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Abstract: The choice of not buckling a seat belt has resulted in a high number of deaths worldwide.
Although extensive studies have been done to identify factors of seat belt use, most of those studies
have ignored the presence of heterogeneity across vehicle occupants. Not accounting for hetero-
geneity might result in a bias in model outputs. One of the main approaches to capture random
heterogeneity is the employment of the latent class (LC) model by means of a discrete distribution.
In a standard LC model, the heterogeneity across observations is considered while assuming the
homogeneous utility maximization for decision rules. However, that notion ignores the heterogeneity
in the decision rule across individual drivers. In other words, while some drivers make a choice
of buckling up with some characteristics, others might ignore those factors while making a choice.
Those differences could be accommodated for by allowing class allocation to vary based on various
socio-economic characteristics and by constraining some of those rules at zeroes across some of the
classes. Thus, in this study, in addition to accounting for heterogeneity across individual drivers,
we accounted for heterogeneity in the decision rule by varying the parameters for class allocation.
Our results showed that the assignment of various observations to classes is a function of factors
such as vehicle type, roadway classification, and vehicle license registration. Additionally, the results
showed that a minor consideration of the heterogeneous decision rule resulted in a minor gain in
model fits, as well as changes in significance and magnitude of the parameter estimates. All of this
was despite the challenges of fully identifying exact attributes for class allocation due to the inclusion
of high number of attributes. The findings of this study have important implications for the use of an
LC model to account for not only the taste heterogeneity but also heterogeneity across the decision
rule to enhance model fit and to expand our understanding about the unbiased point estimates
of parameters.

Keywords: latent class; preference heterogeneity; decision rule heterogeneity; traffic safety; seat belt

1. Introduction

More than 37,000 people died in highway crashes in the U.S. in 2017 alone, out of
which 47% were not wearing seat belts [1]. Given the importance of seat belt usage in the
enhancement of traffic safety, there has been growing interest in understanding the factors
that impact the choice of vehicle occupants in wearing seat belts in order to increase seat
belt usage. To achieve that, it is important understand the accurate contributory factors to
seat belt usage by implementing the right statistical method that could evaluate unbiased
estimated parameters in the choice of seat belt usage.

A drivers’ choice for the use of seat belt is expected to be characterized by hetero-
geneity, which means that data heterogeneity is necessary when making unbiased model
outputs estimates. Two main approaches have been proposed in the literature to account
for data heterogeneity: the latent class (LC) and mixed models. The mixed model assumes
continuous distributions for random parameters, while the LC model relaxes that assump-
tion by using discrete distributions. That is especially important because the choice of
random parameter distributions has been subjectively made by investigators, and it is
usually challenging to come up with a real distribution underlying random parameters.
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The LC model stratifies individuals into various classes. Normally, that entails as-
signing a constant value or a combination of constant and various socio-economic charac-
teristics, while the first class is normalized to zeros for model identification. A limitation
of assigning a constant value for class allocation is that individuals’ characteristics are
invariant across various choices. In other words, the impact of those individuals’ charac-
teristics might not be identifiable when using a constant value for class allocation [2]. To
address this shortcoming, it is important to consider using various characteristics for the
probability of individuals’ assignments to various segments. Thus, the choice of choosing
an alternative might be based on a set of socio-economic characteristics.

Still, a limitation of the LC model based on socio-economic characteristics is that
all behavioral and individual class membership processes are identical and based on
specific attributes or a constant value. Though accounting for taste heterogeneity through
a standard LC model usually results in an increase in model fit compared to a standard
multinomial logit (MNL) model, this model can only account for variation in marginal
sensitivities, and there might still be some heterogeneity due to variations in the choice
process by individual respondents [3].

The limitation of the discussed LC model based on various socio-economic character-
istics is that the model cannot account for the heterogeneous decision rule. For instance,
while some drivers might ignore some characteristics while making a choice, others might
use those same characteristics. Not accounting for that heterogeneous decision rule is
expected to impact the goodness of a models’ fit and, consequently, point estimates. That
is especially important because what has been identified as a normal taste heterogeneity
might, in fact, be due to decision rule heterogeneity [3].

The heterogeneous decision rule or lexicographic rule is linked to the individuals
who value some characteristics so highly that they are not willing to make a tradeoff [4].
By lexicographic choices, we mean that individuals choose an alternative based on some
socio-economic or demographic characteristics. It has been noted in the literature that those
lexicographic rules can also be used for perception formation in addition to alternative
evaluations [5]. The following paragraphs outline a few studies conducted by modifying
the standard LC model to account for the heterogeneous decision rule.

Lexicographic rules from choice data related to the few manufacturers of televisions
were used [4]. The process was implemented by two main steps: first, the results of the
finite mixture model were used to identify an initial clustering of observations, and then
arbitrary lexicographic rules were used to be assigned to various clusters, and each cluster
was assigned to the best of those rules. In another study, the heterogeneous decision rule
was considered [3], and a significant gain was observed when moving from the MNL
model to the LC model and the LC model which considered the lexicographic rules.

Though many studies related to seat belt use have been conducted in the literature,
almost all those studies used traditional techniques that could not account for the het-
erogeneity in their datasets. A study was conducted to investigate seat-belt-wearing
compliance across road users in Malaysia. Gender, time of a day, and type of vehicle were
some of the factors found to impact the use of seat belts [6]. The study was cross-sectional,
and just a descriptive summary of recorded observations was presented. The impact of
demographic factors on seat belt use by injured adults in crashes were reported [7]. The
data used in that study were from injured adults admitted into a trauma center. Standard
logistic regression was used for the purpose of the analysis. The results indicated that
drivers making a greater yearly income, female drivers, and white drivers are more likely
to have their seat belts on while involved in crashes.

Occupation, education, driver age, gender, type and make of vehicle, road surface
condition, and type of roadway were some of the factors that were found to impact the
likelihood of seat belt use in Iran [8]. The collected data were regarding a total of 1427 motor
vehicles, and a descriptive summary of the data was presented in the study. Occupant seat
belt use in the Ghanaian University campus was recorded [9]. The data were collected via
an unobstructive survey by collecting the information from vehicles. It was found that
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vehicle type and gender were some of the factors that impact the usage of seat belts. A
chi-square test was used to establish the relationship between seat belt use and vehicle
type. In another study, the impact of belted drivers on belting status of the passenger
was evaluated, and a standard mixed model was used. A total of 33,310 vehicles in
Tennessee were described for data collection. The results implied that a seat belt user can
be heavily impacted by vehicle type, sex, and driver’s belt status [10]. Additionally, two
other studies were conducted by the authors of this study that accounted for taste and scale
heterogeneity [11] and that accounted for attribute non-attendance and common-metric
aggregation [12].

This current study was conducted by extending the standard LC model to an LC
model that accounted for the decision rule. The idiosyncratic differences in the choices
made by drivers were hypothesized to be linked to various socio-economic characteris-
tics. The consideration of the observations’ allocation based on various socio-economic
characteristics could provide further insights about the underlying factors that shape the
distribution of the parameters.

To have a better understanding of the importance of accounting for the heterogeneous
decision rule, a comparison was made between the standard LC model and the models
that accounted for that effect. The data section describes the data used in this study, while
the method section details the implemented methods. The results and discussion sections
describes the obtained results.

2. Data

The dataset was collected in 2019 across 17 counties in 289 locations in Wyoming. The
observers who collected the data were trained in a classroom before any data collection.
This was done to conform to the criteria highlighted by the state observational seat belt
survey issued in 2011 by the National Highway Traffic Safety Administration: the survey
followed the uniform criteria for the state observational survey of seat belt use [13].

The data framework used in this study utilized various demographic and environ-
mental characteristics that might motivate drivers to buckle up. There were 18,286 driver
observations considered in this study. A summary of the attributes and levels of various
contributory factors, along with related descriptive summaries of the important predictors,
is presented in Table 1. The data were collected by the observers in two hours span from
7:30 a.m. to 5:30 p.m. (7:30–9:30 and 3:30–5:30). As can be seen from Table 1, while most
of the drivers were buckled, a significant proportion of the passengers were unbuckled
(mean = 0.21).

Table 1. Summary statistics of the considered predictors.

Attributes Mean Min Max Variance

Response, non-belted * versus belted 0.21 0 1 0.167

Driver gender, male *, versus female 2 1.32 1 2 0.217

Population, urban * rural 1.74 1 2 0.192

Sunny versus others * 0.71 0 1 0.206

Type of vehicle: Van versus others * 0.29 0 1 0.208

Type of vehicle: SUV versus others * 0.06 0 1 0.208

Type of vehicle: Pickup truck versus others * 0.41 0 1 0.241

Time: 3:30–5:30 versus others * 0.26 0 1 0.191

Time: 1:30–3:30 versus others * 0.15 0 1 0.130

# of lanes 1 * and 2 1.442 1 2 0.247

License plate registration, Wyoming plate as 2
versus others as 1 * 1.43 1 2 0.601

Day of a week, 1 weekend B *, 2 weekdays 0.86 0 1 0.121
* reference category.
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Various weather conditions such as clear, foggy, and rain were available for a single
predictor. Those predictors were converted into dummy variables, and their significance
was checked in the model. Various car types such as van, SUV, and pickup truck were
available and considered in the analysis; again, dummy variables of those vehicle types
were considered for the statistical analysis assessment. Finally, it should be noted that all
the considered variables were individual-specific, and no choice-specific variables were
considered in this study.

3. Methodology

This section discusses the implementation of the LC model in detail. As the method
could be written as an extension of the multinomial logit model, the description of that
model would be presented first. Consider a decision maker making a choice from a finite set
of alternatives as J while there are random vectors and utility (U1, . . . , Uj); the probability
of choosing i from a choice set of M is given by:

Pi = Pr
(
Ui > Uj

)
, f or all i 6= j ∈ M (1)

where U could be written based on V (systematic utility) and ε (random utility). V is
a function of some observable covariate vectors and unknown parameters that can be
estimated, while ε contains unobserved determinants of utility, which follows Gumbel
distribution type I. The choice model can be solved as:

Pr(yn = 1) =
1

1 + e−(vnA−vnB)
=

eVnA

eVnA + eVnB
(2)

where the individual n selects a choice across the alternatives of “A” as 1, or yn = 1, and
“B” as 2.

Now, by considering the assumption that the error terms are identically distributed [14]
(in addition to the Gamble scale parameter being set as 1 and the probability for utility i
being based on the logit transformation ( 1

1+e−µε ), the MNL model could be written as [15]:

Pni =
eVni

∑J
j=1 evnj

(3)

where the above parameters (especially for the LC model) could be defined as follows: J is
the total number of alternatives and Vni, which was defined earlier, is a function of the
vector of coefficients xni and coefficient estimates of β.

Thus, a decision maker could choose an alternative i with the maximum utility,
and if, for instance, Ubuckled > Uunbuckled, a driver would choose to be buckled. As the
implemented method in this study was an extension of the standard latent class model, the
following paragraphs describe the LC model’s specifications.

A latent class model can be used to divide heterogeneous data into Q homogenous
data segments, where each class has its own parameters. Compared with the mixed model,
the LC model is less restrictive because it can identify classes without any predefined
assumptions. The parameters for the first class should be normalized to zero to allow
for the segments’ identification. When allowing for data with Q different elements, the
log-likelihood would be written as:

LL(yi|Xi, θ) =
n

∑
N=1

ln
Q

∑
q=1

πiq(γ)∏ (Pni|q)
yni (4)

where πq is the probability of an individual i belonging to a class q (class allocation
probability), ∑Q

q=1 πiq = 1, and 0 ≤ πiq ≤ 1; Pni was given by Equation (3). A few
observations can be made from Equation (4). First, the LC model is a probabilistic model
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that aggregate the class allocation probability of πiq, and individual probability of Pni|q,
where Pni|q is based on the MNL model.

Now πiq, which is the multinomial logit model, would be written as [16]:

πiq(γ) =
exp

(
zᵀi γq

)
∑Q

q=1 exp
(
zᵀi γq

) , γ1 = 0 (5)

where zi denotes a vector of socio-economic characteristics determining the class assign-
ment and γq represents associated parameters that are a set of estimated constant and
various coefficients that can be used for computing class probabilities. Normally, for a
standard LC model, similar socio-economic and constant values would be used for all
class allocations.

However, due to various behavioral process, various classes might be dependent
on various attributes, so each class might need to be identified based on various socio-
economic characteristics, and considering all parameters equally for class allocation could
result in unnecessary model complexity and biased model parameters estimates. After
employing the aforementioned techniques, the goodness of fit of the Bayesian information
criterion (BIC) could be used for the evaluation of a model’s fit.

Lexicographic choices are defined as a set of choices that allow a respondent to choose
an alternative that is superior with particular attributes [17]. For instance, a lexicographic
analysis could show whether a respondent chose one option over another while consider-
ing similar characteristics. Various reasons have been assigned to lexicographic choices,
including the simplification of the choice task and a real preference [17]. However, as the
simplification of the choice was not practical for our case study due to limited numbers of
alternatives, it can be said that the lexicographic choice was a result of a real preference.

Finally, the parameter estimations are based on the unconditional probabilities for the
LC model by plugging Equations (3) and (5) into Equation (4), which is written as follows:

Pi =
Q

∑
q

πiq

J

∏
j
[

exp(xᵀijβq)

∑J
j=1 exp(xᵀijβq)

]

yij

(6)

As the likelihood of the above equation does have a close-form solution, no simula-
tion like the mixed model is needed. In an analysis, for πiq, instead of having a similar
characteristic across various classes in the Equation (4), the values vary across the segments.

Model Parameter Estimations

The description of model parameter estimates is based on Equation (6) and could
be summarized in two parts: estimating πiq (class allocation probability) and based on
Equation (5), and (Pni)

YNI in Equation (3). The parameter estimates based on the above
discussion can be highlighted in a simple form as follows:

1. The description below is related to (πiq) in Equation (6), which is described in detail
in Equation (5). This parameter is based on zᵀi and γq.

a. Initial values of γq, which constitute initial values of a constant and the het-
erogeneity point estimates related to initial values of covariate for each class
would be created. The accommodated matrix can be saved and called T.

b. Now, zᵀi (related vectors of γq) times γq would be saved as G. The exponential
of G is made to be exp

(
zᵀi γq

)
. For our case, the values were related to various

socio-economic factors and a constant value of 1 for the intercept. As discussed,
the value for the first group for all socio-economic factors and the intercept was
fixed as 0 for parameter estimations.

c. The number in b is transformed into a probability by dividing the value of b by

the sum of all the segments:
exp(zᵀi γq)

∑Q
q=1 exp(zᵀi γq)

.
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2. The following description is related to ∏ (Pni|q)
yni in Equations (4) or (6):

a. Q is number of columns, which is equal to number of classes that are created.
b. The initial values of model parameters (βq) can be multiplied by vectors of

the related parameters (xᵀij). The initial values might be estimated based on a
normal multinomial logit model. The result is exp(xᵀijβq).

c. The result is divided by the sum of all the segments as probability
exp

(
xᵀij βq

)
∑J

j=1 exp
(

xᵀij βq

) .

d. The multiplication of the result of 2.c times the response is stored as pp (log
power rule). This is the second part of Equation (4): (Pni|s)

YNI .

3. The result of 2.d times the result in 1.c is stored as log likelihood; see Equation (6).
4. The result in 3 would be maximized by finding the optimum values through Hessian

and gradient models with the help of finite-difference methods like the maximum
likelihood method. In the standard LC method, all classes are modified based on the
discussed πiq. However for the LC model that considers the decision rule, the easiest
way is to set a constraint on some variables within a class at zeroes so that their class
allocations are not dependent on some socio-economic characteristics.

4. Results

It has been documented in the literature that the choice number of latent classes must
be selected by the researchers [18]. Thus, we tried various numbers of classes with different
variables for class assignment. The number of classes and variables to be considered for
class assignments were chosen based on the goodness of fit and interpretability. In addition
to the constant value, the three attributes of road classification, vehicle plate registration,
and vehicle type of pick up were considered for class allocation.

Three models were considered for a comparison. The first model was the standard
MNL model with no random heterogeneity in sensitivities. The second model was the LC
model including three classes with no treatment for class assignment. Finally, the third
model was treated by a single lexicography rule for only the second class. Decision rule
treatment is important when employing an LC model, as otherwise the question of whether
the decision makers made their choices based on all the attributes described in the model
or some individuals used only some of those criteria would be raised.

A few observations are worthy of discussion. First, an improvement in the model
fit could be observed when moving from the standard MNL model (BIC = 18,155) to the
standard LC model (BIC = 18,145) and moving from the standard LC model to the LC
model with a decision rule adjustment (BIC = 18,134). Additionally, it was clear that with
the removal of a parameter in the LC model with the decision rule, the log likelihood
decreased by one point, highlighting an improvement in model fit. The classes with the
highest and lowest numbers of observations for the second and third models were related
to classes 3 and 1, respectively (# of samples).

After checking for the similarity of the second class of the second model, it was
observed that only 8 out of 242 observations of the second class of the third model is like
the second class of the second model. Thus, after constraining pickup truck for the second
class of the third model, allocated observations for all classes were distorted. That could
also be observed via changes in assignments and magnitudes of the class probability for
license plate, for instance. Because the best model in terms of the goodness of fit was the
third model, we now further discuss that model’s results.

As can be seen from Table 2, for respondents who did not use Lex.class2_pickuptruck
in the choice task (second class of the third model), the pickup type of vehicle had a
negative impact on their choice of being unbuckled (β̂ = −1.43); meanwhile, for the drivers
who used Lex.class3_pickuptruck (class 3) as their class assignment, a pickup truck had a
higher valuation in their choice of being unbuckled (β̂ = 0.73).

However, the results for the non-lexicographic group (first group) highlighted that the
impact of the pickup truck was not different that 0. Additionally, time of a day of 3:30–5:30
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had a lower valuation of being unbuckled for those drivers who used the lexicography
of the pickup truck for their choice (β̂ = 0.8) compared with those drivers who did not
(β̂ = 4.27).

Table 2. The results of the considered models. MNL: multinomial logit; LC: latent class; BIC: Bayesian information criterion.

1st Model: MNL 2nd Model: Standard LC Model 3rd Model: LC Model
Considering the Decision Rules

Estimate Std.
Error Pr(>|z|) Estimate Std.

Error Pr(>|z|) Estimate Std.
Error Pr(>|z|)

Class I

Driver gender −0.28 0.039 <0.005 −0.62 0.143 0.000 0.13 0.504 0.79

Roadway classification −0.79 0.033 <0.005 0.72 0.266 0.007 12.67 6.851 0.06

sunny weather 0.14 0.042 <0.005 0.57 0.163 <0.005 −14.39 7.022 0.04

Type of vehicle: van −0.26 0.054 <0.005 −0.37 0.161 0.023 −0.43 1.074 0.69

Type of vehicle: SUV −0.31 0.096 <0.005 −0.64 0.306 0.037 −2.66 1.434 0.06

Type of vehicle: Pickuptruck 0.37 0.046 <0.005 0.81 0.206 <0.005 −1.59 1.119 0.16

Time of a day: 3:30–5:30 0.19 0.044 <0.005 0.31 0.150 0.042 −13.76 7.106 0.05

Time of a day: 1:30–3:30 0.19 0.054 <0.005 −2.74 1.373 0.046 −2.04 0.959 0.03

No of lanes 0.09 0.033 <0.005 1.32 0.228 <0.005 −1.05 0.642 0.10

Vehicle license registration −0.10 0.027 <0.005 −1.59 0.214 <0.005 5.24 2.204 0.02

Day of a week 0.17 0.053 <0.005 −1.66 0.315 <0.005 −13.54 6.963 0.05

Class II

Driver gender —– —– —– −0.29 0.224 0.196 −0.83 0.530 0.12

Roadway classification —– —– —– −0.06 0.265 0.831 −25.31 23.733 0.29

Sunny weather —– —– —– −0.25 0.266 0.340 3.29 1.440 0.02

Type of vehicle: Van —– —– —– −0.38 0.318 0.228 −0.52 0.678 0.44

Type of vehicle: SUV —– —– —– −0.31 0.563 0.586 0.37 1.060 0.73

Pickuptruck —– —– —– −0.39 0.354 0.266 −1.43 0.786 0.07

Time of a day: 3:30–5:30 —– —– —– −0.29 0.250 0.249 4.27 1.268 0.00

Time of a day: 1:30–3:30 —– —– —– 13.95 68.479 0.839 −0.55 0.759 0.47

No of lanes —– —– —– −14.05 68.476 0.837 12.01 10.985 0.27

Vehicle license registration —– —– —– 2.04 1.094 0.062 1.97 1.627 0.23

Day of a week —– —– —– 12.87 68.443 0.851 19.94 21.527 0.35

Driver gender —– —– —– −0.46 0.165 0.005 −0.62 0.112 <0.005

Roadway classification —– —– —– −4.57 0.751 <0.005 −0.92 0.250 <0.005

sunny weather —– —– —– 0.67 0.210 0.002 1.19 0.301 <0.005

Type of vehicle: van —– —– —– −0.38 0.180 0.034 −0.46 0.134 <0.005

Type of vehicle: SUV —– —– —– −0.13 0.269 0.623 −0.34 0.221 0.13

Type of vehicle: pickuptruck —– —– —– 0.04 0.191 0.842 0.73 0.150 <0.005

Time of a day: 3:30–5:30 —– —– —– 1.11 0.189 <0.005 0.80 0.142 <0.005

Time of a day: 1:30–3:30 —– —– —– 0.17 0.253 0.502 0.52 0.161 <0.005

No of lanes —– —– —– 1.67 0.352 <0.005 −0.10 0.119 0.41

Class III

Vehicle license registration —– —– —– 0.28 0.052 <0.005 −1.13 0.149 <0.005

Lex. class.3_day —– —– —– 3.52 1.077 0.001 1.10 0.332 <0.005

Lex. class 2_Constant —– —– —– 0.05 0.285 0.864 −3.85 0.570 <0.005

Lex. class 3_Constant —– —– —– −6.36 1.047 <0.005 −0.60 0.297 0.04
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Table 2. Cont.

1st Model: MNL 2nd Model: Standard LC Model 3rd Model: LC Model
Considering the Decision Rules

Estimate Std.
Error Pr(>|z|) Estimate Std.

Error Pr(>|z|) Estimate Std.
Error Pr(>|z|)

Lex. class2_ Roadway
classification —– —– —– 0.49 0.138 <0.005 1.88 0.309 <0.005

Lex. class3_ Roadway
classification —– —– —– 3.59 0.512 <0.005 1.05 0.129 <0.005

Lex. class2_ vehicle license
registration —– —– —– −1.09 0.220 <0.005 0.62 0.135 <0.005

Lex. class3_ vehicle license
registration —– —– —– 0.32 0.079 <0.005 0.47 0.124 <0.005

Lex. Class2_pickuptruck —– —– —– 0.45 0.137 0.001 ——– ——– ——–

Lex. class3_pickuptruck —– —– —– −0.30 0.141 0.032 −0.66 0.128 <0.005

# of samples —– —– —– 3624 2373 12,244 2180 242 15,822

Log Likelihood = −9023; BIC = 18,155 Log Likelihood = −8871;
BIC = 18,145

Log Likelihood = −8870;
BIC = 18,134

The results showed that the individuals drivers in the third class, who used a pickup
truck to base their choice of being buckled or not while driving, assigned a positive
importance to road classification for being buckled (β̂ = −0.92) compared with drivers in
the first segment, who made a decision about the choice of seat belt with no rule for class
assignment: driving in rural areas increased the likelihood of being unbuckled (β̂ = 12.67)
for that segment.

A few observations could also be made regarding the class probability assignment (γ̂).
The probability of being in classes 2 (γ̂2.veh reg = 0.62) and 3 (γ̂3.veh reg = 0.47) increased for
those drivers who were driving with a Wyoming vehicle plate registration, with a higher
degree for class 2.

Another important finding from the comparison of the two implemented LC models
was the change in terms of the significance and magnitude of the parameter estimates,
which was also highlighted in the goodness of fit measures. For instance, while the
sunny condition increased the chance of being buckled up for the standard LC model, the
assignment was reversed for the model with the decision rule consideration. Additionally,
while only a single variable in the second class of the standard LC model was not different
than zero (p-value > 0.05), the number of important predictors increased to 4 with the
modified LC model that considered the decision rule for the same class.

The results of the superior third model showed that for almost all cases, there were
mixed results for the parameter estimates across various classes. For instance, driving with
a Wyoming license plate and the time of drive were some of the factors found to have
impacts on various assignments across classes.

On the other hand, female drivers and driving on weekdays significantly decreased the
likelihood of being unbuckled, though only for a single class. Although an increased num-
ber of lanes was significant for two classes with an increasing impact of being unbuckled,
the assignment was reversed, at the 0.1 significance level, for the modified LC model.

In summary, by just accounting for the heterogeneous decision rule for a single class
and across a single variable, a significant, although small, improvement in model fit
could be observed when moving from the standard LC model to the modified LC model.
Additionally, it was found that lexicographic choice had a significant impact on the selection
of an alternative.

5. Conclusions

Two main models of mixed and latent class models have been employed in the litera-
ture to account for heterogeneity across individuals. A key limitation of the employment of
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parametric distributions in a mixed model is the distribution assumption for the random
parameters, which is often set subjectively. The LC model, as an extension of the MNL
model, relaxes those assumptions by considering a discrete distribution. While the LC
model has mostly used a constant variable for a class allocation in the literature, other
studies have used various socio-economic characteristics for class assignments. However,
most of those studies considered similar predictors across all class assignments.

One of the shortcomings of the standard LC model is that it considers similar variables
or constant values for class assignment across all observations. However, it has been
discussed that heterogeneity is not only across individuals but also the class probability
assignments to those individuals. Additionally, the constant class assignment assumption is
expected to be unrealistic and to be violated, especially due to variations across individual
drivers in the choice of seat belt usage.

Three models were considered and compared in this study: the MNL, the standard
LC, and the LC model with the heterogenous decision rule. First, various socio-economic
characteristics were considered for class allocation probabilities, and it was found that
factors including roadway classification, vehicle plate registration, and type of vehicle
significantly impacted the class allocations of the individual’s observations.

Second, adjustments across variables for the class probability assignments were con-
sidered. The results showed that constraining one variable for a single class assignment
resulted in a slight improvement the model fit, and significant changes were observed for
the level of significance and assignments of few observations. In general, an improvement
in model fit was observed when moving from the MNL model to the standard LC, and
modified LC models.

The results showed that not accounting for the heterogeneous decision rule is the
source of increased errors and may even result in biased and insignificant point estimates
for many parameters. Additionally, the impacts of the variables in the assignments of
individual drivers into various classes were discussed in detail.

In summary, the results showed that attributes such as a driver’s gender, type of
vehicle, time of drive, and road classification are some of the factors that impact the
choice of seat belt use for drivers. However, mixed results with various assignments and
magnitudes were found across almost all predictors.

To improve seat belt usage and have a better understanding of the accurate contrib-
utory factors to it, it is important to implement the right statistical method to estimate
unbiased parameters for the choice of using a seat belt. It is especially important for policy
makers to have this better understanding so that they could could take appropriate steps
by targeting the right groups and conducting the correct educational programs.
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