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Abstract: Thermodynamic equilibria and concentrations in thermodynamic equilibria are of major
importance in chemistry, chemical engineering, physical chemistry, medicine etc. due to a vast
spectrum of applications. E.g., concentrations in thermodynamic equilibria play a central role for
the estimation of drug delivery, the estimation of produced mass of products of chemical reactions,
the estimation of deposited metal during electro plating and many more. Species concentrations in
thermodynamic equilibrium are determined by the system of reactions and to the reactions’ associated
stability constants. In many applications the stability constants and the system of reactions need to
be determined. The usual way to determine the stability constants is to evaluate titration curves. In
this context, many numerical methods exist. One major task in this context is that the corresponding
inverse problems tend to be unstable, i.e., the output is strongly affected by measurement errors,
and can output negative stability constants or negative species concentrations. In this work an
alternative model for the species distributions in thermodynamic equilibrium, based on the models
used for HySS or Hyperquad, and titration curves is presented, which includes the positivity of
species concentrations and stability constants intrinsically. Additionally, in this paper a stabilized
numerical methodology is presented to treat the corresponding model guaranteeing the convergence
of the algorithm. The numerical scheme is validated with clinical numerical examples and the model
is validated with a Citric acid–Nickel electrolyte. This paper finds a stable, convergent and efficient
methodology to compute stability constants from potentiometric titration curves.

Keywords: potentiometric titration curve; Michaelis constant; stability constant; complexation;
inverse problems; computation of stability constants; computation of thermodynamic equilibria;
optimization; numerical scheme

1. Introduction

The measurement, simulation, and evaluation of species distributions in thermody-
namic equilibria and potentiometric titration curves are of special interest in research as
they indicate the behavior of reactions taking place at different pH values, cf. [1,2]. The
stability constants of the considered reactions and the concentration distribution of the
given species over the pH values are of particular interest. For example, in the electrolyte
design, a major indicator of the deposition speed is the free metal concentration in thermo-
dynamic equilibrium in the electrolyte at a certain pH value, see [3]. Additionally, the free
metal concentrations in thermodynamic equilibrium are commonly used as boundary data
for simulations of metal deposition while electro plating, see [4–7]. For this the stability
constants are needed, which are commonly computed from titration curves, see [8–12].

A common way to compute stability constants, as applied in the work of Xu et al. [8]
and the work of Zanonato et al. [9], is through the application of DFT (density functional
theory) methods as described in the work of Becke [10], which is based on the approxi-
mation of the density functional describing the exchange-energy density of atomic and
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molecular systems. Although this strategy is time-efficient, in this paper a numerical
strategy will be constructed to unify the calculation of titration curves with the inverse
calculation of the stability constants by reconstructing the titration curves themselves.
In addition to the unification of the approaches for the computation of titration curves and
stability constants, the approach chosen in this paper has three major additional advan-
tages. The first advantage is that the presented algorithm and model immediately produces
concentration distributions over the pH values without additional computation steps.
The second advantage is the closeness of the theoretical model to the measured chemical
process. The third advantage is that the approach discussed in this paper yields a robust
numerical strategy for the inverse problem, which is known to be unstable, see [13,14].

The model for the computation of the titration curve used in this paper is based on
the model formulation in the articles of Alderighi et al. and Gans et al. [11,12] and in the
work of Langtangen [15], but it will be equivalently reformulated to stabilize the model
formulation. This is needed since inverse problems such as the one used to calculate the
stability constants tend to be unstable from a mathematical perspective, see Hinze et al. [13]
and Richter [14]. In the work of Alderighi [11], the numerical scheme is described by a
simple application of the Newtonian algorithm, which is known to be unstable, see the
book of Mäkelä et al. and Lange [16,17], in this paper, an algorithm will be discussed which
is more stable based on homotopy methods, see [18,19].

Similar to as in the book of Martell [20], the simulated titration curves are used to
calculate the stability constants from measured titration curves. However, in contrast to the
numerical scheme described in [11,12,20], the numerical scheme described in this article is
based on the treatment of the stabilized formulation of the titration curve.

Due to the stabilized formulation of the titration curve, an increase in robustness and
reliability of the results of the stability constants is gained.

An important application for the evaluation of titration curves, inverse calculated
stability constants, and the species distributions under the pH value is given by the work of
Cesiulis [3], which gives a methodology to identify the pH-value with the current density j
during electrodeposition with the stability constants being used to compute the free metal
concentrations. This requires chemical and numerical considerations. To accomplish this, a
closer look at the electrolyte is needed, in particular in terms of the chemical equilibrium
and the law of mass action, see [21]. The law of mass action, also referred to as the mass-
conservation law, forms the basis for both equilibrium and kinetic investigations. This is
based on activities. However, the experiments and calculations presented in this paper are
based on concentrations. The difference between concentration and activity is determined
by the activity coefficient, which is difficult to determine experimentally [22]. By default,
this difficulty is circumvented by working with constant ionic strength, since the activity
coefficients are largely dependent on it, and equilibrium constants can thus be more easily
recorded. However, the ionic strength does not stay constant during a reaction. Addition-
ally, the addition of “inert” salts could influence the reaction. The desired equilibrium
constants could be determined with infinite dilution; from a practical perspective, however,
infinite dilution is unfeasible/impossible. The attractive forces between the ions acting
in more concentrated solutions result in dissolved particles no longer moving completely
independently of each other, as would be the case for ideal solutions [23]. In an ideally
diluted solution of an electrolyte, the probability of encountering another cation or anion in
the vicinity of a cation should be equally high because the ions do not influence each other.
As the concentration increases, more orderly ratios gradually begin to form, i.e., an anion
is more likely to be found in the vicinity of the cation and vice versa. In real solutions, the
dissolved particles are no longer completely free to move. Therefore, lower concentrations
are simulated. However, only the mean activity coefficient can be determined. This is not
only dependent on the concentration of the own ions but also on the concentration of all
ions present in the solution. The determination of the equilibrium constant using the law
of mass action, as shown in this work, takes all the species present into account. Since these
are dependent on the established chemical equilibrium, it is assumed that once a stable
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equilibrium system has been reached at any point on the titration curve, the determination
of the activity can be dispensed with in favor of observing the concentrations in the case of
equilibrium. Similar to the contribution of Karimvand et al. [24], this article proposes an
approach where thermodynamic equilibrium constants are determined directly from the
analysis of potentiometric pH titrations. However, this approach avoids the use of activity
coefficients by determining the individual points of the potentiometric titration at any
time in thermodynamic equilibrium. For this purpose, the adjustment of the equilibrium
is monitored “intelligently” by letting the system reach its equilibrium before the base is
added in the next titration step. From this, a simulation of the titration curves is carried
out by means of a robust numerical method, and the thermodynamic stability constants
are calculated from the law of mass action.

2. Experimental Methodology-Intelligent Potentiometric Titration

Two real-life problems are discussed in this work to validate the framework of the
models described. For this purpose, potentiometric pH titrations were performed. The
”intelligent“, i.e., automatically controlled, potentiometric pH titration was carried out at a
constant temperature of 25 ○C and with the intake of argon (Ar ≥ 99.9999%, Alphagaz™Air
Liquide), shown in Figure 1. These were performed first with an electrolyte containing
only citric acid and then with a citric acid-nickel electrolyte. Each titration was performed
in 0.1 L ultrapure water (<0.1µS

cm , Barnstead™Smart2Pure™, Thermo Fisher Scientific Inc.
Waltham, MA, USA). For the first titration of pure citric acid, a quantity of 0.001 mol
citric acid (C6H8O7 ⋅H2O, >99.5%, Th. Geyer GmbH & Co. KG.) was added and the
solution was adjusted to pH = 2 using sodium hydroxide (NaOH, 1N, 99.99%, ABCR
GmbH). Afterwards, V = 0.25 mL NaOH was added in stages (doses) in areas with fast
equilibrium setting and V = 0.1 mL NaOH in areas with slow equilibrium setting. For the
titration of citric acid-nickel, a solution with 0.001 mol citric acid and 0.00083 mol nickel
from nickel chloride (NiCl2 ⋅ 6H2O, >99.8%, ABCR GmbH) was provided and carried out in
the same way as with the previous titration. All measurements were repeated three times
for statistical confirmation and significance.

Figure 1. Schematic layout of the system for potentiometric titration (1: pH probe, 2: pH meter,
3: capillary for dosing, 4: dosing pump, 5: argon inlet, 6: thermostat bath, 7: magnetic stirrer, 8: PC
for data processing).

A special feature of this titration procedure is the ability to adjust the timing of the
next dose of the respective base based on real-time observation of the equilibrium setting,
as shown in Figure 2. After each addition, the equilibrium setting was monitored by means
of automated measurement of the potential curve. Only when the potential curve showed
no further increase was the next dosage carried out. This is necessary to guarantee the final
adjustment of the equilibrium state, depending on thermodynamic and kinetic reaction
influences. To exclude the influence of the background noise of the potential measurement,
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two ranges with time comparison values z1 and z2 are defined in the potential curve after
the dosing z1 + z2, and the increases of these two ranges are compared with each other.
If the curve shows the same increase in both time periods, the equilibrium setting continues
to run evenly, and two new time units are formed during the potential. Only when the rise
of the second time unit approaches zero is the equilibrium setting complete and the next
dose given. Due to the variability regarding the timing of the base addition, the optimum
amount of base can always be given.

Based on this experimental system, the following numerical considerations could
be made.

Figure 2. Example of a titration curve and detailed representation of the pH curve with time units
and corresponding base dosing points.

3. Modeling

This section is devoted to the derivation of a stable and robust model formulation for
the simulation of thermodynamic equilibria, titration curves, and the inverse determina-
tion of the associated Michaelis constants, referred to as stability constants in this paper.
Although the model type discussed in this article will be confined to aqueous media, other
generalized models and concepts are conceivable but would require minor modifications
from the discussion below.

3.1. Concentrations in Thermodynamic Equilibria

First, assuming that there are #L ∈ N ligands L1, . . . , L#L and #M metals M1, . . . , M#M,
protons H+ and hydroxide ions OH− are given in solution as educts. Furthermore, assume
that the following R ∈ N reactions take place in the electrolyte:

#L
∑
j=1

(lj,κ Lj) +
#M
∑
k=1

(mk,κ Mk) + hκH+ oκOH⇌

#L
∏
j=1

(L
lj,κ
j )

#M
∏
k=1

(Mmk,κ
k )OHoκ Hhκ =∶ Kκ ,

∀1 ≤ κ ≤ R, (1)

where for all 1 ≤ κ ≤ R the species Kκ denote the product of the κ-th reaction. Furthermore,
let lj,κ ∈ N be the stoichiometric index of the j-th ligand in the κ-th reaction. Analogously,
let mk,κ ∈ N be the stoichiometric index of the k-th metal in the κ-th reaction. In addition,
the stoichiometric index of H+ in the κ-th reaction is denoted by hκ ∈ N and oκ ∈ N denotes
the stoichiometric index of OH− in the κ-th reaction.

For the simplicity of the notation of the following discussion, define the educts E1 ∶= L1,
. . . , E#L ∶= L#L, E#L+1 ∶= M1, . . . , E#L+#M ∶= M#M, E#L+#M+1 ∶= H+, and E#L+#M+2 ∶= OH−.
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The stoichiometric indices ej,κ denote the respective stoichiometric indices of the single
species. In this notation, the reaction (1) reduces to the simpler formula given below:

N
∑
j=1

ej,κEj,κ ⇌
N
∏
j=1

E
ej,κ
j = Kκ , ∀1 ≤ κ ≤ R (2)

As a foundation of the model discussed in this paper, the following mass-conservation
laws, see [15], for given total masses mEj , including free species concentrations and species
in complexes, of the educt Ej is given by:

cEj +
R
∑
κ=1

ej,κcKκ = mEj , ∀1 ≤ j ≤ N. (3a)

In the notation above, the values cEj denote the free masses of the educt Ej, and cKκ

denotes the masses of the complexes Kκ .
One obtains a system of N non-linear equations in N + R variables. The system above

can be solvable but not uniquely. To obtain a system of uniquely solvable equations, one
needs to add R additional equations. In this setting, one directly uses the definition of the
stability constant, which is equivalent to the following system of equations, see [15]:

cKκ = βκ

N
∏
j=1

c
ej,κ
Ej

, ∀1 ≤ κ ≤ R. (3b)

In fact, Equations (3a) and (3b) directly build up a model for thermodynamic equilibria
due to the reactions given in (2). Please note that one can also equivalently formulate the
non-linear Equations (3a) and (3b) in terms of concentrations rather than in terms of masses.

Due to the fact that the stability constants βκ can reach values up to 1050, the model for-
mulation tends to be unstable from a numerical perspective. Hence, a further reformulation
of the model must be made to stabilize the mathematical formulation.

For the mathematical reformulation, note that under the assumptions

0 <βκ , ∀1 ≤ κ ≤ R, (4a)

0 <cEj , cKκ , ∀1 ≤ j ≤ N, 1 ≤ κ ≤ R, (4b)

there exist bκ ∈ R, xj ∈ R and yκ ∈ R such that the following identities hold true:

cEj = exp(xj), ∀1 ≤ j ≤ N and (4c)

βκ = exp(bκ), cKκ = exp(yκ), ∀1 ≤ κ ≤ R (4d)

Using the identities above, especially (4c) and (4d), the model described by Equa-
tions (3a) and (3b) transforms to the following model equations:

0 = exp(xj) +
R
∑
κ=1

ej,κ exp(yκ) − SEj, ∀1 ≤ j ≤ N and (5a)

0 =bκ − yκ +
N
∑
j=1

ej,κxj, ∀1 ≤ κ ≤ R (5b)

The resulting formulation of a single thermodynamic equilibrium yields a more stable
formulation of the mass-conservation law.

For the solution of (5a) and (5b), the formulation for the determination of roots of
the function fb ∶ R#L+#R+2 → R#L+#R+2, reflecting (5a) and (5b) regarding the variables (4c)
and (4d).
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Remark 1. The following remarks must be made:

1. The models corresponding to Equations (5a) and (5b) and (3a) and (3b) both correspond
to a search of roots of non-linear functions. The corresponding mathematical problems are
constructed to be equivalent, meaning that each solution of (5a) and (5b) can uniquely be
identified to a solution to (3a) and (3b) and vice versa, see (4c) and (4d).

2. For the well-posedness of the model given through Equations (5a) and (5b) the following
assumptions are sufficient.

(A1) The variables (x, y) ∈ RN+R are independent, i.e., the single variables are referring to
unique concentration.

(A2) The single equations are (linear) independent from each other, i.e., describe the behavior
of a uniquely determined setting, i.e., there is no doubling in the reactions (2).

(A3) The total masses mEj are positive for each 1 ≤ j ≤ N.

3. In general, the numerical treatment of the model associated with Equations (5a) and (5b)
becomes necessary as it follows from the mathematical theory that there is no general formula
to calculate roots of polynomials with coefficients in R for a polynomial degree larger or equal
to 5, see [25].

4. Please note that the model associated with Equations (5a) and (5b) where derived from (3a)
and (3b), under the assumption of positive concentrations, by changing the variables into
logarithms. The advantage, besides the numerical stability of the new formulation it grants
intrinsic positive species concentrations. This is for (3a) and (3b) in general not given,
since there usually exist negative roots to (3a) and (3b), see [25]. Please note that the
species distributions and the inclusion of complexes guarantee the positivity of the complex
formation constants. This avoids the necessity to use more complicated and more cost-intensive
numerical methods, such as described in this paper, such as augmented Lagrangian algorithms,
see [26,27].

5. The model formulation used in this paper (5a) and (5b) differs not only in the introduction
of logarithms into the problem formulation, but it also differs from the model formulations
used in the works of Alderighi et al., Gans et al. and Martell [11,12,20], by considering the
complexes as well. This is commonly omitted by inserting (3b) into (3a).

3.2. A Model of Titration Curves with Vertices in Thermodynamic Equilibrium

The aim of this section is the modeling of the potentiometric titration curves as they
are obtained from the experimental set-up described in Section 2. First, assume that ligands
L1, . . . , L#L, metals M1, . . . , M#M, hydroxide ions OH−, and protons H+ are given in the
original electrolyte. Additionally, suppose that R ∈ N reactions in the form of (1) take place.

As described in the experimental set-up described in Section 2, a starting volume
0 < V0 of electrolyte is assumed to be given, with given total masses mLj,0 , in mol of the
ligand Lj, for 1 ≤ j ≤ #L, total masses mMk,0 of the metal Mk, for 1 ≤ k ≤ #M, and the total
mass of hydroxide ions mOH0 in mol of OH− as well as the total masses of the protons H+

mH0 in the electrolyte.
Furthermore, suppose that Z ∈ N additions of a solution, with molar concentration

cadd,OH− in mol
l of OH− concentration, and suppose that no additional species other than

H+, OH− and H2O are interacting with the assumed system of reactions (1). Additionally,
suppose that the solution is added in the following volume steps: 0 = v0 ≤ v1 ≤ ⋯ ≤ vZ ∈ R≥0.

Due to the experimental set-up, it can be assumed that in each chosen measurement, a
state close to the thermodynamic equilibrium is reached. Due to the assumptions above,
one can describe the concentrations in each measured state through the model given
by Equations (5a) and (5b). To describe the respective models, it is left to describe the
total masses mMk,z , mLj,z , mH+z

, and mOH−z
in each added volume vz for 1 ≤ z ≤ Z of the

solution above.
Due to the assumptions about the added solution described above, one finds that

the masses mMk,z and mLj,z do not change over the titration, i.e., for all 1 ≤ z ≤ Z, for all
1 ≤ k ≤ #M, and all 1 ≤ j ≤ #L, i.e., one obtains
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mMk,z =mMk,0 , ∀1 ≤ k ≤ #M, 1 ≤ z ≤ Z, (6a)

mLj,z =mLj,0 , ∀1 ≤ k ≤ #L, 1 ≤ z ≤ Z. (6b)

Furthermore, under the usage of lz = − log10(zadd,OH−), and for

dP ∶= log10 (cH+cOH−) = log10 (βH2OcH2O), (6c)

where βH2O is the complex formation constant of water, the exact value for 25 ○C is given
in Equation (19), where dP is the deprotonation constant and

cOH− = zadd,OH−
mol

l
= 10lz mol

l
and cH+,add = 10−(dP−lz)mol

l
, (6d)

where cOH−,add denotes the concentration of the hydroxide ions of the added solution
and cH+,add the concentration of the protons. Then, the total masses mOHz and mHz of the
electrolyte after the z-th addition of the given solution are described by

mOHz =mOH0 + vz(cH2O − cH+,add) = mOH0 + vz(cH2O − 10−(dP−lz)), ∀1 ≤ z ≤ Z and (6e)

mHz =mH0 + vz(cH2O − cOH−,add) = mOH0 + vz(cH2O − 10−lz), ∀1 ≤ z ≤ Z. (6f)

Combining the model with the RHS (6a)–(6f), one obtains for each measurement point
1 ≤ z ≤ Z a model for the thermodynamic equilibrium. This yields a complete model for the
titration curve, under the assumption that the stability constants 0 < βκ are given for each
reaction 1 ≤ κ ≤ R.

This set-up yields a set of Z systems of #L + #M + 2+ R non-linear equations which
directly describe the molar masses of the species as variables for the RHS as input data,
which must be solved to obtain the molar masses at each step, i.e., one has to solve a system
of non-linear equations in the following form:

Fb(y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0,b(y0)
⋯

Fz,b(yz)
⋯

FZ,b(yZ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (7)

where Fz ∶ R#M+#L+2+R → R#M+#L+2+R is, for all 1 ≤ z ≤ Z, the function given by the non-
linear model (5a) and (5b), with variables as denoted by (4c) and (4d) and RHS given
by (6a)–(6f) for fixed stability constants

[exp(b1), . . . , exp(bR)]T = [β1, . . . , βR]T ∶= β ∈ RR
>0. (8)

The Equations (7) can be used to fit the titration curve regarding the variables b1, . . . ,
bR to the measured titration curve as given by the measurement as described in Section 2.

3.3. Calculation of the Total Masses mH0 and mOH0

In many relevant cases, the total masses of mOH0 and mH0 are unknown. In this section,
a way to calculate mOH0 and mH0 will be detailed. For this, it should be noted that in the
measurement of the titration curve, the pH value of the initial volume of the electrolyte is
given. Hence, the concentrations cH+ and cOH− are known. These values will be used to
determine mOH0 and mH0 .

The way to calculate the values of mOH0 and mH0 is to take the first equation, cor-
responding to the 0-th addition during titration, as given in Section 3.2 and with the
interpretation of mOH0 and mH0 as variables and then interpret the given values of log cH+

and log cOH− as input data to finally obtain a system of #L + #M + 2 + R equations in
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#L+ #M + 2+R variables which must be solved. As part of the corresponding solution, one
obtains values for mH0 and mOH0 .

When formalizing the strategy above, one obtains a non-linear system of equations in
the following form:

F0(y0) = 0, (9)

In the equation above, the function F0 ∶ R#L+#M+2 → R#L+#M+2 is the function asso-
ciated with the model given by (5a) and (5b) where the variables y(1)0 , . . . , y(#L+#M)

0 are
corresponding to

y(#M+j)
0 = log (cLj), ∀1 ≤ j ≤ #L. and (10a)

y(k)0 = log (cMk
), ∀1 ≤ k ≤ #M (10b)

Additionally, the variables y(#L+#M+1)
0 and y(#L+#M+2)

0 are given through

y(#L+#M+1)
0 =mH0 and (10c)

y(#L+#M+2)
0 =mOH0 . (10d)

This yields a system of functions from which mH0 and mOH0 can be determined.

3.4. Formulating an Inverse Problem

As discussed in the introduction, this paper aims at a method to calculate the stability
constants β ∈ RR associated with the reactions given in (2). In this section, an inverse
problem, as in the books of Hinze et al., Richter [13,14] or in the book of Mäkelä [16], will
be derived.

Assume that M ∈ N measurements of the pH values (pH1, . . . , pHM) are given. Fur-
thermore, for an arbitrary fixed b ∈ RR

>0, let the vector y∗b ∈ RZ(#M+#L+2) be the solution
to (7). Then, the to b associated pH values

[pH(b)1 , . . . , pH(b)M ]T = [ − log10(exp(yb,(j−1)R+#M+#L+1))]
Z
j=1 (11)

can be interpreted as the image of a vector-valued function

b ↦ g(b) = [g1(b), . . . , gZ(b)]T = [pH(b)1 , . . . , pH(b)Z ]T
. (12)

Then, one seeks a b ∈ RR for which the following residual is minimal:

res(b) ∶=
Z
∑
z=1

∣pHz − gj(b)∣ (13)

In many cases, the values of b can be restrained. For most applications, stability
constants β can be restricted to 10−50 = lb ≤ β ≤ ub = 1050.

When translating the setting above into a restrained minimization problem, one seeks
the solution b to the following restrained minimization problem:

b = argmin
b̂∈RR

M
∑
z=1

∣pHz − gz(b̂)∣ = 0

s.t.: log(lb) ≤ b̂κ ≤ log(ub).
(14)

Then, the stability constants β are given as

[β1, . . . , βR] = [exp(b1), . . . , exp(bR)]. (15)
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Hence, a minimization problem was derived whose solution can be reformulated into
the searched stability constants.

3.5. An Inherent Method to Validate the Assumed Reaction System

In practice, an important question is how to validate an assumed system of reactions.
In the following, a way to validate the system of reactions (1) will be discussed:

Suppose that the reaction

H+OH⇌H2O (16)

is considered in the calculations of the thermodynamic equilibrium and the minimiza-
tion (14). Then, at room-temperature, the identity

cH+cOH− = 10−13.79 (17)

holds true. For the discussion, it should be noted that the molar weight of water is given
by the molar weights of two protons, which has a molar weight of 1.008 g

mol and an oxygen
atom, which has a molar weight of 15.999 g

mol . With the data above and taking into account
that one liter of water has a weight of 1000 g, one obtains the following concentration of
water in water:

cH2O =
1000g

18.015 g
mol l

= 55.507
mol

l
(18)

With the equation above and the usage of the deprotonation constant of water
log10 (cHcOH) = −13.79, one obtains the following verification identity:

log10 βH2O =
cH2O

cHcOH
log10[

55.507
10−13.79 ] = 15.5343. (19)

Although the calculation above was done for the concentration of pure water of
cH2O, the value of log10 βH2O can be used to validate the reaction systems and additional
stability constants.

4. Numerical Methodology

In this section, the numerical strategy to simulate the thermodynamic equilibria,
titration curves, and the inverse problems will be discussed. Based on the simulation of
thermodynamic equilibria, see Section 4.1, a method for the prediction of titration curves
will be derived, see Section 4.2. Additionally, in Section 4.3, the calculation of the RHS parts
associated with mOH0 and mH0 will be discussed as well as the numerical methodology of
the evaluation of the inverse problem in Section 4.4.

4.1. Simulation of Thermodynamic Equilibria

This section is devoted to the description of the numerical treatment and approxi-
mation of the non-linear systems of equations associated with the model (5a) and (5b), as
given by the determination of roots of the function fb ∶ R#L+#R+2 → R#L+#R+2 as it is defined
in Section 3.1.

An initial idea for the treatment of the zero search could be, as done in the work of
Alderighi et al. or Martell [11,20], a direct application of a Newtonian scheme, see [28].
Since the convergence of classical Newtonian schemes is only granted when the starting
value x0 of the algorithm is member of a sufficient close neighborhood of the searched
zero x∗ ∈ R#M+#L+R, see [17,29], ∣x0 − x∗∣2 < ε for ε < ε0 must be fulfilled. The major issue
is that x∗ and 0 < ε0 are generally unknown. Since a sufficiently good starting value is
unknown in the first instance, the Newtonian scheme cannot be applied directly in most
cases. A solution to this problem is the usage of stabilized Newtonian schemes as described
in [30].
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The stabilized Newtonian schemes converge for each given x0, but the efficiency of the
stabilized Newton methods still depends on the initial value, although it is relatively com-
plicated. In practice, the stabilized Newton methods need rather long computation times.

Therefore, it is not a stabilized Newton scheme described in this article but instead an
easier method based on a homotopy method, see [18,19]. The basic idea of the homotopy
method is to calculate an appropriate initial value for the Newtonian scheme. A central
point is the use of continuous deformation from a simpler function g ∶ R#L+#M+2+R →
R#L+#M+2+R, for which a zero is known, to fb.

In this paper, the function g is the identity function. Furthermore, a deformation in
the form

H ∶ R#M+#L+2+R × [0, 1] → R#M+#L+2+R, (20a)

(x, t) ↦ t ft⋅b(x) + (1− t)x. (20b)

is used.
Now, let a decomposition T ∶= {t0, . . . , tN}, with N ∈ N and 0 = t0 < . . . < tN = 1 be

given. Then in each step the system of nonlinear equations is solved:
Find x∗ ∈ x∗ ∈ R#M+#L+2+R

H(x∗, tk) = 0. (21)

Then, one applies the following Algorithm 1:

Algorithm 1: Homotopy Loop

Input : Initial value x0 ∈ R#M+#L+2+R, tolerance 0 < ε, a decomposition T , length L ∶= ∣T ∣ of
the decomposition and set k = 0.

Output :Approximate solution to H(x, 1) = 0.
Perform the following steps:
S 1 Approximate a solution of x, with tolerance ε, and initial value x0 to the

following problem with the Newtonian scheme given in Appendix A.
Find x∗ ∈ R#M+#L+2+R such that it fulfills (21).
As output of the Newtonian scheme, one obtains an approximation x∗ε of x∗ and
an error err.

S 2 If err ≤ ε and k < L set k ∶= k + 1, x0 ∶= x∗ and go to S 1. If k = L and err ≤ ε then go
to S 4. If err > ε then go to S 3.

S 3 Use a finer decomposition T̂ of [0, 1] than beforehand, meaning with greater
length L < ∣T̂ ∣, and set L ∶= ∣T ∣, T ⊂ T̂ and set L ∶= T̂ .

Remark 2.

1. Please note that the identities H(x, 0) = g(x) = x and H(x, 1) = fb(x) directly imply that
the output of Algorithm 1 is a sufficiently good approximation x∗ε of the initially searched zero
of fb.

2. Additionally, note that the stability issues of the Newtonian scheme are solved by the homotopy
Algorithm 1 if the decomposition T is sufficiently fine, and one can grant convergence
independently from the initial value.

3. In contrast to the numerical schemes described in Alderighi et al., Gans et al., or Martell [11,12,20],
where a simple Newtonian scheme is used, in this paper the homotopy Algorithm 1 was
introduced, which grants convergence of the numerical scheme in any case. Although the
convergence of the numerical schemes is granted due to the introduction of the homotopy
loop 1 if the decomposition T is sufficiently fine, but the efficiency of the algorithm is still
dependent of the initial value of the numerical scheme and the number of nodes in T .

With Algorithm 1, one has a stable, robust and convergent numerical method to
simulate thermodynamic equilibria.
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4.2. Simulation of Titration Curves

In this section, a way to simulate the titration curve, i.e., how to approximately find
the roots of (7), is discussed.

As the discussion in Section 3.2 already noted, the model of the titration curve is fully
decoupled, i.e., the concentrations in each addition 0 < 1 < . . . < Z are mathematically
independent from the concentrations associated with each other addition. Thus, it is
sufficient to solve the thermodynamic equilibrium in each addition 1 ≤ z ≤ Z separately.

Additionally, note that Algorithm 1 is applicable to the search of zeros of Fz instead of
zeros of fb; hence, the direct approach of applying Algorithm 1 to treat the equations Fz = 0
for all 1 ≤ z ≤ Z the equations Fz = 0 is an easy and efficient way to simulate titration curves.

4.3. Calculation of mOH0 and mH0

Before a method for the approximation of the inverse problem (14) can be discussed
in Section 4.4, the calculation of mOH0 and mH0 will briefly be discussed in this subsection.

As formulated in Equation (9) in Section 3.3, one must find a root of the function F0.
This root can be calculated by the same Algorithm 1 as for the calculation of thermodynamic
equilibria but with one simple adaptation as described above. This adaptation is to treat F0
instead of fb in the corresponding algorithm.

4.4. Treating the Inverse Problem

In this section, a way to treat the minimization problem (14) will be discussed.
As studied in Section 3.4, one must evaluate the residual res(b) to calculate the stability

constants (Michaelis constants); that is, the map g ∶ RR → RZ, given through

b ↦ g(b) = [g1(b), . . . , gZ(b)]T = [pH(b)1 , . . . , pH(b)Z ]T
, (22)

must be evaluated. The evaluation of g is done through the evaluation of the thermody-
namic equilibria described by the zero search given by (7) described in Section 3.2. Then, the
pH values pHz for all 1 ≤ z ≤ Z can be given by pHz = − log10 ( exp(xz,#L+#M+1)/(V0 + vz)),
where xz is the solution to Fj(xj) = 0, as described in Section 3.2. Furthermore, V0 is the
initial volume and vz is the total added volume in addition z. The corresponding values
can be obtained as discussed in Section 4.2.

As the evaluation of the residual res has already been discussed, now the treatment
of the restrained minimization problem (14) can now be described. The common solu-
tion theory of restrained minimization problem is based on the treatment of KKT theory
(Karush–Kuhn–Tucker theory), see [31], and multiple methods are known to treat such
problems as augmented Lagrangian methods, see [26], which are made especially for large
scale problems. However, the problem types discussed in this paper are of medium type.
For that, SQP methods are much more efficient. The corresponding method applied in this
section is described in [32].

Remark 3. One major question is how to reduce the numerical effort to approximate a solution
to (14). Please note that the following model reductions to (14) can be used.

(i) Please note that the measured pH values, as given through the experimental method described
in Section 2, can be interpreted as evaluations of a function pH(t) ∶ [0, vmax] → R, where
vmax is the maximal added volume, which can be approximated via its interpolant Iph due to
the measured points. A way to reduce the effort is to use a set of data points (vj, Iph(vj)) for
1 ≤ j ≤ d with d < Z instead of the measured data points (vz, JpHz) for 1 ≤ z ≤ Z; JpH is the
interpolation of the titration curve pH onto the corresponding data points.

(ii) As discussed in Section 3.4, the residual res( log(β)), as defined in (13), can also be defined
as a function in a lower dimension by interpreting for a subindex set ∅ ≠ n ⊆ {1, . . . , R} the
values bj∈n as variable and leaving the remaining values of b as constant. With this adaptation,
one is enabled to search for specific stability constants.
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(iii) Combining the points (i) and (ii), one must use at last ∣n∣ points in (i) to find unique
approximations for the stability constants searched for in (ii).

(iv) Warning: Using the reduction (ii), one must be very careful, due to the fact that by keeping
several stability constants fixed, one assumes that the fixed stability constants are known
known exactly, but most of the stability constants are not known exactly. It immediately
follows that this assumption will lead to error propagation.

This discussion completes the section and all numerical schemes for this article
are assembled.

5. Numerical Experiments

This section aims for the numerical validation of the solvers associated with the
numerical schemes described in Section 4. For the numerical validation, two examples will
be studied.

5.1. Numerical Examples for Moderate Stability Constants

In this first example, an aqueous electrolyte is discussed, and the corresponding
system of reactions is given for one single ligand L and one single metal M, hydroxide ions
OH− and protons H+, and through the formed complexes with the corresponding stability
constants defined in Table 1.

Table 1. Complexes for the software test with moderate stability constants.

Complex Stability Constant log10 β

1L0M1H0(OH) 7
1L0M2H0(OH) 8
0L1M0H1(OH) 7
0L1M0H2(OH) 8
0L1M0H2(OH) 9
1L1M0H0(OH) 7
2L1M0H0(OH) 8
1L1M0H1(OH) 9
1L1M0H2(OH) 10
0L0M1H1(OH) 15.5148

To complete an explicit model for the titration curve, one needs to fix some further
parameters. First, one assumes that a volume of 0.1 L electrolyte is given, with a total mass
mM0 = 0.002 mol of the metal M and a total mass mL0 = 0.002 mol of the ligand L. The
values for the total mass mH0 of the protons and the total mass mOH0 of the hydroxide ions
were calculated from the non-linear equation described in Section 3.3 by the methodology
discussed in Section 4.3, for a given initial pH value of pH = 2.03. Furthermore, one
supposes that in the added solution, one has a OH− concentration cOH = 1 mol

l . Additionally,
for the titration curve, it is assumed that in each step of the addition, 0.1 mL solution is
added. By the simulation of the corresponding titration curve, as described in Section 4.2,
one obtains the titration curves given in Figure 3 using an interpolation of the pH values
on the titration curve with 50 nodes, as described in Remark 3.
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Figure 3. Calculated titration curve with the model associated with the complexes and stability
constants as described in Table 1.

For the validation of the numerical scheme for the inverse problem, the titration curve
simulated above will be used as exact values for the inverse problem. In the following,
besides the projection of the titration curve onto 50 vertices, see Remark 3, a subset of
stability constants for optimization is fixed in Table 2, as well as the corresponding initial
values for the SQP method. For the stability constants, which are kept fixed, no initial
values and no optimal values are given in Table 3.

Table 2. Decadic logarithms of the results of the exact values, initial values, and optimal values.

Complex Exact Stability Constant Inital Value β Optimal Value

1L0M1H0(OH) 7 8 7.0097
1L0M2H0(OH) 8 9 7.9951
0L1M0H1(OH) 7 8 6.9916
0L1M0H2(OH) 8 9 7.9598
0L1M0H2(OH) 9 10 9.1193
1L1M0H0(OH) 7 - -
2L1M0H0(OH) 8 - -
1L1M0H1(OH) 9 - -
1L1M0H2(OH) 10 - -
0L0M1H1(OH) 15.5148 - -

Table 3. Decadic logarithms of stability constants for the reduced reaction system.

Complex Stability Constant log10 β

1L0M1H0(OH) 7
1L0M2H0(OH) 8
0L1M0H1(OH) 7
0L1M0H2(OH) 8
0L1M0H3(OH) 9
0L0M1H1(OH) 15.5148
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As to be seen in Figure 4, the algorithm described in Section 4.4 to solve the associated
inverse problem fits the given titration curve. Furthermore, one, sees in Table 2 that a close
fit to the original stability constants was obtained by the algorithm.

Figure 4. (a) Comparison of the initial titration curve regarding parameters in Table 2, (b) Comparison
of the optimized titration curve with the initial titration curve; the resulting stability constants can be
found in Table 2.

As a second example, it will be studied what happens if reactions are omitted from
the assumed setting of reactions. The corresponding complexes and stability constants are
given in Table 3. The rest of the parameters for this example are defined to coincide with
the first example.

As can be directly seen in Figure 5, the calculated titration curve for the reactions
described in Table 3 differs massively from the titration curve with complexes and stability
constant given in Table 1. This behavior reflects the impact of the assumed reaction system.
From this behavior, it can be concluded that the difference between two titration curves
can result from one of two possible causes: either one does not have the correct stability
constants for the reactions, or the assumed system of reactions is not correct. For that reason,
the value of the inherent validation method discussed in Section 3.5 is extremely important.

Figure 5. Titration curve with full (black), see Table 1, and reduced system of reactions (red),
see Table 3.
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In summary, the results in this section indicate the functionality of the implemented
algorithm to fit the given titration curve with a calculated titration curve in a system with
moderate stability constants.

Furthermore, this subsection already gives a first look at the plausibility of the model;
it can now be seen that the titration curves increase monotonously, as expected from the
model set-up, and the titration curves depend strongly on the assumed reactions and the
assumed stability constants.

5.2. Extreme Values for the Stability Constants

As already mentioned above, this section is devoted to the numerical validation
of the software for stability constants, which are reasonably higher than those in the
moderate systems.

The strategy used in this subsection is the same as in Section 5.1. For one assumed
ligand L, for one assumed metal M, hydroxide ions OH−, and protons H+, the reactions
are considered over (1) via their complexes and the stability constants defined in Table 4.

Table 4. Reaction system with extreme stability constants in decadic logarithms.

Complex Stability Constant

1L0M1H0(OH) −45
0L1M0H1(OH) 50
1L1M0H0(OH) 45
0L0M1H1(OH) 15.5148

As a first step, a titration curve will be constructed for the inverse calculation of the
stability constants. To complete the model, some additional parameters must be chosen.
First, the initial total mass mL0 of the ligand L is fixed at mL0 = 0.002 mol and the initial
total mass mM0 of the metal M is defined as mM0 = 0.0015 mol. The total masses mH0 and
mOH0 are calculated with the method described in Section 4.3, for a pH value of the original
electrolyte of pH = 2. Furthermore, the initial value for the given volume V0 = 0.1 L is set.
Additionally, the desired titration curve is simulated for 30 added volumes where in each
addition, a volume of 0.1 mL is added and the concentration of hydroxide ions OH− in the
added solution is fixed by cOH = 1 mol

L . In Figure 6, the projection of the titration curves
onto 50 additions is shown.

Figure 6. Calculated titration curve with complexes and stability constants as defined in Table 4.
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In the second step of this example, the titration curve shown in Figure 4 will be
reconstructed from another titration curve only differing in its parameter set from the
original in its assumed stability constants, which are given as initial values in Table 5 of the
optimization treating the inverse problem.

Table 5. Results of optimization of the example defined in Table 4. Data given as log10 β.

Complex Ex. Stab. Constant Inital Values Optimal Values

1L0M1H0(OH) −45 −42 −42
0L1M0H1(OH) 50 48 49.9774
1L1M0H0(OH) 45 47 44.9782
0L0M1H1(OH) 15.5148 - -

As can be seen in Figure 7, the initial titration curve differs significantly from the given
titration curve and fits it. As seen in Table 5, the high values of the stability constants are
fitted almost perfectly. The stability constant of the first complex; however, is not fitted.
This behavior is still plausible as the stability constant with 10−42 has, in comparison to the
other values, a minor effect on the simulated titration curve. Therefore, the value will not
be changed by an optimization algorithm.

In summary, the results from Section 5 prove the validity and robustness of the
numerical schemes. Furthermore, it should be noted that the stability and the needed
computation time depend on the input parameters, especially those of the given masses
mM0 and mL0 , the considered initial volume V0, the added volumes vz, and the reaction
system. Additionally, as discussed in Section 5.1, the influence of the assumed reaction
system is large.

Figure 7. (a) Comparison of original titration curve and calculated titration curves with initial
stability constants defined in Table 5. (b) Comparison of titration curves with optimized and original
stability constants. Numeric results are in Table 5.

6. Experimental Validation of the Model

This section is devoted to the experimental validation of the models described in
Section 3 and the validation of the feasibility of the software through a real-life problem.
In this section, two electrolyte and systems of reactions are studied, first for an electrolyte
containing only citric acid, denoted by (Cit), and secondly for a (Cit)-Ni electrolyte. The
values for the confirmation of the stability constants were given in the work of Zelenin [33]
and the stability constant for the hydroxide ions are given in the work of Orlov [34].
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6.1. Titration of Citric Acid (Cit)

In this section, a titration curve was measured with the experimental method described
in Section 2. The electrolyte has a volume of 0.1 L. Additionally, a total mass mL0 of ligand
L = Cit of mL0 = 0.001 mol is given. Furthermore, the values of mH0 and mOH0 were
calculated from the non-linear system of equations described in Section 3.3 calculated
with the methods described in Section 4.3. The corresponding titration curve is shown
in Figure 8.

Figure 8. Experimentally determined titration curve for citric acid.

When simulating the titration curve with the reactions associated with the complexes
with stability constants given in [33], one obtains the titration curve given in Figure 9a.
When comparing the simulated titration curve with the measured titration curve, only a
minor deviation between the calculated and measured titration curves can be observed.

Figure 9. (a) Comparison of a measured titration curve and a titration curve calculated from literature
data, see Table 6. (b) Comparison of optimized titration curve and measured titration curve. The
results of optimization are given in Table 6.

Supposing that the measured titration curve is the exact titration curve one would
obtain through the projection of the measured titration curve onto 50 vertices, and assuming
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an added solution with pOH value of pOH = 0, one obtains an inverse problem as defined
in Section 3.4. When solving the corresponding inverse problem with the method described
in Section 4.4, one obtains the results shown in Table 6. Furthermore, one finds that the
experimental titration curve is fitted extremely well.

Table 6. Results of optimization given for the titration curve given in Figure 8. Values given as
log10 β.

Complex Values in the literature Optimal Values

1L1H0(OH) 6.4 5.8931
1L2H0(OH) 11.19 10.3762
1L3H0(OH) 14.33 13.2833
0L1H1(OH) 15.5343 15.5426

Furthermore, one sees that the optimized stability constants differ from the literature
values to a greater extent than one would assume considering that the corresponding
potentiometric titration curves are extremely close to each other. The differences in the
stability constants, however, are not implausible since inverse problems tend to have large
issues with stability, see [14,16]. Thus, small errors in the measurement can lead to extreme
differences in the optimal values.

Nevertheless, this example indicates that the model and the numerical methodology
described in this paper yield comparable results to the values in the literature.

6.2. Titration of an Cit-Ni Electrolyte

In this section, a Cit-Ni electrolyte is discussed with a self-determined titration curve,
measured with the methodology given in Section 2. The given electrolyte has a total
initial volume V0 of V0 = 0.1 L with a total mass mM0 of nickel of mM0 = 0.00083 mol and
a total mass mL0 of the citric acid mL0 = 0.001 mol. A total added volume of 3.95 mol L
was combined with a pOH-value of pOH = 0. The measured titration curve is shown
in Figure 10.

Figure 10. Experimentally determined titration curve for the Cit-Ni electrolyte.

When comparing the measured titration curve with the titration curve simulated by
the described numerical scheme with the stability constants given in [33], see Figure 11,
one finds that the measured titration curve differs significantly from the simulated titration
curve. From the large gap between calculated and measured titration curves, one can con-
clude that the difference between the expected stability constants through the application
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of the inverse problem will differ significantly from the values given in the literature, see
Figure 7 and [33]. Please note that the stability constants of the NiOHx complexes can be
found in [34].

From the discussion in Section 5, one can conclude that there are two possibilities that
can explain these difficulties. One could assume either an incorrect system of reactions
or incorrect stability constants. The potential for errors in the experimental data and
simulation results can be safely ignored due to the good behavior for citric acid.

Figure 11. Comparison of a calculated titration curve of the Cit-Ni electrolyte, with literature
parameters given in Table 7, and measured Cit-Ni titration curve.

First, one observes in Figure 11 that for the calculated titration curve, the pH value is
consequently overestimated, and, hence, the concentration of protons H+ is underestimated.
Thus, one finds that the concentration of OH− is overestimated. When checking now the
considered complexes, see Table 7, one observes that the hydroxide complexes of Ni are
the only ones which can be considered to be OH− consuming. Hence, it can be concluded
that there are reactions missing that consume the OH− ions.

Table 7. Results of optimization of the example defined in Table 4. Data given as log10 β.

Complex Values in the literature Optimal Values

1L0M1H0(OH) 6.4 5.9723
1L0M2H0(OH) 11.19 10.4553
1L0M3H0(OH) 14.33 13.1864
1L1M0H0(OH) 6.86 7.0568
1L1M1H0(OH) 10.58 10.4057
1L1M2H0(OH) 13.43 11.624
0L1M0H1(OH) 4.4 4.40001
0L0M0H2(OH) 9 8.9999
0L1M0H3(OH) 12 11.9999
0L1M0H4(OH) 12 11.9999
0L0M1H1(OH) 15.5343 15.5426

This inspired the consideration of lower volume additions, including lower pH values
to validate the program and the assumed complexes and stability constants. As to be seen
in Figure 12, the measured titration curve and the calculated titration curve are not differing
in their principal behavior for lower volume additions of up to 2 molL. Furthermore, one
obtains a good fit of the given titration curve. However, as can be seen in Table 7, the fitted
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stability constants coincide well with those given in the literature, see [33], except for the
complex denoted by 1L1M2H0(OH).

Figure 12. (a) Comparison of calculated titration curve, for the Cit-Ni electrolyte, with stability
constants given in the literature, see Figure 7 and measured titration curve on a reduced addition
interval. (b) Comparison of measured and optimized titration curves, for the Cit-Ni electrolyte on a
reduced addition interval. The results of the optimization are found in Table 7.

From the behavior shown in this example, it can be concluded that the reaction system
may simply be incomplete. However, one obtains a plausible fit under the assumed
pH interval.

In the next subsection, the titration curve given in [33] will be discussed to exclude
errors in the methodology.

6.3. Assessment of Literature Data for the Cit-Ni Electrolyte with the Developed Methodology

To cross-check the stability constants and the behavior discussed in Section 6.2, the
titration curve given in [33] will be discussed here.

The titration curve is given by an electrolyte of initial volume V0 = 25.04 mL with a
total concentration of Ni cNi = 0.01 mol

L and, hence, a total mass of Ni given by SNi0 = cNiV0.
The total concentration of Cit is given by cCit = 0.01 mol

L and thus the total mass of citric acid
Cit SCit0 = V0cCit. The titration curve is given in Figure 13.

Figure 13. Given titration curve for a Cit-Ni electrolyte, from [33].
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When simulating the titration curve over the full additions, one obtains a titration
curve with the same behavior discussed in Section 6.2, see Figure 14. It can be seen that as
above, the assumed system of reactions overestimates the concentration of the hydroxide
ions. With the same argument as above, one can conclude that some reactions, which
consume the OH− ions, are not being considered.

Figure 14. Comparison of the expected titration curve and the calculated titration curve for a Cit-Ni
electrolyte, with stability constants from literature, c.f., Table 8.

When considering a lower addition until 0.6 mL again, one finds that the simulated
titration curve approximates the given titration curve to a good extent. When applying
the optimization algorithm, see Section 4.4, to the corresponding inverse problems, see
Section 3.4, one observes a perfect fit of the given titration curve for a reduced addition,
see Figure 15.

Figure 15. (a) Comparison of predicted, with parameters given in Table 8, and expected Cit-Ni
titration curve calculated titration curves, for the given Cit-Ni electrolyte. (b) Comparison of expected
and optimized titration curves. The results of the optimization can be found in Table 8.

Additionally, one obtains the values of the stability constants given in Table 8. In this
case, one observes a greater similarity to the given values from the literature, see [33].
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Table 8. Results of optimization of the example defined in Table 4. Data given as log10 β.

Complex Values in the literature Optimal Values

1L0M1H0(OH) 6.4 5.9622
1L0M2H0(OH) 11.19 10.2793
1L0M3H0(OH) 14.33 13.3625
1L1M0H0(OH) 6.86 6.0180
1L1M1H0(OH) 10.58 9.8144
1L1M2H0(OH) 13.43 11.8669
0L1M0H1(OH) 4.4 4.401
0L0M0H2(OH) 9 9.0009
0L1M0H3(OH) 12 12.0041
0L1M0H4(OH) 12 12.013
0L0M1H1(OH) 15.5343 15.54299

In summarizing the results from this subsection, one concludes that the methodology
provided in this paper can reproduce the values found in the literature, although there is a
strong indication that the assumed reactions are incomplete.

7. Discussion and Conclusions

The given paper contributes to the field of simulation thermodynamic equilibria,
titration curves and the determination of stability constants from titration curves. The
current work remodels a standard approach of describing thermodynamic equilibria
described in [11,12,20], to guarantee positive species concentrations and stability constants,
as well as to stabilize the applied numerical schemes. Furthermore, a numerical method
was introduced which converges and is stable regarding the initial value. The numerical
scheme and the revised model are validated in this work.

In this paper, in Section 2, a type of measurement was introduced for which, for every
measured pH value, one can assume a thermodynamic equilibrium. In Section 3, a model
for the description of thermodynamic equilibria was equivalently reformulated to gain
numerical stability. Based on this formulation, models for titration curves, the calculation
of mH0 , mOH0 , and the inverse computation of stability constants were obtained.

Additionally, in Section 4, numerical schemes for the simulation of thermodynamic
equilibria titration curves are discussed in addition to the inverse calculation of mOH0 , mH0 ,
and the stability constants were described. The methodology was designed for the greatest
possible simplicity, stability, and robustness.

Furthermore, numerical examples were given in Section 5, by which the functionality
of the algorithmic approach and the convergence of the schemes were validated.

On the algorithmic approach, some remarks must be made. First, the efficiency of
the numerical schemes for the simulation of the titration curves is highly dependent on
the model to which the numerical scheme was applied. For instance, the time needed
for computation, especially for the required number of iterations in the homotopy loop,
is dependent on the number of educts in which reactions are formulated, the number of
products (reactions), the stoichiometric indices, the total masses of the educts mEj , and
especially the stability constants. The large number of possible varieties in the considered
model makes the estimation of needed computation time difficult.

Due to the use of the simulation of titration curves for the inverse problem, the factors
described above also have an influence on the time efficiency of the numerical treatment
of the inverse problem (14). Furthermore, the efficiency of the underlying calculations is
also dependent on the initial values given for the SQP method. That means, the better the
stability constants can be estimated before the actual optimization starts, the less time the
calculations will take.

As could be seen from the treatment of the titration of citric acid Cit, see Section 6.1,
the measured titration curve is close to the one predicted by the software with stability
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constants and reactions from literature. Additionally, applying the algorithm for the inverse
problem, one observes stability constants close to the values found in the literature.

Furthermore, in Sections 6.2 and 6.3, the software was applied to the titration of a
Cit-Ni-electrolyte. In both cases, that of the self-measured titration curve and the one from
literature, a gap between the simulated and measured titration curves can be observed.
When fitting the whole titration curve, one obtains different stability constants from the
values in the literature. However, good agreement between simulated and measured
curves is obtained for lower additions and pH values. Satisfactory results of the inverse
calculations of the titration curves were obtained.

The behavior discussed above can be explained through the possibility of missing
reactions. An error in the software or the general model can be excluded since the simu-
lations in the case of the titration of the Cit-electrolyte and for both Cit-Ni cases for low
additions of solutions are plausible, which would not be the case if major mistakes in the
modeling or the implementation were done.

Summarizing the results, one obtains a methodology to compute stability constants,
which is stable, convergent and guarantees positive stability constants. The computed
stability constants are comparable to the results given in the literature. Although the
calculated complex formation constants differ from the values in the literature, it is shown
that the calculated values are plausible for a significant number of examples. Furthermore,
the gap between the measured titration curve and computed titration curve for the Cit-Ni
electrolytes indicate some error in the assumed reactions. However, the strength of the
methodology described in this article is the adjusted numerical scheme to the experimental
setting, in addition to the robustness of the numerical scheme.

For further scientific work besides the identification of stability constants, a study to
explain the gap between measurement and simulation is needed. Taking additionally the
times of measurements into account the associated kinetic constants of the reactions (2)
can be accessible. A further extension of the underlying model on the space component,
through diffusion-reaction models, and taking the place of measurement and addition of
the titrant, could make diffusion coefficients acceptable.
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Appendix A. The Standard Newtonian Scheme

Let f ∈ C1(Rd,Rd) be a given continuous and once differentiable function. Further-
more, let ∇ f denote the Jacobian matrix of f , then the standard Newtonian scheme is given
by the following update rule for each k ∈ N

xk ∶= xk−1 −∇ f (xk−1)−1 f (xk−1). (A1)
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The corresponding algorithm is assembled in Algorithm A1, see [17].

Algorithm A1: Newtonian Alogorithm

Input : Inital value x0 ∈ Rd, tolerance 0 < ε, maximal number of iterations M and
set k = 1.

Output : Error err ∶= f (xk) and approximate solution xk.
Follow the following steps:
S 1 Define xk+1 with the update rule given by the update rule (A1).
S 2 If f (xk) < ε or k = M break the algorithm. Else set k = k + 1 and go to S 1.
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