
obstructions, which we discuss in detail below. We first focus on flow properties in
Section 6.1, and then on transport results in Section 6.2.

6.1. Permeability Distributions in the Idealized ”Single-Pore” Geometry

We consider an idealized single-pore domain D, as in Figure 4. We generate I = 100
geometries with the DNS model BN, starting with a completely random initial microbial
amount situated next to Γ, as shown in Figure 13. We also use this for initial BN Db with a
Vb = 0.1 identical to the regions produced by LP method.

(a) (b) (c) (d)

Figure 13. Realization of D(i)
b used in DNS results: (a) Vb = 0.0045, B0 = 0.6B∗ for Figure 16, (b) Vb = 0.03, B0 = 0.8B∗ for

Figure 17, (c) Vb = 0.07, B0 = 0.6B∗ for Figure 18, (d) Vb = 0.1, B0 = B∗ for Figure 19.

Next, we use models LP and CLPS with the parameters shown in Tables 3 and 4, set
with intuition and heuristics. For each type of obstruction and obstruction volume in (25),
we generate I = 100 obstructed geometries, of pore-coating and pore-filling type, for each
of the selections

Vo ∈ {0.1, 0.2, 0.3}. (25)

Various snapshots of selected geometries D(i)
o and the corresponding D(i)

v are shown
for the single-pore geometry for different methods in Sections 3–5. They are generally
qualitatively similar to each other within the category of pore-coating or pore-filling, but
also feature some differences, revealed by visual inspection. The solutions to BN models
depend on how closely we enforce the adhesion of biofilm to the boundary Γ, i.e., on
parameter A.

6.1.1. Pore-Coating Biofilm-Like Obstructions

We start by emphasizing the difference between (1A) and (1B–C). We recall from
(3) that

φ = φ0(1−Vo). (26)

Thus, φ(i)(t) obtained with DNS model (1A) varies (continuously) in time t, but φ(i)
are actually constant for each experiment with (1B) and (1C) when using selected volume
fractions from (25). This is shown well in Figures 14 and 15, where we compare the scatter
plots of K(Vo) with the results of BN vs. CLPS vs. LP model for the pore-coating scenario.

For BN discussed in Figure 14, the shape of geometries, and thus the relationship
between K(i)(t) and V(i)

o (t), depends on how these geometries were created, and, in
particular, on the choice of A. We recall snapshots found with BN and shown in Figure 8,
and now study the evolution of K(i)(t) in Figure 14. We see that K(t) decays close to
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linearly with Vo, with more uniform pore-coating, and is promoted with A = 1 and large
Vb, but we see faster decay of K with A = 0 or large Vb.

Random Db, Vb = 0.0045
A = 0 A = 1

Random Db, Vb = 0.03
A = 0 A = 1

Simulated Db = Do by LP model, Vo = 0.1
A = 0 A = 1

Figure 14. Dependence of K(t) on Vo(t) with the BN model discussed in Section 6.1.1. Results are
shown for 10 realizations of geometries, selected out of I = 100, generated with Vb and A, as shown.

In this context, an important natural question arises. Since all the geometries we
create are random, it is not useful to compare them one by one. However, we want to
know whether a BN initialized with one of geometries created by CLPS or LP with small
Vo = 0.1 will predict evolution towards large Vo which is consistent, on average, with those
produced by the reduced models. We confirmed this, and we saw a very close agreement
between the distributions given by BN and CLPS and LP, as seen by comparison of plots
in Figures 14 (bottom) and 15. This result is desirable but not unexpected, because the
geometries corresponding to more tightly prescribed initial conditions tend to evolve in a
more predictable way.
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CLPS model LP model

Figure 15. Dependence of K on Vo when Do are found with reduced models CLPS and LP discussed
in Section 6.1.1.

Remark 1. Furthermore, we want to know whether the trends in the decrease in permeabilities
predicted by DNS and plotted in Figure 14 are realistic, and how they compare with the realistic
data. For this, we recall the model for the dependence of K on Vo based on Carman–Kozeny models
for pore-coating and pore-filling scenarios ([27] Figure 4, p.8), given from algebraic expressions
K(Vo)/K0 = (1−Vo)2 for the pore-coating strategies, and K(Vo)/K0 = (1−Vo)n with n > 4

or K(Vo)/K0 = 1−Vo +
2(1−Vo)2

log(Vo)
for pore-filling. In the range Vo ∈ [0, 0.5] considered here, these

formulas predict a mild (linear) decrease in K for pore coating, but a dramatic one (convex) for pore
filling, in the shown range of Vo.

Analysing Figures 14 and 15, we see that the case of strong pore coating corresponding
to A = 1 is consistent with the mild linear decrease discussed in Remark 1.

Next, we discuss the histograms and other statistical information on the probability
distribution of (K(i)/K0). We compare the results for BN with A = 0 and A = 1 and the
different initial biomass domain fraction Vb, CLPS and LP. We consider the distributions
shown in Figures 16–19 for DNS model BN, and CLPS and LP in Figures 20 and 21,
respectively. For each, we present a cartoon of a sample geometry D(i)

o and the statistical
information on the permeability distribution for K(i)/K0 depending on Vo.

Studying the sample snapshots of Do in these figures, we see that the obstructions
aggregate in distinct “colonies” for DNS with A = 0 and for CLPS, but do not cover the
entire rock–fluid interface. This feature is dissimilar to the case of DNS with A = 1, and to
the results of the LP model in Figure 21. It seems that the LP model is tuned to promote
adhesion to Γ more strongly than CLPS. The difference between CLPS and LP is similar to
the use of A = 0 and A = 1 in Figure 16–19. Once again, we confirm the same trend for
pore coating, consistent with the mild linear decrease discussed in Remark 1.

These observations correlate to the properties of probability distribution for perme-
ability. The distribution for CLPS is less tight than for LP. The histograms of K(i)/K0 for
Vo = 0.1 are symmetric, but less so than for the larger Vo. For the higher values of Vo, we
see that, occasionally, the pore space is completely clogged, resulting in K(i) = 0 for some
realizations. The trend in the mean of (K(i)/K0)i depending on Vo follows a similar trajec-
tory to that for the LP model, but with a greater variance in (K(i)/K0)i. These observations
are also similar to those for the DNS model BN and the case A = 0 and A = 1, respectively.

Overall, we infer that pore-coating obstructions, such as in biofilm formation in porous
media, may cause somewhat predictable changes in permeability for this range of Vo, but
that a larger Vo corresponds to smaller predictability.
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A = 0

A = 1

Figure 16. Results of DNS with Vb = 0.0045 and A as shown. Left: one of the realizations D(i)
o for

Vo = 0.1. Middle: histogram of (K(i))i for Vo = {0.1, 0.2, 0.3}. Right: mean and standard deviation of
(K(i)/K0)i for Vo = {0.1, 0.2, 0.3}.

A = 0

A = 1

Figure 17. Results of DNS for Vb = 0.03 and A as shown. Left: one of the realizations D(i)
o for

Vo = 0.1. Middle: histogram of (K(i))i for Vo = {0.1, 0.2, 0.3}. Right: mean and standard deviation of
(K(i))i for Vo = {0.1, 0.2, 0.3}.
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A = 0

A = 1

Figure 18. Results of DNS with Vb = 0.07 and A as shown. Left: one of the realizations D(i)
o for

Vo = 0.1. Middle: histogram of (K(i))i for Vo = {0.1, 0.2, 0.3}. Right: mean and standard deviation of
(K(i))i for Vo = {0.1, 0.2, 0.3}.

A = 0

A = 1

Figure 19. Results of DNS with A as shown when using Db from LP model from Section 6.1.1; here

Vb = 0.1. Left: one of the realizations D(i)
o for Vo = 0.2. Middle and right: histogram of (K(i))i and

mean and standard deviation of (K(i))i for Vo = {0.1, 0.2, 0.3}, respectively.
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Figure 20. Results of CLPS model for biofilm-like obstructions from Section 6.1.1. Left: one of the
realizations of D(i)

o for Vo = 0.2. Middle and right show the experimental probability distribution of
(K(i))i for three values of Vo.

Figure 21. Results of LP model for biofilm-like obstructions in Section 6.1.1. Left: one of the
realizations D(i)

o for Vo = 0.1. Middle and right show the experimental probability distribution of
(K(i))i for three values of Vo.

6.1.2. Hydrate-Like Obstructions

Next, we tune the CLPS and LP models to produce pore-filling (hydrate-line) obstruc-
tions. We use parameters in Tables 3 and 4.

Results for CLPS are shown in Figure 22. The CLPS model predicts a drop in relative
permeability of about one order of magnitude at Vo = 0.1. For the LP model, the histograms
of (K(i)/K0)i show a distribution skewed towards the origin, and the change in the mean
is sharp, dropping nearly 85% with Vo = 0.1, but levels off as Vo increases. The standard
deviation of (K(i)/K0)i is quite large, suggesting a very significant but less predictable
impact on the sediment permeability when hydrate crystals form.

While the results of CLPS and LP are similar, we note that the CLPS model has a
smaller spread with smaller standard deviation as compared to the LP model.

Finally, we see that the trend for pore filling is consistent with the dramatic decrease
(sharp drop with a convex graph) discussed in Remark 1.
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Figure 22. Results of CLPS (top) and LP (bottom) models for pore-filling in Section 6.1.2. Left: one
of the realizations of domain Do. Middle: histogram of (K(i))i for 3 values of Vo. Right: mean and
standard deviation of (K(i))i for three values of Vo.

6.1.3. Disaggregated Obstructions

For additional interest, we here present the results for geometries Do without any
aggregation, of the “free colloid” type. These can be generated by the LP model with pa-
rameters, as in Table 4. We show the results in Figure 23 for the distributions corresponding
to Vo ∈ {0.05, 0.1, 0.2}. We see that he impact on permeability appears much stronger than
in the pore-coating or pore-filling case. We acknowledge that this effect may be somewhat
overstated, due to our experiments being conducted in 2D and to the coarse grid resolution.
Nevertheless, this is a striking result, which speaks for the need to simulate the aggregation
and disaggregation of Do for realistic predictions of permeability.

Figure 23. Results of LP model for disaggregated obstructions from Section 6.1.3. Left: one of
the realizations for Vo = 0.1. Middle and right: relative change in permeability due to colloidal
obstructions. Note the log scale used for K(i)/K0.

6.2. Flow and Transport Properties in Many-Pore Geometries

In addition to studying the flow in obstructed geometries, it is important to study
the transport time at which the outflow reaches some fixed ratio of the inflow of the
transported species.
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For these studies, we use a large REV with the many-pore geometry from Figure 3. We
generate I = 100 obstructed geometries with CLPS and LP models for each pore-coating
and pore-filling obstruction with Vo ∈ {0.05, 0.1, 0.15}. For each geometry D(i)

i , we solve
for flow and upscale to the permeability K(i). We follow up with transport solutions in
the Eulerian frame of reference, and approximate the breakthrough curve B(i)(t) as in (9).

We study the scatter plots of K(i)/K0 vs T(α)
(i) /T(α)

0 to show that the latter quantity is not
correlated to the former; thus, it is important to study both.

Example 3 (Many-pore with LP model). We use the parameters from Table 4 for many-pore
geometries. We present the permeability results in Figure 24 and transport results for α = 0.8 and
α = 0.95 in Figure 25, with a least squares fit to the data shown as a solid gray line.

Figure 24. Flow properties with geometries Do obtained with LP model in Example 3. Top row: pore-coating, and bottom
row: pore-filling geometries, Left: many-pore geometry with Vo = 0.05. Middle: histogram of (K(i))i for two values of Vo.
Right: mean and standard deviation of (K(i))i for two values of Vo.

In Figure 24, we see good agreement with the single-pore results from Section 6.1. This
includes a severe drop in permeability in the case of pore-filling obstructions and a less
significant drop in the permeability in the case of pore-coating obstructions. Mean values
and standard deviations for these cases are reported in Tables 5 and 6. For pore-coating
obstructions, when Vo = 0.1, there are 20 geometries that are impermeable and excluded
from the mean; this explains the large standard deviation in relative permeability for
that case.

For this example, we observe that, for many of the cases, we have T(α)
(i) /T(α)

0 < 1.
Compared to the intuition on a small or single-pore geometry, this result may appear
surprising, since it suggests that transport in the presence of obstructions is happening
more quickly. After reflection, in many-pore geometry, the result can be explained by the
fact that our experiments use the same inflow value uin in a large REV, and the transport
time substantially depends on a larger variety of flow paths than was possible in a single-
pore geometry.
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Table 5. Sensitivity of the probability distribution of K(i)/K0 to the simulation parameters of the
CLPS model on the single-pore and many-pore geometries. The mean and standard deviation of K
are presented for three selected vales of the relative volume Vo = |Do |

|Dv | , as shown.

Single-Pore ε θ δ Vo Mean std. dev.

Pore coating 0.1 0.25 0.1 0.1 0.5224 0.0740

0.1 0.25 0.1 0.2 0.3292 0.0592

0.1 0.25 0.1 0.3 0.1839 0.0793

Pore filling 0.28 −0.3 0.1 0.1 0.1089 0.0479

0.28 −0.3 0.1 0.2 0.0245 0.0124

0.28 −0.3 0.1 0.3 0.0064 0.0045

Many-Pore ε θ δ Vo Mean std. dev.

Pore coating 0.3 0.5 0.15 0.05 0.8792 0.1076

0.3 0.5 0.15 0.10 0.7896 0.1291

0.3 0.5 0.15 0.15 0.6893 0.1716

Pore filling 0.2 −0.5 0.1 0.05 0.5386 0.2112

0.2 −0.5 0.1 0.10 0.2264 0.0687

0.2 −0.5 0.1 0.15 0.1387 0.0268

Table 6. Sensitivity of the probability distribution of K(i)/K0 to the simulation parameters of the LP
model on the single-pore and many-pore geometries. The mean and standard deviation of K are
presented for several selected vales of the relative volume Vo = |Do |

|Dv | , as shown. For the many-pore
geometry and Vo = 0.1, the method LP generates 20 out of I = 100 impermeable geometries. For
Vo = 0.15, most are impermeable. These facts result in a large standard deviation, and these results
are not included.

Single-Pore wvr wro wvo Vo Mean std. dev.

Pore coating 100 1 50 0.1 0.6424 0.0261

100 1 50 0.2 0.3600 0.0743

100 1 50 0.3 0.1558 0.0892

Pore filling 1 100 50 0.1 0.1496 0.1171

1 100 50 0.2 0.0535 0.0360

1 100 50 0.3 0.0257 0.0226

Disaggregated −1 −1 −1 0.05 0.0117 0.0016

−1 −1 −1 0.1 0.0039 0.0004

−1 −1 −1 0.2 0.0006 0.0002

Many-Pore wvr wro wvo Vo Mean std. dev.

Pore coating 1.2 1 1 0.05 0.8696 0.0825

1.2 1 1 0.1 0.5793 0.3350

Pore filling 1 10 5 0.05 0.4604 0.1838

1 10 5 0.1 0.2389 0.1330

Next, for pore-coating obstructions, when α = 0.8, the trend line suggests a correlation
between T(α) and K(i) with a slope about of 0.6. However, when α = 0.95, this trend
diminishes. We also note an outlier where the permeability has dropped by nearly 60%
while the breakthrough time has dropped by less than 20%; this is due to the clogging of
certain throats in the REV.
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Figure 25. Transport properties with geometries Do obtained with LP model in Example 3. Top row: pore-coating, and
bottom row: pore-filling geometries, Left: many-pore geometry with Vo = 0.05. Middle and right: relative change in K
against the relative change in T(α) with α = 0.8, and α = 0.95, respectively.

For pore-filling, we see the opposite feature: the trend line gets steeper when the
experiment progresses from α = 0.8 to α = 0.95. There is also a dramatic vertical cloud
of points around T(0.8)

(i) /T(0.8)
0 ≈ 1, showing that there can be a wide range of changes

in the permeability without much change in the breakthrough time. Moreover, for both
α = 0.8 and α = 0.95, the spread of the points on the scatter plots is quite wide. These
results reinforce the intuition that pore-filling obstructions in porous media may cause less
predictable changes in flow and transport.

We next discuss the results obtained with the CLPS model. Since they are qualitatively
similar for permeabilities, we present a different view of transport properties.

Example 4 (Many-pore with CLPS model). We use the parameters with (21) model as in Table 3
for the many-pore example. We present the results for permeability in Figure 26. Additionally, we
study the tortuosity T as a function of obstruction volume, which we show in Figure 27. The case
T(i)/T0 > 1 or T(i)/T0 < 1 corresponds to the increasing or decreasing average path lengths in
the presence of obstructions.

We discuss these results here. We see good agreement between the single-pore, in
Section 6.1), and many-pore cases. For pore-coating obstructions, there is a gradual decrease
in permeability with Vo, whereas, in the pore-filling case, the decrease in permeability is
sharper. In the pore-filling case, the many-pore geometry with Vo = 0.1 is, on average,
more than twice as permeable as the single-pore case; see Table 5.

Next, from visual observations of geometries in Figure 27, we see Do for pore-coating
featuring two instances of throat clogging and many small “colonies”. In addition, we see
that T(i) is usually greater than To in the unobstructed geometry; with a greater obstruction
volume Vo, there is a greater increase in T . For pore-filling, we see tortuosity T decreasing
as Vo increases.



Computation 2021, 9, 28 34 of 43

Figure 26. Flow properties with geometries Do created by CLPS in Example 4. Top row: pore-coating, and bottom row:
pore-filling geometries. Left: example of Do with Vo = 0.05. Middle and right: experimental probability distribution of
relative change in permeability K(i)/K0)i for three values of Vo.

Figure 27. Transport properties with geometries Do created by CLPS in Example 4. Top row: pore-coating, and bottom row:
pore-filling geometries. Left: example of Do with Vo = 0.05. Middle and right: experimental probability distribution of
relative change in tortuosity (T(i)/T0)i for three values of Vo.

6.3. Sensitivity of BN and Reduced Models CLPS and LP to Parameters

For any computational model, it is important to study its sensitivity to data. For
models whose solutions depend on the data, a formal framework is provided, e.g., through
Sobol indices [72] based on multivariate polynomial expansions of the quantity of interest;
see, e.g., their use in [22]. This type of analysis requires high regularity of the quantities of
interest so that the sensitivities, i.e., “derivatives”, can be assessed.
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The quantities of interest in our models are (i) the geometries Do and (ii) the upscaled
parameters such as K = K(Vo).

For the first, (i) the framework to study (the smoothness of) their dependence on data
is largely unavailable, while it loosely connects to the abstract framework of shape analysis
in high-dimensional spaces. In the practical setting of this paper, our experiments indicate
that the most important qualitative characteristic is whether the geometries produced by
our models are of pore-coating or of pore-filling character, but it is unclear whether these
observations can be correlated with some metrics that are to be studied quantitatively.
Further analyses and theoretical framework are needed; see future work discussed in
Section 7.

For (ii), the Darcy scale quantities rely on an averaging process carried out in upscaling,
and thus can be believed to be reasonably smooth. However, the dependence of K resulting
from DNS models and CLPS and LP models on their parameters raises formal challenges.
One challenge is as follows: the permeability values K for some realizations of geometry
Do can be zero because the associated geometries may include obstructions critically
placed in the flow path. This feature may occur without any apparent dependence on the
parameters of the simulations, and is an example of the non-smooth behavior of even the
upscaled quantities.

At this time, we are unsure whether the formal framework of sensitivity applies to the
quantities (i) and (ii) from our simulations. We comment on the qualitative observations
only briefly.

6.3.1. Sensitivity of BN Models

In the DNS model for the pore-coating behavior related to the BN model for biofilm
growth, the solutions governed by (12) and the pattern of Do depend on all the data to the
PDE model. In particular in the results discussed here, we keep boundary conditions as well
as the diffusion and reaction rates fixed using parameters from the literature; see [6,30].

In this paper, we vary the initial conditions through parameter Vb and the right-hand-
side function depending on parameter A. As we show in the geometries in Figure 8,
and in the plots of permeabilities in Figure 14, the initial condition parameter Vb for the
DNS simulation plays a significant role in the biofilm growth pattern. For large(r) Vb,
the growth in biofilm is more evenly distributed near the walls, which results in more
pronounced pore-coating behavior. For small Vb, the attraction parameter A, when set to
A = 1, contributes significantly to the “pore coating” pattern, and eventually results in
the dependence of the upscaled quantities consistent with this pattern, as discussed in
Remark 1. More detailed data for this sensitivity study are provided in Table 7.

Table 7. Sensitivity of the probability distribution of K(i)/K0 to the simulation parameters Vb and A
for the geometries D0 obtained with DNS for pore-coating scenarios. The values K presented here
correspond to three selected vales of the relative volume Vo = |Do |

|Dv | from the set {0.1, 0.2, 0.3}.

Pore Coating, Single-Pore Geometry

Vb Vo A Mean std. dev. A Mean std. dev.

0.0045 0.1 0 0.5563 0.1998 1 0.7002 0.1855

0.0045 0.2 0 0.3564 0.1714 1 0.4842 0.1861

0.0045 0.3 0 0.1911 0.1660 1 0.2750 0.2087

0.03 0.1 0 0.6680 0.1233 1 0.7460 0.0754

0.03 0.2 0 0.4929 0.1130 1 0.5613 0.0554

0.03 0.3 0 0.3742 0.1001 1 0.4141 0.0480

0.07 0.1 0 0.7197 0.0825 1 0.7526 0.0184

0.07 0.2 0 0.5349 0.0780 1 0.5648 0.0341

0.07 0.3 0 0.3921 0.0641 1 0.4015 0.0043
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6.3.2. Sensitivity of reduced models CLPS and LP

For the reduced models CLPS and LP the control parameters include those discussed
in Sections 4 and 5. The CLPS model depends on parameters ε, δ, θ, as in Table 3, and the
choice of ε is most delicate, as its small perturbations lead to different stationary solutions.
The LP models solutions critically depend on wro, wrv, wvo as shown, e.g., in Table 4. The
CLPS model is far more sensitive to its parameters than the LP model.

The choice of parameters for CLPS and LP is guided by heuristics, and the qualitative
character of geometries is assessed by visual inspection. Most significantly, the reduced
models produce geometries of drastically different characters (pore-coating or pore-filling)
due to a small change in the control parameters, i.e., they produce bifurcations. This feature
seems similar to the sensitivity of the Ising-like models of phase transitions to their critical
parameters, such as the inverse temperature β. We provide data for the sensitivity of the
CLPS and LP models in Tables 5 and 6.

Lastly, we provide an aggregated set of figures, which, taken together, illustrate the
sensitivity of the simulation results to the initial conditions and to the initial geometry
(single-pore or many-pore). See Figure 28, including our commentary on the overall
sensitivity and qualitative and quantitative comparison between DNS, CLPS, LP and
algebraic models.

Figure 28. Illustration of sensitivity of mean reduced permeability to the choice of Vo and to the
choice of initial pore geometry. The displayed results were obtained by DNS in various variants,
and reduced models CLPS and LP for pore coating, and CLPS and LP for pore filling. The algebraic
models guide the eye. The data are extracted from Tables 6 and 7, and the marker size is proportional
to the standard deviation for the data. The illustrations confirm the observations made in text, which
we paraphrase here. The reduced model results generally qualitatively agree with DNS and algebraic
models from Remark 1, but simulation models predict a more severe reduction in K than predicted by
algebraic models. They have larger uncertainty for pore-coating scenarios and pore-filling scenarios
for small Vo. Predictions for single-pore and many-pore geometries are similar to each other for small
Vo, but their mean is not reliable at large Vo due to clogging, especially for many-pore geometry.

In the end, we acknowledge the sensitivity to parameters, but do not see it as useful to
study these quantitatively within formal frameworks which use differentiation or otherwise
rely on the regularity of the quantities of interest. In turn, we believe more theoretical work
is needed to study the metrics, smoothness, and overall sensitivity of the solutions on the
model parameters.

6.4. Computational Complexity of BN and Comparison with Reduced Models CLPS and LP

The overall cost of each method, per realization (i), is the cost of each of

pre-processing + generation of D(i)
o + post-processing and upscaling,

and has to be multiplied by the number I of realizations.
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In the estimates below, we assume we have M grid cells, including those in Dr.
However, an efficient implementation may have lower complexity or be based on φ0M
rather than M, depending on how we handle the keyed-out elements from Dr. Regardless,
we have M ≈ 104 for single-pore and M ≈ 2× 104 many-pore geometries in d = 2. For
large-case simulations in d = 3, which are not reported here, typically, M = O(106).

We report the cost of the algorithms, which create one realization of Do. The pre-
processing cost involves the initialization of algorithms with some initial conditions, which
use a random number generator called I times on a vector of size M.

Throughout, we denote the cost of solving a linear system with M unknowns by
solver(M). We recall that the cost of direct methods such as LU and QR in the MATLAB
environment for dense matrices is solver(M) = O(Mη) with η = 3. On the other hand,
the discretizations we consider lead to sparse linear systems, and it is well known that
appropriate direct and iterative solvers have a cost of O(pM), where p is band size. On the
other hand, the solver in the post-processing environment HybGE-Flow3D has η ≈ 1.7,
since it uses state-of-the-art preconditioners, and in d = 3, the band size p ≈ M2/3.

Once (D(i)
o )i are found, we post-process. The cost of post-processing and upscaling to

Darcy scale properties is about solver(2M) + 5M.
In general, we find that the cost of generation of (D(i)

o )i far outweighs that of post-
processing for DNS and CLPS, and is comparable to that for LP. The DNS of BN seems
feasible for d = 2, but may be unfeasible for d = 3.

Moreover, we find that the cost of data storage and file IO is already considerable for
I = 100, and may require creative approaches when I >> 100.

6.4.1. Complexity of BN

The solver BN for DNS requires the solution of two coupled nonlinear PDEs for (B, N),
each of size M. Additionally, we keep track of and update the Lagrange multiplier, also of
size M. In other words, we have 3M unknowns: (B, N, Λ). We also pre-compute a(x) prior
to simulations.

We solve the problem over 100 to 1000 time-steps, depending on the case, and each
requires, on average, about two iterations of the semi-implicit method. We require around
100M operations per iteration, plus the cost solver (3M). The former include computing
diffusion coefficients, the Jacobian, residuals, and other operations. For the linear solver,
the system is sparse but not symmetric.

We provide approximate times to indicate complexity when solving BN up until
plugging. We report on wall clock time on a Linux multicore desktop with MATLAB. For
single-pore geometry with Vb = 0.07, this took about 30 [s] for A = 0 and 2.2 [m] for A = 1.
For many-pore geometry with Vb = 0.07, this took 5.3 [m] for A = 0 and 9.2 [m] for A = 1.
These times simply indicate that it takes longer to simulate until complete plugging when
the obstructions adhere more closely to the walls.

6.4.2. Complexity of CLPS

As compared to BN, the CLPS algorithm only solves one variable ψ, and uses linear
symmetric non-degenerate diffusion and time-lagging, without any additional iterations.
The localization functions are pre-computed. Thanks to these reductions, the complexity is
considerable compared to BN.

The cost per time-step is about 5M operations, which icludes dealing with the volume
constraint plus the cost of the linear solver solver(M + 1). We run time-steps until a
stationary solution is found, which ranges from 100 to 10, 000.

Depending on the case, single-pore simulations run for about 10 [s] on average.

6.4.3. Complexity of LP

The LP algorithm might take as many as O(105) time-steps to reach the stationary
solution, but each is very inexpensive, and requires only the cost of swaps and recalculation
of Hamiltonian update ∆H(X). We approximate this cost to be 10 operations per time-step.
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Depending on the case, LP simulations for single-pore on a laptop take less than 1[s]
on average, and are about 6 times faster than CLPS.

7. Summary and Future Work

Imaging and other high-resolution data pose an opportunity and, simultaneously,
a challenge to computational science. In this paper, our focus is on pore-scale data for
flow and transport, and their upscaling to Darcy-scale properties of porous media, such
as permeability and tortuosity. Specifically, we consider a medium which changes due
to clogging, with two patterns of obstructions in pore-scale geometries, referred to as
pore-coating and pore-filling. Both are motivated by their important applications to biofilm
and hydrate crystal growth, respectively.

Interpreting the static imaging data as grids for flow simulations and upscaling is
possible. However, imaging of pore-scale which changes in time due to clogging poses
additional difficulties, and handling the potentially large collection of geometries is ex-
tremely computationally intensive, and requires calibration and tuning. Using DNS for
time-dependent processes instead of imaging is quite complex and comes with consider-
able uncertainty.

In this paper, we presented an alternative reduced model, which can create off-line
probability distributions of properties of interest without the DNS. In particular, we present
two algorithms which generate plausible geometries with obstructions called Do, which
clog the pores. These algorithms are not simulations of the actual physical process, but
rather simulate the presence of Do which appear similar to those observed in experiments.
The methods have roots in mathematical and statistical models of phase separation; they
are easily tunable and efficient.

In the paper, we demonstrated that our reduced models produce comparable results
to those of DNS, both by visual inspection of Do and when considering the upscaled
quantities. Overall, the CLPS model is about one order of magnitude more efficient than
DNS, and the LP model is about one further order of magnitude more efficient than CLPS.
However, as we move from DNS to CLPS to LP models, we also move farther and farther
away from the actual physical model of generating obstructions.

More work is needed to understand this trend and how to use and calibrate efficient
reduced models which maintain close agreement with physical simulations. At the same
time, validation efforts are needed to further calibrate the DNS models, which can serve
as the basis for reduced models. In addition, theoretical analyses, and, specifically, new
metrics, are needed to compare the images we generate with reduced models to the DNS
and to the imaging data. In this paper, we used judgement made by the human eye, but
we are currently exploring various emerging data science approaches which can be used to
analyze the similarity between shapes.

Finally, we aim to continue the validation efforts of the probability distributions we
generate with the experimentally obtained Darcy-scale quantities. In particular, in this
paper, we considered only two representative geometries, called single-pore and many-
pore. Further testing and validation efforts should include testing the reduced models in a
collection of pore geometries ranging from simple to complicated. Since the permeability
depends very much on the local arrangement of the pores and throats, it depends not
just on the size but also on the choice of an REV, and this randomness is even more
pronounced when the geometry is modified by reactive transport starting from random
initial conditions. These facts motivate this paper, since reduced models would produce
more reliable results than, say, algebraic formulas, such as those in Remark 1; we observed
this fact in [6].

We believe that it would be useful to create a library of probability distributions
corresponding to the obstructed domains classified by type, say, channel-like, or large
porosity (glass-beads), or sand-stone geometries. These efforts may be connected to some
theoretical analyses of shapes, which we hope to address in the future.
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Our current work also includes further calibration of the models to discover the
optimal values of parameters for CLPS and LP starting from the available data. In this
direction, we plan to explore data science approaches. There are also many interesting
application-specific challenges, including the dependence of the results on I, the size and
the shape of the rock domain Dr in the selected REV, and the voxel resolution h.
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Appendix A

Appendix A.1. Numerical Scheme for CLPS

Numerical solution of gradient flow problems such as Allen–Cahn equations, such
as those in Section 4, is challenging, and the literature is abundant. The first challenge is
the presence of sharp fronts, which require a fine spatial grid and delicate time-stepping.
The second challenge is the strong nonlinearity without monotonicity; this feature has
motivated the construction of various semi-implicit schemes which provable stability in a
specially chosen quantity of interest which can be obtained. We refer, e.g., to [57,58].

In this paper, for the spatial discretization of (21), we apply a cell-centered finite-
difference scheme. For time discretization, we apply an Implicit–Explicit scheme. We treat
the linear terms, such as diffusion terms, implicitly in time, and we treat nonlinear terms
explicitly in time. For problems with constraints, we also implicitly solve λ(t). We keep
the time-step small to maintain accuracy, but the explicit treatment of nonlinearities makes
the system very easy to implement. The linear systems are solved by a direct solver in
MATLAB.

Appendix A.2. Illustrations of CLPS Model in 1d

We consider the evolution problem (21) in 1d, with D = D f = (0, 1) and Dr = ∅.
We set up examples to illustrate the role of parameters ε, θ and δ. We use Vo = 0.5. To
demonstrate the effect of localization as in (21e), considering Γ = {0}, we define the
continuous piecewise linear with rδ(0) = 1 and rδ(x) = −1, x ≥ 2δ, for this example only.

We use a family of random initial conditions for which the pointwise values ψ
(i)
init(xj) ∼

U{0, 1}, 1 ≤ j ≤ M− 1 are drawn from the uniform distribution. For each, we find the
corresponding stationary solutions ψ(i)(x, T∞).

Our first example shows that different initial conditions give different stationary solutions.
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Example A1. We set ε = 0.005, θ = 10, and δ = 0.1 and approximate the solutions to (21). We
let the solution evolve until the time T∞, after which the solutions remain essentially stationary. In
Figure A1, we show the two stationary states corresponding to i = 1 and i = 2. In Figure A2, we
illustrate the well-known impact of parameter ε, when the initial state ψinit(x) = ψ

(2)
init(x), θ = 1

and δ = 0.1.

(a) ψ(1)(x, 0.005); (b) ψ(1)(x, 0.1); (c) ψ(1)(x, 0.4)

(d) ψ(2)(x, 0.005); (e) ψ(2)(x, 0.5); (f) ψ(2)(x, 5.5)

Figure A1. Solutions ψ(i)(x, t) to Example A1, corresponding to ψ
(i)
init(x) with i = 1 (top) and i = 2 (bottom) at three different

times t. The right column is at t = T∞, different for each i.

Figure A2. Solutions ψ(x, T∞) in Example A1, showing the impact of the coefficient ε. From left to right, ε = 0.005, 0.01, 0.1,
with the corresponding T∞ = 4.5, 1.5, 3.0.

Next, we study the impact of the parameter θ and of the localization functions.

Example A2. We set ε = 0.005 and δ = 0.1, and consider θ = 1 or θ = 10. In Figure A3, we
confirm that a positive θ encourages ψ ≈ 1 near x = 0. At the same time, away from Γ, the function
θgδ(x, ψ) competes with f (ψ). With large enough |θ|, the behavior is dominated by θgδ(x, ψ),
resulting in θ ≈ θ∗ = 0 away from x = 0. With θ = 1, we obtain ψ(1, t) ≈ ψ∗, but with θ = 10,
the impact of localisation prevails over f (ψ) and we obtain ψ(1, t) ≈ ψ∗ .
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Figure A3. The solutions ψ(x, t) from Ex. A2 showing the impact of the coefficient θ. From left to
right: θ = 1, 10 with T∞ = 4.5, 5.5, respectively.

Appendix A.3. Numerical Approximation to Stokes Flow

We approximate the solutions (p, u) to the Stokes flow problem from Section 2.3 with
a computational model built on the MAC scheme and implemented in MATLAB and in
solver HybGe-Flow3D [16]. The approximations pressure and velocity values (ph, uh) are
given on a staggered voxel grid, with the pressures given as cell-centered quantities, the u1-
velocity component given on the left and right edges of a cell and the u2-component velocity
values given on the bottom and top edges. The additional feature of our implementation
is that it is very efficient when handling a collection of obstruction volumes; the method
follows the stochastic immersed volume approach described in detail in [16].
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