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Abstract: Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure
in sows and respiratory disease in piglets and growing pigs. The disease rapidly spreads in swine
populations, making it a serious problem causing great financial losses to the swine industry. How-
ever, past mathematical models used to describe the spread of the disease have not yielded sufficient
understanding of its spatial transmission. This work has been designed to investigate a mathematical
model for the spread of PRRSV considering both time and spatial dimensions as well as the observed
decline in infectiousness as time progresses. Moreover, our model incorporates into the dynamics
the assumption that some members of the infected population may recover from the disease and
become immune. Analytical solutions are derived by using the modified extended hyperbolic tangent
method with the introduction of traveling wave coordinate. We also carry out a stability and phase
analysis in order to obtain a clearer understanding of how PRRSV spreads spatially through time.

Keywords: PRRSV; exponential infection rate decline; immune; stability; traveling waves; modified
extended tanh function

1. Introduction

Porcine reproductive and respiratory syndrome (PRRS) was first reported in the
United States in 1987. The causative agent of PRRS is porcine reproductive and respiratory
syndrome virus (PRRSV), which was first isolated in Europe by Wensvoort et al. [1] in
1991 and then in the U.S. by Collins et al. [2]. PRRSV is classified as a member of the
Arteriviridae family, Nidovirales order [3,4]. The important outcomes of the disease are
severe reproductive disorders in sows, as well as respiratory problems in piglets and
growing pigs. PRRSV has two genotypes—type 1 (European) and type 2 (North American)
with genetic, antigenic and virulence differences having been observed to exist between
American and European isolates [5]. Infected swine may recover from the disease and
become immune by vaccination or innate immunity. For several decades, many researchers
have carried out experiments and investigations concerning the virus to develop a PRRSV
vaccine. In 2011, Sang et al. [6] studied the interaction between PRRSV and porcine innate
immunity at the cellular and molecular levels. They investigated the component of the
innate antiviral immune system in its response to and subversion of the infection.

In 2014, Li et al. [7] reported on their comparison between immune responses of
modified live PRRSV vaccine, MLV in short, its parental strain VR-2332, and a Kansas
isolate of PRRSV, namely the heterologous KS-06-72109 strain. They concluded that MLV
can ensure total protection from the homologous virus VR-2332 while providing only
limited protection from the heterologous KS-06 challenge.

In 2017, Yang and Zhang [8] introduced Janus kinase (JAK)-signal transducer and
activator of transcription (STAT) signaling, which is activated by myriad cytokines and
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involved in regulation of cell growth, proliferation, differentiation, apoptosis, angiogenesis,
immunity and inflammatory response. They summarized how the PRRSV interferes with
myriad cytokines and provided a perspective on the observed perturbation in the context
of PRRSV-elicited immune response.

In the same year, Rahe and Murtaugh [9] investigated cellular and humoral compo-
nents of the adaptive immune response, which is essential for the development of protective
immunity against PRRSV. They investigated the B cell and T cell that respond to PRRSV
adaptive immunity.

In 2018, Drigo et al. [10] studied the time-course of humoral and cell-mediated compo-
nents in PRRS-stable and unstable herds. They investigated the group oral fluid samples
Real-time RT-PCR, PRRSV-specific IgA and IgG in oral fluids, serum IgG antibody and the
cell-mediated response in whole blood samples.

In 2019, Kittiwan et al. [11] studied the humoral and cell-mediated immune re-
sponses to PRRSV that used 10 PRRSV vaccinated and 10 nonvaccinated young pigs.
They used ELISA and flow cytometry analysis to determine PRRSV-specific humoral and
cell-mediated immune response.

In 2019, Crisci et al. [12] studied the interactions of two enveloped RNA viruses of
PRRSV and swine influenza virus (SwIV). PRRSV and SwIV are etiologic agents of porcine
respiratory disease complex (PRDC) that gives rise to reduced performance and increased
mortality in the porcine cellular innate immunity during infection.

In the same year, Phoo-ngurn et al. [13] introduced a dynamical model for the pro-
gression of PRRSV and the impact of immunity information, subject to various control
policies that include vaccinating. They explored the effects of two vaccination strategies,
namely vaccination at the moment of birth and vaccinating those selected from a pool
of susceptibles.

In 2020, Madapong et al. [14] investigated cell-mediated immunity (CMI), IL-10,
and the protective efficacy of modified-live porcine reproductive and respiratory syn-
drome virus (PRRSV) vaccines (MLV) against co-challenge with PRRSV-1 and PRRSV-2
(HP-PRRSV). They divided pigs into seven groups, six of which were intramuscularly
vaccinated with MLV, including Porcilis (PRRSV-1 MLV, MSD Animal Health, Boxmeer,
The Netherlands), Amervac (PRRSV-1 MLV, Laboratorios Hipra, Girona, Spain), Fostera
(PRRSV-2 MLV, Zoetis Inc., Troy Hills, U.S.), Ingelvac PRRS MLV and Ingelvac PRRS ATP
(PRRSV-2, Boehringer Ingelheim, Rhein, Germany), Prime Pac PRRS (PRRSV-2 MLV, MSD
Animal Health, Boxmeer, The Netherlands) and one of which was unvaccinated.

These infectious diseases in swine farms lead to financial losses in pork industries and
place a heavy burden on the countries’ economy. Mathematical modeling is an important
tool to describe the behavior of the disease and efficiency of control strategies. In this
paper, we investigate a mathematical model, proposed in the next section, for the spread of
PRRSV that incorporates both time and spatial dimensions as well as the observed decline
in infectiousness as time progresses. Moreover, our model incorporates into the dynamics
the assumption some members of the infected population may recover from the disease
and become immune. In Section 3, the model is also analyzed for its stability, assisted by
a phase analysis that allows us to obtain a clearer understanding of how PRRSV spreads
spatially through time. We then derive, in Section 4, the analytical solution of the model by
introducing a new coordinate known as the traveling wave coordinate and applying the
modified extended hyperbolic tangent method [15–21]. Concluding remarks are given in
the last section.

2. Materials and Methods

Here, we consider a system of reaction-diffusion equations to describe the spread
of populations in space and assume that the population has a size N over the period of
the epidemic.
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In 2017, Suksamran et al. [22] presented a model that considers the dimensions of both
time and space in the progression of PRRSV and that also pays attention to the how the
disease’s infectiousness declines as time passes, as follows:

∂S
∂t

=
∂2S
∂x2 + bSS + bSI I − dSS− βSG, (1)

∂I
∂t

= βSG + bI I − dI I, (2)

∂G
∂t

= αI − γG, (3)

where S(x, t) is the number per unit area of the susceptible swine at time t, measured in
days, and spatial distance x, and I(x, t) is the number per unit area of the infected swine
at time t and spatial distance x. The first term on the right of (1) is the rate that S(x, t)
spreads as a diffusive process in space. The second and third terms here are the birth rates
of susceptible populations arising from the susceptible and infected pools, respectively.
The last term in (1) represents the rate that S(x, t) is removed due to infection.

In [22], the authors denoted by G the integral expression that represents the rate of at
which susceptible swine becomes infected, written as

G =

t∫
0

αe−γ(t−τ) I(x, τ)dτ, (4)

which declines with time. This term has been introduced into the 3-dimensional model
considered in [22]. It accounts for the decline in infectiousness of diseased swine with time,
which is a characteristic specific to the virus of interest, namely the PRRSV. This pattern of
infection rate was pointed out in the work of Charpin et al. in [23], which reported on the
data collected from the swine population infected with PRRSV. The graph of (4), shown
in [22], has the same shape qualitatively as that plotted from experimental data in [23]. The
values of the parameters α and γ are specific to the infected population of interest and
should be fitted with observed data when the result of this study is to be used in the field.

Equation (2) gives the rate of change of the infected population, in which the first term
is the rate of its increase due to infection of S(x, t) when coming in contact with I(x, t). The
last two terms here are, respectively, the birth and death rates of I(x, t). The rate of change
of G can be written as in (3), obtained from simply differentiating G with time, with α and
γ being constants of variation in the integral function G. Please see [22] for more detail.

The system parameters in the referenced models discussed in this and later sections
are defined in Table 1.

Table 1. List of parameters in porcine reproductive and respiratory syndrome virus (PRRSV) model
and their definitions.

Parameter Description

bS
Specific birth rate of susceptible population

from susceptible population

bSI
Specific birth rate of susceptible population

from infected population
dS Specific death rate of susceptible population
β Transmission coefficient
ρ Removal rate of recovered population
bI Specific birth rate of infection population
dI Specific death rate of infection population
η Specific recovery rate of infected population

dR Specific death rate of recovered population
α Constant of variation in the rate equation for G
γ Rate of increase in G per unit of I
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We would like to discover the patterns of disease distribution in the situation where
infected swine could recover, or an isolation strategy is implemented in the attempt to
curb the spread of the infection. We therefore modify the model (1)–(3) of PRRSV by the
assumption that some members of the infected population may recover or be removed
from the infected population:

∂S
∂t

=
∂2S
∂x2 + bSS + bSI I − dSS− βSG + ρR, (5)

∂I
∂t

= βSG + bI I − dI I − η I, (6)

∂G
∂t

= αI − γG, (7)

∂R
∂t

= η I − dRR− ρR, (8)

where R(x, t) is the number per unit area of the recovered or isolated swine at time t and
spatial distance x. ρ is the specific rate at which R(x, t) returns to the susceptible pool, η is
the specific rate of decrease of infectious swine due to recovery or isolation, and dR is the
specific death rate of recovered or isolated swine.

In order to transform (5)–(8) into a system of ordinary differential equations that is
easier to be analyzed, traveling wave coordinate ξ = x− ct, is introduced, where c is the
constant speed at which the wave is assumed to be moving. By using ξ in (5)–(8), we obtain
the following system of nonlinear ordinary differential equations:

− cs′ = s′′ + bSs + bSI i− dSs− βsg + ρr, (9)

− ci′ = βsg + bI i− dI i− ηi, (10)

− cg′ = αi− γg, (11)

− cr′ = ηi− dRr− ρr, (12)

where ( )′ stands for the derivative of the specific state variable with respect to ξ,s(ξ) =
S(x, t), i(ξ) = I(x, t),g(ξ) = G(x, t) and r(ξ) = R(x, t).

Letting y1 = s, y2 = s′, y3 = i, y4 = g, y5 = r, we can write (8)–(11) as

y′1 = y2,

y′2 = −cy2 − bSy1 − bSIy3 + dSy1 + βy1y4 − ρy5,

y′3 = − β
c y1y4 − bI

c y3 +
dI
c y3 +

η
c y3,

y′4 = − α
c y3 +

γ
c y4,

y′5 = − η
c y3 +

dR
c y5 +

ρ
c y5.

(13)

Next, we shall analyze the model system (12) for its stability.

3. Model Analysis

Here, we carry out a stability analysis of the system (13) that results from the
transformation of (5)–(8). Two steady state solutions can be directly found for the
system (13), namely E0 = (0, 0, 0, 0, 0) and E1 =

(
(dI−bI+η)γ

αβ , 0, γκ
α , κ, ηγκ

α(dR+ρ)

)
, where κ =

(dS−bS)(dI−bI+η)(dR+ρ)
β[(dR+ρ)(bSI−dI+bI−η)+ρη]

. We note that the equilibrium point E1 exists only if

dS − bS > 0 (14)

and
dI − bI + η

c2 > 1, (15)
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in which case the denominator of κ will be positive, and all components of E1 will be
positive as well.

The Jacobian matrix of the system (13) evaluated at an arbitrary steady state(
y∗1 , y∗2 , y∗3 , y∗4 , y∗5

)
is

J =


0 1 0 0 0

dS − bS + βy∗4 −c −bSI βy∗1 −ρ

− β
c y∗4 0 dI−bI+η

c − β
c y∗1 0

0 0 − α
c

γ
c 0

0 0 − η
c 0 dR+ρ

c

.

At the washout steady state E0 = (0, 0, 0, 0, 0), the Jacobian matrix can be written as

J0 =


0 1 0 0 0

dS − bS −c −bSI 0 −ρ

0 0 dI−bI+η
c 0 0

0 0 − α
c

γ
c 0

0 0 − η
c 0 dR+ρ

c

,

whose eigenvalues are

λ1 =
dI − bI + η

c
,

λ2 =
γ

c
,

λ3 =
dR + ρ

c
and

λ4,5 =
−c±

√
c2 − 4(bS − dS)

2
.

Since λ2 and λ3 are positive, this equilibrium point is unstable. Since, by (14), dS −
bS > 0, or by (15) we have dI − bI + η < 0, it can be concluded that E0 is a saddle point.

Theorem 1. The equilibrium solution E1 =
(
y∗1 , y∗2 , y∗3 , y∗4 , y∗5

)
of (13) is unstable for all positive

parameter values whenever it exists.

Proof of Theorem 1. We calculate the Jacobian matrix of the system (13) at E1 to obtain

J1 =


0 1 0 0 0

dS − bS + βy∗4 −c −bSI βy∗1 −ρ

− β
c y∗4 0 η+dI−bI

c − β
c y∗1 0

0 0 − α
c

γ
c 0

0 0 − η
c 0 dR+ρ

c

,

whose characteristic equation is

λ5 + A1λ4 + A2λ3 + A3λ2 + A4λ + A5 = 0,

where A1 = c− dI+dR−bI+γ+η+ρ
c ,

A2 = bS + bI − dS − dI − dR − βκ − γ− η − ρ +
(dR + ρ)(dI − bI + γ + η)

c2 ,

A3 = βκ(dI+dR−bI−bSI+γ+η+ρ)+ρ(dS+dI−bS−bI+γ+η)
c

+ (bS−dS−dR)(bI−γ−η)+(dI+dR)(dS−bS)+dI dR
c ,

(16)
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A4 = βκ[γ(bI+bSI−dI−dR−ρ)−η(dR+γ)+(dR+ρ)(bI+bSI−dI)]
c2

+ (bS−dS)(dR+ρ)(dI−bI+γ+η)
c2 ,

A5 =
βγκ[(dI − bI − bSI)(dR + ρ) + ηdR]

c2 .

According to the Routh–Hurwitz stability criterion [24], the solution of E1 will be
stable when the coefficients in the characteristic equation are all positive. However, the
coefficient of λ4 is

c− dI + dR − bI + γ + η + ρ

c
< 0,

since (14) and (15) must hold for this equilibrium point E1 to exist. So that this equilibrium
solution E1 is unstable whenever it exists. This ends the proof. �

Figure 1 shows the phase portrait in the (y1, y2)-plane. Here, we see that the solution
trajectories diverge, as expected, from the origin, which is a saddle point as theoretically
predicted in Theorem 1. The parametric values used in the plot in Figure 1 have been
chosen to satisfy the required inequalities (14)–(15) and the equations in (16), as given
in Table 2.
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Table 2. List of parametric values for PRRSV model system (13).

Parameter Value Unit

bS 0.6 day−1

bSI 0.6 day−1

dS 0.8 day−1

β 0.5 day−1

ρ 0.3 day−1

bI 0.4 day−1

dI 0.3 day−1

η 0.2 day−1

dR 0.2 day−1

α 0.4 day−1 per swine
γ 0.5 day−1
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In the next section, we derive analytical solutions for our system model (5)–(8).
The novel insights into the dynamics of PRRS provided by the above analysis may

be implied from the above theorem, which states that the equilibrium points of the model
system are both unstable, which means that it will not be possible for us to control the
infection to remain at a steady level, even though some of the infected swine can recover
or are put in isolation. Other more effective control policies should be adopted in order
to mitigate the situation, such as vaccination or culling. This could be the subject for
future studies.

4. Analytical Solution

In this section, we apply the modified extended tanh method [15–21] to derive analyti-
cal solutions in term traveling wave coordinate. For the readers who may not be familiar
with the method, a brief summary of the modified extended tanh method is provided in
Appendix A. Accordingly, the solution of the model Equations (9)–(12) can be expressed as
finite series of tanh functions in the following form

s(ξ) =
M

∑
m=0

amφm, (17)

i(ξ) =
N

∑
n=0

bnφn, (18)

g(ξ) =
P

∑
p=0

cpφp, (19)

r(ξ) =
Q

∑
q=0

dqφq, (20)

where am, bn, cp and dq are constants, and φ(ξ) = tanh(µξ) satisfy the Riccati equation

φ′ = µ
(

1− φ2
)

.

The values of M, N, P and Q are determined by equating the highest order of φ in the
nonlinear expression sg with the highest order of φ in the linear expression s′′ in (9) yielding

M + 2 = M + P,

therefore P = 2. Equating the highest order of φ in the nonlinear expression sg with the
highest order of φ in the linear expression i′ in (10) yields

N + 1 = M + P = M + 2,

therefore N = M + 1, Equating the highest order of φ in the expression i with the highest
order of φ in the linear expression g′ in (11) yields

P + 1 = N,

so that N = 3. Equating the highest order of φ in the expression i with the highest order of
φ in the linear expression r′ in (12) gives

Q + 1 = N.

Thus, we have found that

M = 2, N = 3, P = 2 and Q = 2. (21)
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If we substitute (21) into (17)–(20), we will arrive at

s(ξ) = a0 + a1φ + a2φ2, (22)

i(ξ) = b0 + b1φ + b2φ2 + b3φ3, (23)

g(ξ) = c0 + c1φ + c2φ2, (24)

r(ξ) = d0 + d1φ + d2φ2. (25)

Substituting φ(ξ) = tanh(µξ) and the Riccati equation in Equations (9)–(12), with
the assistance of (22)–(25), and equating the coefficients of terms of equal powers of
φ, we arrive at the following system of algebraic equations that govern the parameters
a0, a1, a2, b0, b1, b2, b3, c0, c1, c2, d0, d1, d2:

ca1µ + 2a2µ2 + bSa0 + bSIb0 − dSa0 + ρd0 − βa0c0 = 0,

2ca2µ− 2a1µ2 + bSa1 + bSIb1 − dSa1 + ρd1 − βa0c1 − βa1c0 = 0,

bSa2 + bSIb2 − dSa2 − ca1µ− 8a2µ2 + ρd2 − βa0c2 − βa1c1 − βa2c0 = 0,

2a1µ2 − 2ca2µ + bSIb3 − βa1c2 − βa2c1 = 0,

6a2µ2 − βa2c2 = 0,

cb1µ + bIb0 − dIb0 − ηb0 + βa0c0 = 0,

2cb2µ + bIb1 − dIb1 − ηb1 + βa0c1 + βa1c0 = 0,

3cb3µ− cb1µ + bIb2 − dIb2 − ηb2 + βa0c2 + βa1c1 + βa2c0 = 0,

bIb3 − 2cb2µ− dIb3 − ηb3 + βa1c2 + βa2c1 = 0, (26)

βa2c2 − 3cb3µ = 0, cc1µ + αb0 − γc0 = 0,

2cc2µ + αb1 − γc1 = 0, αb2 − γc2 − cc1µ = 0,

αb3 − 2cc2µ = 0,

cd1µ− dRd0 + ηb0 − ρd0 = 0,

2cd2µ + ηb1 − dRd1 − ρd1 = 0,

ηb2 − cd1µ− dRd2 − ρd2 = 0,

ηb3 − 2cd2µ = 0

Solving the system (26), we obtain the parameters a0, a1, a2, b0, b1, b2, b3, c0, c1, c2, d1, d2
expressed in term d0 as follows:

a0 =

[
6µ2

αβ
+

d0

η

]
(dR + ρ)(dI + η − bSI − bI)

(bS − dS)
−
[

6ηµ2

αβ
+ d0

]
ρ

(bS − dS)
− 6c2µ2

αβ
,

a1 =
6cµ
(
dR + ρ + γ + bSI + bI − dI − η + c2)

αβ
, a2 =

6c2µ2

αβ
,

b0 = d0(dR+ρ)
η − 6γµ2

αβ , b1 = 6γµ(dR+ρ)
cαβ − 12cµ3

αβ , b2 = 6µ2(dR+ρ+γ)
αβ , b3 = 12cµ3

αβ , (27)

c0 =
αd0(dR + ρ)

γη
− 6µ2(dR + ρ− γ)

γβ
, c1 =

6µ(dR + ρ)

cβ
, c2 =

6µ2

β
,

d1 =
6γηµ

cαβ
, d2 =

6ηµ2

αβ
.
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Thus, the exact solution of the model system can be written as follows:

S(x, t) =
[

6µ2

αβ + d0
η

]
(dR+ρ)(dI+η−bSI−bI)

(bS−dS)
−
[

6ηµ2

αβ + d0

]
ρ

(bS−dS)
− 6c2µ2

αβ

+
6cµ(dR+ρ+γ+bSI+bI−dI−η+c2)

αβ tanh(µ(x− ct))

+ 6c2µ2

αβ tanh2(µ(x− ct)),

(28)

I(x, t) = d0(dR+ρ)
η − 6γµ2

αβ +
[

6γµ(dR+ρ)
cαβ − 12cµ3

αβ

]
tanh(µ(x− ct))

+ 6µ2(dR+ρ+γ)
αβ tanh2(µ(x− ct)) + 12cµ3

αβ tanh3(µ(x− ct)),
(29)

G(x, t) =
[

6µ2(dR+ρ−γ)
γβ + αd0(dR+ρ)

γη

]
+ 6µ(dR+ρ)

cβ tanh(µ(x− ct))

+ 6µ2

β tanh2(µ(x− ct)),
(30)

R(x, t) = d0 +
6γηµ

cαβ
tanh(µ(x− ct)) +

6ηµ2

αβ
tanh2(µ(x− ct)). (31)

Figure 2 shows the plots of the wave fronts of the susceptible population S(x, t) in
Figure 2a, the infected population I(x, t) in Figure 2b, and the recovered population R(x, t)
in Figure 2c, given in (28), (29) and (31), respectively. Here a0 = 1.1345, a1 = 0.5355, a2 =
0.00675, b0 = 0.9625, b1 = 1.24775, b2 = 0.075, b3 = 0.00225, c0 = 0.8, c1 = 1, c2 =
0.03, d0 = 0.4, d1 = 0.5, and d2 = 0.015. All parametric values have been chosen to satisfy
inequalities (14)–(15) as well as Equations (15) and (26). We show the plots of proportions
of susceptible, the infected and the recovered swine given by Equations (28), (29) and (31)
as functions of radial distance x. The waves travel from left to right as time passes.
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Figure 2. Traveling wave solution: (a) susceptible population per unit area; (b) infected popu-
lation per unit area; (c) recovered population per unit area. The waves are plotted as functions
of x for t between 0 (left most) and 30 (right most). Here, S(0, 0) = 1.1345, I(0, 0) = 0.9625,
G(0, 0) = 0.8, R(0, 0) = 0.4, and other parameter values are as given in the text.

The plots of wave fronts shown in Figure 2 contribute to our understanding of the
manner in which the infection spreads through space and time. They depict the situation
in which the infection starts out not being that widespread at the central point of the region
of interest where x = 0, while some pigs remain healthy here. As time progresses, the
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number of infected swine incidences at this point increases, while the counts of susceptible
swine and the recovered swine decrease at this particular spatial location. In other words,
if the location x is fixed, we can forecast the manner in which the level of the infectives will
increases, while in contrast the numbers of susceptible and recovered will decrease.

On the other hand, if we remain fixed in time, but follow a single (constant-time)
wave front as x increases, moving farther and farther away from the central location of
the infection, we will observe that the numbers of the susceptible swine and the recovered
swine farther away from the center get higher per unit area due to the fact that the infection
requires some time before it can spread outward and reach that distant location.

For better understanding, we construct the 3D plots in Figure 3. Here, the levels of
susceptible, infective and recovered populations are given by Equations (27), (28) and (30)
as functions of x and t. Relying on this graph, we can clearly discover what would happen
to the swine populations involved in the distribution of this disease as we advance in the
direction where both time and space increase simultaneously.
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5. Conclusions

In this study, we investigated a mathematical model for the spread of PRRSV that
considers both the time and spatial dimensions taking into account the reported evidence
that the infectiousness declines with time subject to the assumption that some members of
the infected population may recover from the disease and become immune. The stability
and phase analysis of the model was carried out and interpreted, which led us to conclude
that we would not be able to keep the infection under control at a steady level without
application of effective control strategies. Relying on the modified extended tanh method
and utilization of traveling wave coordinate, we then constructed exact traveling wave
solutions to the model system. This method for finding the analytical solutions can be
applied to other problems involving partial differential equations that may be transformed
into systems of ordinary differential equations. Our solution provides the levels of the
swine populations succumbing to PRRSV in the direction of increasing time and space.

In fact, other types of nonstationary solutions representing infection spreading (in
addition to the traveling waves) could be found. According to [25], since it is difficult or
often impossible to explicitly solve reaction–diffusion equations in a very general setting,
researchers frequently concentrate instead on special kinds of solutions only. Especially
for biological systems, we are most of the time focused on the long-term behavior, that
is, what happens to the solutions a long time into the future, so that we are often led
to the so-called stationary solutions. However, other types of special solutions are the
so-called similarity solutions and traveling wave solutions, of which we have made use
here. Solutions derived as functions of traveling wave variables are of special interest in
biological sciences and medical research. They are often used to investigate invasion of
species or spread of diseases in time and space, according to [25]. In our case, we have been
fortunate that our model system, complicated by the integral expression, had a particularly
simple form upon transformation, which allowed us to find a closed-form solution for it.
Often, we will be confronted with more complicated formulas, and it will be difficult or
impossible to discover a closed-form solution. In such a case, one may need to derive a
numerical solution instead. Closed-form solutions are similar to numerical solutions in
that their values can be found with a finite number of standard operations. However, the
advantage of a closed-form solution is that it is exact, whereas a numerical solution only
provides us with approximate values [26].

This method that we have adopted in trying to find the analytical solutions of our
model can be applied to other problems involving partial differential equations, which
may be transformed into systems of ordinary differential equations. Our solution provides
the levels of the swine populations succumbing to PRRSV in the direction of increasing
time and space. Specifically, if the same values have been utilized for the common set
of model parameters, we would see that the level of infected swine spread out in the x
direction more slowly with time when modeled with our 4-dimensional model than when
the 3-dimensional model, less the recovered population, is used. Since some infected
swine recover and develop immunity or are kept from infecting the susceptible swine,
realistically infection would not be able to spread as quickly, which is better captured by
our 4-dimensional model, which includes the rate equation for recovered population. Thus,
our work has accorded us with a clearer and more comprehensive description of PRRSV
progression and the possibility of reducing the rate of infection.
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Appendix A

Modified Extended Tanh Method

Based on [15–21], we start by considering the following nonlinear partial differen-
tial equation.

F(u, ut, ux, utt, uxx, . . .) = 0, (A1)

where F is a polynomial in u(x, t) and its partial derivatives.
We seek the following traveling wave solutions:

u(x, t) = U(ξ), ξ = x± ct,

which are of important physical significance, where c is a constant to be determined
later. Then the system (A1) reduces to a system of nonlinear ordinary differential equa-
tions (ODEs).

F0
(
U, Uξ , Uξξ , . . .

)
= 0, (A2)

where F0 is a polynomial of U(ξ).
Introducing new independent variables in the form

Y = tanh(µξ), ξ = x± ct, (A3)

We are led to the change of derivatives

d
dξ = µ

(
1−Y2) d

dY ,

d2

dξ2 = −2µ2(1−Y2) d
dY + µ2(1−Y2)2 d2

dY2 ,

d3

dξ3 = 2µ3(1−Y2)(3Y2 − 1
) d

dY − 6µ3Y
(
1−Y2)2 d2

dY2 + µ3(1−Y2)3 d3

dY3 .

(A4)

In the context of tanh function method, many authors [15–19] used the expression

U(ξ) =
S

∑
i=0

aiYi(ξ), (A5)

In order to construct more general solutions, it is reasonable to introduce the following
expression [20,21].

U(ξ) =
S

∑
i=0

aiYi(ξ) +
S

∑
i=1

biY−i(ξ), (A6)

in which ai and bi (i = 0, 1, . . . , S) are all real constants to be determined later, the bal-
ancing number S is a positive integer which can be determined by balancing the highest
order derivative terms with highest power nonlinear terms in system (A1). Substituting
expression (A5) into (A2), and equating to zero the coefficients of all powers Y±i yield a set
of algebraic equations for ai, bi, ci, di and µ.
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