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Abstract: The density functional theory proposed earlier for excited states of Coulomb systems is
discussed. The localized Hartree–Fock (LHF) and the Krieger, Li, and Iafrate (KLI) methods combined
with correlation are generalized for excited states. Illustrative examples include some highly excited
states of Li and Na atoms.
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1. Introduction

The density functional theory (DFT) was initially a ground-state scheme [1,2], although
in special cases the ground-state constrained-search functional [3] yields exact excited-
state energies. Rigorously, DFT was extended to excited states as a subspace theory
by Theophilou [4] and later to a more general ensemble theory by Gross, Oliveira and
Kohn [5–7]. These approaches have found several extensions and applications (e.g., [8–26]).
Nevertheless, they have the unfavorable feature that all levels lying below the excited
state intended to study should be taken into account in the calculation. It can be rather
inconvenient in the case of higher excited states. Hence, approaches for an individual
excited state were worked out.

It was proved that in Coulomb systems the density determines the external potential
even in excited states [27–29]. Then, a variational bifunctional theory was put forward [30,31]
and analyzed [32,33]. Several other significant schemes were developed [34–36]; however,
time-dependent DFT [37–39] is still usually employed for excited states.

In a series of papers [40–42], a comprehensive theory for excited states of Coulomb
systems is put forward. It is based on the fact that the Coulomb density determines not
only its Hamiltonian but the degree of excitation as well. It makes it possible to develop a
universal functional valid for any excited state. Moreover, the excited-state Kohn–Sham
(KS) equations are similar to the ground-state KS equations.

Unfortunately, the exact form of the exchange-correlation functional is not known. It
is not unexpected, as the exchange-correlation functional is unknown even for the ground
state. Therefore, this functional should be approximated in calculations. We mention in
passing that several exact constraints that the excited-state functionals should satisfy have
recently been derived [43,44].

If we consider the exchange as a functional of the orbitals instead of the density, the
energy functional is known: it is the well-known Hartree–Fock expression with the KS
orbitals, of course. The exchange potential—which is a local potential in DFT—can be
obtained by the optimized potential method (OPM). In the ground-state theory, several
methods have been proposed to find the local potential whose eigenfunctions would
minimize a given energy functional [45,46]. The localized Hartree–Fock (LHF) [47–49] and
the KLI (Krieger, Li, and Iafrate) [50–52] methods proved to be excellent approximations to
the OPM. An alternative derivation to the KLI method was also proposed by the present
author [53].

Here, extensions of the LHF and KLI methods combined with correlation are proposed
to DFT of Coulombic excited states. These approaches provide an almost exact treatment
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of exchange and can be coupled with any approximate correlation functional. It is worth
starting with a very simple approximate correlation functional, so the local Wigner expres-
sion is taken here [54]. As an illustration total and excitation energies are presented for
some (including highly) excited states of Li and Na atoms.

The paper is organized as follows. In Section 2, the DFT for Coulombic excited
states [40–42] is summarized. Section 3 presents generalization of the LHF and KLI meth-
ods combined with correlation. Section 4 is dedicated to the discussion.

2. DFT for Coulombic Excited States

First, the theory of Coulombic excited states is summarized. Consider a system in an
external Coulomb potential of the form

vCoul(r) = −
M

∑
β=1

Zβ

rβ
, (1)

where rβ = |r− Rβ| and M is the number of nuclei. Rβ and Zβ stand for the position and
the charge of the nucleus β. The Hamiltonian is

Ĥ = T̂ + V̂ee +
N

∑
i=1

vCoul(ri) , (2)

where T̂ and V̂ee are the kinetic energy and the electron-electron energy operators. Kato’s
theorem [55–61]

∂n̄β(rβ)

∂rβ

∣∣∣∣∣
rβ=0

= −2Zβn(r = Rβ) (3)

is valid for an excited state, too. Therefore, the cusps of the density n uncover the atomic
numbers and the positions of the nuclei. On the other hand, the integral of the density gen-
erates the number of electrons. That is, the density provides all parameters of the Coulomb
potential (1), consequently determining the external potential, the Hamiltonian (2), and all
properties of the Coulomb system. Moreover, a Coulombic electron density cannot be a
stationary state density for any other Coulomb external potential, and two different excited
states cannot have the same electron density, as proved in [40]. Therefore, the functional

FCoul [n] = E[n]−
∫

n(r)vCoul [n; r]dr (4)

can be defined for Coulombic densities. Unfortunately, no easy method is available to
decide whether a given density is Coulombic or not; consequently, it is worth defining the
functional F for all electron densities.

Consider first a bifunctional

F[n, nCoul ] = min
Ψ→n

{〈Ψ|ΨCoul
l [nCoul ]〉=0}k−1

l=1

〈Ψ|T̂ + V̂ee|Ψ〉 . (5)

In Equation (5), the minimization is performed with the constraint that each wave
function gives the excited-state density n and is orthogonal to the first k− 1 eigenfunctions
of the Coulomb system of nCoul . The existence of a Coulomb density close to n is assumed.
If more than one Coulomb density can be found at the same distance from n, the one with
the smallest F is taken.

FCoul [n] = FCoul
εmin

[n], (6)
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where

FCoul
ε [n] = min

nCoul
F[n, nCoul ]; ||nCoul − n|| ≤ ε. (7)

The best measure for the distance is not known yet. We prefer the Sobolev-type norm:

d(nCoul , n) ≡
∫ ∣∣∣∣√nCoul(r)− n(r)

∣∣∣∣2dr +
∫ ∣∣∣∣∇√nCoul(r)− n(r)

∣∣∣∣2dr. (8)

The mathematical properties of the functional might depend on the definition. There-
fore, this problem should be the subject of future investigation (see further details in [40]).

The minimization leads to the Euler equation

vCoul([n], r) = − δFCoul [n]
δn(r)

(9)

up to a constant.
In calculations, the Kohn–Sham (KS) system is preferred; therefore, it is valuable to

define the non-interacting kinetic energy

Ts[nCoul ] = min
Φ→nCoul

{〈Φ|Φj [nCoul ]〉=0}l−1
j=1

||nCoul
1 −n0

1||≤δ

〈Φ|T̂|Φ〉 . (10)

The minimization is over the wave functions Φ having the excited-state density nCoul

and orthogonal to the first l − 1 eigenfunctions of the non-interacting system. That is, nCoul

is the same in the real and the KS systems. However, the ground states can be different.
It may happen that there are more than one KS system with the density nCoul . Then, take
the one in which the KS ground-state density n0

1 is closest to the true ground-state density
nCoul

1 .
We need the KS kinetic energy as a functional of a not necessarily Coulomb density n.

First, a bifunctional is defined:

TCoul
s [n, nCoul ] = min

Φ→n
{〈Φ|Φl [nCoul ]〉=0}k−1

l=1

||nCoul
1 −n0

1||≤δ

〈Φ|T̂|Φ〉. (11)

The minimum is taken with the constraint that the density of the lth KS state Φ equals
n, Φ is orthogonal to all states Φj, 1 ≤ j < l and the ground-state KS density n0

1 is as close
as possible to the real ground-state density nCoul

1 . We assume the existence of a unique
Coulomb density close to the non-Coulomb density n and construct the functional

TCoul
s,ε [n] = min

nCoul
TCoul

s [n, nCoul ], (12)

where

||nCoul − n|| ≤ ε. (13)

It is expected that there is at least one Coulomb density closer to n than ε, when
taking a large enough value for ε. Finally, the smallest value of ε provides the kinetic
energy functional

TCoul
s [n] = TCoul

s,εmin
[n]. (14)

The variational principle provides an Euler equation, within an additive constant,
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wCoul([n], r) = − δTCoul
s [n]
δn(r)

. (15)

To derive the KS equations it is helpful to partition FCoul [n] as

FCoul [n] = TCoul
s [n] + JCoul [n] + ECoul

xc [n], (16)

where JCoul [n] and ECoul
xc [n] are the classical Coulomb and exchange-correlation energies.

Comparing Equations (9), (15), and (16), the KS potential

wCoul([n], r) = vCoul([n], r) + vCoul
J ([n], r) + vCoul

xc ([n], r) (17)

is obtained as the sum of the external, the classical Coulomb and the exchange-correlation
potentials. The KS equations have the form[

−1
2
∇2 + wCoul([n], r)

]
φi = εiφi, (18)

where the KS orbitals φi provide the density as

n =
K

∑
i=1

λi|φi|2, (19)

where the occupation numbers λi are 0, 1, or 2 for a non-degenerate system. K stands for
the orbital having the highest orbital energy with non-zero occupation number.

3. Orbital-Dependent Exchange-Correlation Functional

The exact form of the exchange-correlation functional is unknown and has to be
approximated in calculations even in the original ground-state DFT. As the theory for
Coulombic excited states studied in this paper is also valid for the ground state, it is
worth testing how the ground-state functionals work. The exchange is known exactly as
a functional of orbitals. This functional is the Hartree–Fock (HF) expression. The Kohn–
Sham potential is local, therefore a local exchange potential should be generated. In the
exchange-only approximation, the so-called optimized potential method (OPM) [45,46]
or the localized Hartree–Fock method (LHF) [47–49] can be applied. In the latter, it is
supposed that the HF and the exchange-only KS determinants are equal. The method have
advantageous properties: invariant with respect to unitary transformations of orbitals, the
local KS exchange potential is free of self-interaction and, consequently, has correct long-
range behavior. Often, instead of OPM or LHF, the KLI (Krieger, Li, and Iafrate) [50–52]
approximation is applied. KLI can also be obtained by neglecting certain terms from the
LHF exchange potential. In KLI, the exchange potential exhibits the correct long-range
behavior, but it is not invariant with respect to unitary transformations of orbitals. KLI is
much simpler than OPM and more stable if finite-basis-set is applied. Before LHF approach
appeared, the present author also provided an alternative derivation of the KLI method.
Now, this method is utilized to extend the LHF and the KLI methods to include correlation
in the frame of our excited-state theory.

First, the generalized LHF is derived. Denote it LHFC, where the last letter stands for
correlation. The total energy can be written as a functional of orbitals:

ECoul [ψ̃1, ..., ψ̃N ] = TCoul
s [ψ̃1, ..., ψ̃N ] +

∫
n(r)vCoul(r)dr + JCoul [ψ̃1, ..., ψ̃N ]+

ECoul
x [ψ̃1, ..., ψ̃N ] + ECoul

c [ψ̃1, ..., ψ̃N ],
(20)

where

TCoul
s = −1

2

K

∑
i=1

λi

∫
ψ̃∗i (x)∇2ψ̃ix)dx, (21)
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ECoul
x = −1

2

K

∑
i=1

K

∑
j=1

λiλj

∫
ψ̃∗i (x1)ψ̃

∗
j (x2)ψ̃i(x2)ψ̃j(x1)

1
r12

dx1dx2. (22)

r12 = |r1 − r2| and x : r, s stand for the spatial and spin coordinates, respectively. The
variation of ECoul with respect to the orbitals leads to the equations[

−1
2
∇2 + ûCoul

]
ψ̃i =

K

∑
j=1

ε̃ijψ̃j, (23)

where

ûCoul = vCoul + vCoul
J + v̂Coul

x + v̂Coul
c . (24)

vCoul
J is the Coulomb external potential and

vCoul
J (r1) =

∫ n(r2)

r12
dr2 (25)

is the classical Coulomb potential. v̂Coul
x is a Hartree–Fock-like exchange operator

v̂Coul
x ψ̃i(x1) = −

K

∑
j=1

λj

∫
ψ̃∗j (x2)ψ̃j(x1)

1
r12

ψ̃i(x2)dx2 . (26)

The form of the correlation potential v̂Coul
c can be obtained from the functional deriva-

tive of ECoul
c . The correlation functional is unknown; ECoul

c should be approximated. In
this paper, a simple local approximation is applied, although the procedure described
here can be used for any kind of approximation of the correlation. The right-hand side of
Equation (23) arise from the orthonormalization conditions∫

ψ̃∗i (x)ψ̃j(x)dx = δij, (27)

where ε̃ij are the Lagrange multipliers for the constraint (27).
Consider now the corresponding KS equations arising from the variation of ECoul . In

doing this, one must actually constrain the orbitals to orthonormal. Then, we arrive at[
−1

2
∇2 + wCoul([n], r)

]
φ̃i =

K

∑
j=1

ε̃ijφ̃j. (28)

Now, we can compare Equation (28) with the correlated Hartree–Fock-like Equation (23).
Multiplying Equation (28) by λiφ̃

∗
i and Equation (23) by λiψ̃

∗
i , then summing for all occu-

pied i, taking the difference of these equations, and finally using the approximation ψ̃i ≈ φ̃i,
we arrive at the exchange-correlation potential of the LHFC approach

vCoul
xcLHFC = vS

LHFC + vSc
LHFC + ve

LHFC, (29)

where

vS
LHFC(r) =

1
n(r)

K

∑
i=1

λiφ̃
∗
i (x)v̂

Coul
x φ̃i(x) (30)

is the Slater potential,

vSc
LHFC =

1
n

K

∑
i=1

λiφ̃
∗
i (x)v̂

Coul
c φ̃i(x) (31)
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is a Slater-like potential originating from the correlation potential, and

ve
LHFC =

1
n

K

∑
i=1

λi

K

∑
j=1

(ε̃ij − ε̃ij)φ̃
∗
i φ̃j. (32)

The last term ve
LHFC appears because the KS and correlated Hartree–Fock-like equa-

tions have different Lagrange multipliers. Using Equations (28) and (23), the difference
ε̃ij − ε̃ij can be expressed as

ε̃ij − ε̃ij = 〈φ̃i|vCoul
xc − v̂Coul

x − v̂Coul
c |φ̃j〉. (33)

Equation (29) provides the exchange-correlation potential. Observe that neglecting
the correlation gives the LHF exchange potential of Della-Sala and Görling [47]. If all terms
i 6= j are neglected in Equation (32), we arrive at the KLI method with correlation. Omitting
correlation, the original KLI approach is given.

The KLI and KLIC potentials can be derived explicitly from the canonical forms of
Equations (23) and (28). Equations (23) and (28) can be reformalized by unitary transforma-
tions of orbitals: [

−1
2
∇2 + ûCoul

]
ψi = εiψi, (34)

and [
−1

2
∇2 + wCoul

]
φi = εiφi, (35)

respectively. ûCoul and wCoul have the same form as before, but are expressed with the
canonical orbitals ψi and φi instead of ψ̃i and φ̃i. Following the same steps we did in the
derivation of Equation (29), we arrive at the KLI-like exchange-correlation potential

vCoul
xcKLIC = vS

KLIC + vSc
KLIC + ve

KLIC, (36)

where

vS
KLIC(r) =

1
n(r)

K

∑
i=1

λiφ
∗
i (x)v̂

Coul
x φi(x) (37)

is the Slater potential,

vSc
KLIC =

1
n

K

∑
i=1

λiφ
∗
i (x)v̂

Coul
c φi(x) (38)

is a Slater-like potential originating from the correlation potential, and

ve
KLIC =

1
n

K

∑
i=1

λi(εi − εi)|φi|2. (39)

The last term ve
KLIC appears because the KS and correlated Hartree–Fock-like equations

have different one-electron energies. Using Equations (35) and (34), the difference εi − εi
can be expressed as

εi − εi = 〈φi|vCoul
xc − v̂Coul

x − v̂Coul
c |φi〉. (40)

The potential (36) reduces to the KLI exchange potential if the correlation term is
omitted. Observe that, even though the same procedure is used to derive both the LHFC
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and the KLIC methods, different exchange-correlation potentials are obtained. The reason is
that the Lagrange multipliers ε̃ij and ε̃ij are different. Therefore, the unitary transformations
are also different. Consequently, even the same procedure leads to different approximation.

Now, the methods derived above are illustrated for some excited states of Li and
Na atoms. It is natural to start with a very simple approximation for correlation: KLI is
combined with the local Wigner approximation [54].

The correlation energy is given by

ELW
c [n] =

∫ an
b + rs

dr , (41)

where rs is the Wigner–Seitz radius:

rs = (3/4πn)1/3. (42)

The parameters obtained by Süle and Nagy [62] are used: a = −0.02728 and b = 0.21882.
The correlation potential obtained by functional derivation of (41)

vLW
c =

a(b + 4
3 rs)

(b + rs)2 (43)

should be substituted into Equations (38) and (40). Observe that the correlation is taken
into account self-consistently.

Table 1 presents the total energies for the ground state and the excited states with
configuration 1s2ms, m = 2, ..., 7 for the Li atom. The KLI values can be directly compared
with the exchange-only results of the spin-dependent localized Hartree–Fock (SLHF) [63],
xCOEP [64], and Hartree–Fock (HF) [65] methods. x-COEP refers to exchange-only con-
strained optimized effective potential (xCOEP) methodology [64]. SLHFc is localized
Hartree–Fock combined with Lee–Yang–Parr (LYP) correlation [66]. WFLYP [67] refers
to work-function-based exchange [68,69] and LYP correlation potentials. Exact energies
obtained with accurate configuration interaction wave function in Hylleraas basis set [70]
are presented in the last column. The KLI, SLHF, and xCOEP values are very close to the
HF results, the SLHF values are closest. We can see that KLI approximates SLHF and HF
excellently. The KLI with local Wigner correlation (KLILW) leads to lower total energies
than the exact ones. SLHFc and WFLYP give more accurate total energies.

Table 1. Total energies in Rydberg units for the ground and some excited states of the Li atom.

State KLI KLILW SLHF SLHFc WFLYP xCOEP HF Exact

1s22s −14.8643 −14.9960 −14.8650 −14.9744 −14.8634 −14.8655 −14.9561
1s23s −14.6198 −14.7450 −14.6201 −14.7191 −14.7155 −14.6146 −14.6204 −14.7082
1s24s −14.5494 −14.6726 −14.5496 −14.6463 −14.6396 −14.5463 −14.5498 −14.6371
1s25s −14.5197 −14.6421 −14.5198 −14.6157 −14.6093 −14.5145 −14.5200 −14.6071
1s26s −14.5045 −14.6264 −14.5045 −14.6000 −14.4984 −14.5046 −14.5917
1s27s −14.4956 −14.6173 −14.4957 −14.5909 −14.4857 −14.4957 −14.5828

Calculated and experimental [71] excitation energies of the Li atom are shown in
Table 2. The KLI, SLHF, and HF values are very close to each other, while the KLI is a bit
worse. While the HF total energies are closer to the exact ones than the xCOEP values,
for the excitation energies, xCOEP results are much closer to the exact ones than for the
HF data. The KLI values are slightly worse than the HF results, while KLILW and SLHFc
overestimate the excitation energies; KLILW values are somewhat better. The first excita-
tion energy computed with time-dependent TDF with ALDA exchange-correlation [72] is
less accurate.
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Table 2. Calculated and experimental excitation energies of the Li atom in Rydberg units.

State KLI KLILW SLHF SLHFc xCOEP HF TDDFT Exact Exp

1s23s 0.2445 0.2510 0.2449 0.2553 0.2488 0.2450 0.2280 0.2479 0.2479
1s24s 0.3149 0.3234 0.3154 0.3281 0.3172 0.3157 0.3191 0.3191
1s25s 0.3446 0.3539 0.3452 0.3587 0.3489 0.3455 0.3490 0.3490
1s26s 0.3598 0.3696 0.3605 0.3744 0.3651 0.3608 0.3644 0.3644
1s27s 0.3686 0.3787 0.3693 0.3835 0.3778 0.3697 0.3733 0.3733

Table 3 presents total energies for the ground and the excited states of the Na atom
with configuration [Ne]ms, m = 3, ..., 7. The KLI and ELP values are very close to the
HF results, the ELP ones being a bit closer. ELP (effective local potential) [73] denotes
an alternative way of solving the exact-exchange OPM. NHF stands for highly accurate
numerical Hartree–Fock method [74]. The KLILW leads to lower total energies than the
exact ones.

Table 3. Total energies in Rydberg units for the ground and some excited states of the Na atom.

State KLI KLILW ELP HF NHF Exact

[Ne]3s −323.7106 −324.5443 −323.7116 −323.7174 −323.7178 −324.5092
[Ne]4s −323.4879 −324.3153 −323.4894 −323.4938
[Ne]5s −323.4224 −324.2479 −323.4232 −323.4376
[Ne]6s −323.3944 −324.2190
[Ne]7s −323.3798 −324.2040

Table 4 displays calculated and experimental [71] excitation energies of the Na atom.
The KLI, ELP, and HF values are very close to each other. The KLI with local Wigner
correlation approximates experimental results quite well.

Table 4. Calculated and experimental excitation energies of the Na atom in Rydberg units.

State KLI KLILW ELP HF Exp

[Ne]4s 0.2228 0.2290 0.2222 0.2236 0.2346
[Ne]5s 0.2883 0.2964 0.2884 0.2898 0.3025
[Ne]6s 0.3163 0.3254 0.3315
[Ne]7s 0.3308 0.3403 0.3464

It can be concluded that KLI method provides results very close to the HF ones, while
the KLILW leads to too low total energies. KLILW overestimates the excitation energies for
the Li atom, but it gives much better excitation energies for the Na atom than the KLI or
HF method. Of course, these illustrative examples cannot give us full knowledge of the
efficiency of the KLILW method, and further studies are necessary. Investigation of other
methods and correlation functionals (e.g., [75,76]) will be the subject of future research.

4. Discussion

The great advantage of our method is that a single functional is relevant for any bound
(ground or excited) state of a Coulomb system. However, of course, we do not know this
functional and its properties. It might happen that it is a jagged, discontinuous functional.
It can appear if very similar Coulomb densities have very different values of FCoul with
the consequence that FCoul would be discontinuous. In our approach, the excitation level
of two densities may be different. If two Coulomb densities are close together, they still
can have vastly different excitation levels. Therefore, FCoul might be discontinuous. This
problem can be avoided by defining functionals FCoul

k , that is, using different functionals
for different excitation levels k. Discontinuities in FCoul

k are much less likely because of the
additional dependence on the level of excitation (see further details in [40]). In this paper,
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it is supposed that the single functional FCoul is well-behaved and approximations for it
are proposed.

We mention in passing that, even though calculations are generally performed in the
Kohn–Sham scheme, the Euler equation (9) can also be applied provided that appropriate
approximation for the kinetic energy functional is available. Unfortunately, such an ap-
proximation is not accessible. However, the Euler equation is very useful. For example,
the existence of excited-state Euler equations for specific Shannon information and Fisher
information has recently been proved [77]. Even the Euler equation for the relatively
specific Shannon information has been derived. It is interesting to note that the Ghosh–
Berkowitz–Parr thermodynamic transcription [78] has been recently extended to excited
states of Coulomb systems [79]. For Coulomb systems, there is a simple relation between
the total energy and phase-space Fisher information both in the ground and excited states.
Furthermore, relations for the phase-space fidelity, relative entropy, fidelity susceptibility,
and Fisher information have been presented. These kinds of analysis of excited states seem
to be important, as excited-state reactivity is a new frontier [80–82].

In summary, Coulombic excited states are studied within the density functional theory
proposed earlier. Generalizations of the LHF and KLI methods combined with correlation
are derived within DFT for Coulombic excited states. In these approaches, exchange is
treated (almost) exactly and any approximate correlation functional can be incorporated.
As an illustration, total and excitation energies are presented for some (including highly)
excited states of Li and Na atoms.

Funding: This research was supported by the National Research, Development and Innovation Fund
of Hungary, financed under 123988 funding scheme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharring is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. J. Arch. 1964, 136, B864. [CrossRef]
2. Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. J. Arch. 1965, 140, A1133.

[CrossRef]
3. Perdew, J.P.; Levy, M. Extrema of the density functional for the energy: Excited states from the ground-state theory. Phys. Rev. B

1985, 31, 6264–6272. [CrossRef] [PubMed]
4. Theophilou, A.K. The energy density functional formalism for excited states. J. Phys. C Solid State Phys. 1979, 12, 5419–5430.

[CrossRef]
5. Gross, E.K.U.; Oliveira, L.N.; Kohn, W. Rayleigh-Ritz variational principle for ensembles of fractionally occupied states. Phys. Rev.

A 1988, 37, 2805–2808. [CrossRef]
6. Gross, E.K.U.; Oliveira, L.N.; Kohn, W. Density-functional theory for ensembles of fractionally occupied states. I. Basic formalism.

Phys. Rev. A 1988, 37, 2809–2820. [CrossRef]
7. Oliveira, L.N.; Gross, E.K.U.; Kohn, W. Density-functional theory for ensembles of fractionally occupied states. II. Application to

the He atom. Phys. Rev. A 1988, 37, 2821–2833. [CrossRef] [PubMed]
8. Nagy, Á. Parameter-free exchange potential for excitation in the density-functional theory: Application to excitation energies

within the fractional-occupation approach. Phys. Rev. A 1990, 42, 4388–4390. [CrossRef]
9. Nagy, Á. Excitation energies calculated with parameter-free exchange potential in the density functional theory. J. Phys. B 1991,

24, 4691–4694. [CrossRef]
10. Nagy, Á. Relativistic density-functional theory for ensembles of excited states. Phys. Rev. A 1994, 49, 3074–3076. [CrossRef]

[PubMed]
11. Nagy, Á. Density functional theory for excited states. Adv. Quant. Chem. 1998, 29, 159–178. [CrossRef]
12. Nagy, Á.; Andrejkovics, I. Excitation energies in the local density functional theory. J. Phys. B 1994, 27, 233–240. [CrossRef]
13. Andrejkovics, I.; Nagy, Á. Excitation energies in density functional theory: Comparison of several methods for the H2O, N2, CO

and C2H4 molecules. Chem. Phys. Lett. 1998, 296, 489–493. [CrossRef]
14. Nagy, Á. Coordinate scaling and adiabatic connection formula for ensembles of fractionally occupied excited states. Int. J.

Quantum Chem. 1995, 56, 225–228. [CrossRef]

http://doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevB.31.6264
http://www.ncbi.nlm.nih.gov/pubmed/9935501
http://dx.doi.org/10.1088/0022-3719/12/24/013
http://dx.doi.org/10.1103/PhysRevA.37.2805
http://dx.doi.org/10.1103/PhysRevA.37.2809
http://dx.doi.org/10.1103/PhysRevA.37.2821
http://www.ncbi.nlm.nih.gov/pubmed/9900010
http://dx.doi.org/10.1103/PhysRevA.42.4388
http://dx.doi.org/10.1088/0953-4075/24/22/008
http://dx.doi.org/10.1103/PhysRevA.49.3074
http://www.ncbi.nlm.nih.gov/pubmed/9910590
http://dx.doi.org/10.1016/S0065-3276(08)60268-3
http://dx.doi.org/10.1088/0953-4075/27/2/002
http://dx.doi.org/10.1016/S0009-2614(98)01075-6
http://dx.doi.org/10.1002/qua.560560406


Computation 2021, 9, 73 10 of 12

15. Nagy, Á. Local ensemble exchange potential. J. Phys. B 1996, 29, 389–394. [CrossRef]
16. Nagy, Á.; Howard, I.A.; March, N.H.; Jánosfalvi, Z.S. Subspace density of the first excited state for two harmonically interacting

electrons with isotropic harmonic. confinement. Phys. Lett. A 2005, 335, 347–350. [CrossRef]
17. Nagy, Á. Hardness and excitation energy. J. Chem. Sci. 2005, 117, 437–440. [CrossRef]
18. Nagy, Á. Optimized potential method for ensembles of excited states. Int. J. Quantum Chem. 1998, 69. [CrossRef]
19. Gidopoulos, N.I.; Papaconstantinou, P.G.; Gross, E.K. Spurious Interactions, and Their Correction, in the Ensemble-Kohn-Sham

Scheme for Excited States. Phys. Rev. Lett. 2001, 88, 033003. [CrossRef]
20. Nagy, Á. An alternative optimized potential method for ensembles of excited states. J. Phys. B 2001, 34, 2363–2370. [CrossRef]
21. Tasnádi, F.; Nagy, Á. Study of Subspace Density-Functional Theory. Application of LSDA to Excited States of Atoms. Int. J.

Quantum Chem. 2003, 92, 234–238. [CrossRef]
22. Tasnádi, F.; Nagy, Á. Ghost and self-interaction free ensemble calculations for atoms with local exchange-correlation potential. J.

Phys. B 2003, 36, 4073–4075. [CrossRef]
23. Tasnádi, F.; Nagy, Á. An approximation to the ensemble Kohn-Sham exchange potential for excited states of atoms. J. Chem. Phys.

2003, 119, 4141–4147. [CrossRef]
24. Yang, Z.H.; Trail, J.R.; Pribram-Jones, A.; Burke, K.; Needs, R.J.; Ullrich, C.A. Exact and approximate Kohn-Sham potentials in

ensemble density-functional theory. Phys. Rev. A 2014, 90, 042501. [CrossRef]
25. Pribram-Jones, A.; Yang, Z.H.; Trail, J.R.; Burke, K.; Needs, R.J.; Ullrich, C.A. Excitations and benchmark ensemble density

functional theory for two electrons. J. Chem. Phys. 2014, 140, 18A541. [CrossRef] [PubMed]
26. Pastorczak, E.; Pernal, K. Ensemble density variational methods with self- and ghost-interaction-corrected functionals. J. Chem.

Phys. 2014, 140, 18A514. [CrossRef]
27. Nagy, Á. Excited states in density functional theory. Int. J. Quantum Chem. 1998, 70, 681–691. [CrossRef]
28. Nagy, Á. Electron Correlations and Materials Properties; Gonis, A., Kioussis, N., Ciftan, M., Eds.; Kluwer: New York, NY, USA, 1999;

pp. 451–462.
29. Nagy, Á. Theories for excited states. Adv. Quant. Chem. 2003, 42, 363–381. [CrossRef]
30. Levy, M.; Nagy, Á. Variational Density-Functional Theory for an Individual Excited State. Phys. Rev. Lett. 1999, 83, 4361–4364.

[CrossRef]
31. Nagy, Á.; Levy, M. Variational density-functional theory for degenerate excited states. Phys. Rev. A 2001, 63, 052502. [CrossRef]
32. Samal, P.; Harbola, M.K.; Holas, A. Density-to-potential map in time-independent excited-state density-functional theory. Chem.

Phys. Lett. 2006, 419, 217–222. [CrossRef]
33. Harbola, M.K.; Samal, P. Time-independent excited-state density functional theory: Study of 1s22p3(4S) and 1s22p3(2D) states of

the boron isoelectronic series up to Ne5+. J. Phys. B 2009, 42, 015003. [CrossRef]
34. Görling, A. Density-functional theory beyond the Hohenberg-Kohn theorem. Phys. Rev. A 1999, 59, 3359–3374. [CrossRef]
35. Görling, A. Proper Treatment of Symmetries and Excited States in a Computationally Tractable Kohn-Sham Method. Phys. Rev.

Lett. 2000, 85, 4229–4232. [CrossRef] [PubMed]
36. Sahni, V.; Massa, L.; Singh, R.; Slamet, M. Quantal Density Functional Theory of Excited States. Phys. Rev. Lett. 2001, 87, 113002.

[CrossRef]
37. Petersilka, M.; Gossmann, U.J.; Gross, E.K.U. Excitation Energies from Time-Dependent Density-Functional Theory. Phys. Rev.

Lett. 1996, 76, 1212–1215. [CrossRef]
38. Casida, M.E. Time-dependent density-functional theory for molecules and molecular solids. J. Mol. Struct. Theochem 2009, 914,

3–18. [CrossRef]
39. Appel, H.; Gross, E.K.U.; Burke, K. Excitation Energies from Time-Dependent Density-Functional Theory. Phys. Rev. Lett. 2010,

90, 043005. [CrossRef]
40. Ayers, P.W.; Levy, M.; Nagy, Á. Time-independent density-functional theory for excited states of Coulomb systems. Phys. Rev. A

2012, 85, 042518. [CrossRef]
41. Ayers, P.W.; Levy, M.; Nagy, Á. Kohn-Sham theory for excited states of Coulomb systems. J. Chem. Phys. 2015, 143, 191101.

[CrossRef]
42. Ayers, P.W.; Levy, M.; Nagy, Á. Time-independent density functional theory for degenerate excited states of Coulomb systems.

Theor. Chim. Account. 2018, 137, 152. [CrossRef]
43. Nagy, Á. Coordinate Scaling in Time-independent Excited-state Density Functional Theory for Coulomb Systems. Computation

2019, 7, 59. [CrossRef]
44. Nagy, Á. Theories, Principles and Approaches. In Chemical Reactivity; von Szentpaly, L., Kaya, S., Eds.; Elsevier: Amsterdam, The

Netherlands, 2021; in press.
45. Sharp, R.T.; Horton, G.K. A Variational Approach to the Unipotential Many-Electron Problem. Phys. Rev. 1953, 90, 317. [CrossRef]
46. Talman, J.D.; Shadwick, W.F. Optimized effective atomic central potential. Phys. Rev. A 1976, 14, 36–40. [CrossRef]
47. Della-Sala, F.; Görling, A. Efficient localized Hartree—Fock methods as effective exact-exchange Kohn—Sham methods for

molecules. J. Chem. Phys. 2001, 115, 5718–5732. [CrossRef]
48. Gritsenko, O.; Baerends, E.J. Exchange kernel of density functional response theory from the common energy denominator

approximation (CEDA) for the Kohn—Sham Green’s function. Res. Chem. Intermed. 2004, 30, 87–98. [CrossRef]

http://dx.doi.org/10.1088/0953-4075/29/3/007
http://dx.doi.org/10.1016/j.physleta.2004.11.060
http://dx.doi.org/10.1007/BF02708347
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)69:3<247::AID-QUA4>3.0.CO;2-V
http://dx.doi.org/10.1103/PhysRevLett.88.033003
http://dx.doi.org/10.1088/0953-4075/34/12/305
http://dx.doi.org/10.1002/qua.10510
http://dx.doi.org/10.1088/0953-4075/36/20/002
http://dx.doi.org/10.1063/1.1572452
http://dx.doi.org/10.1103/PhysRevA.90.042501
http://dx.doi.org/10.1063/1.4872255
http://www.ncbi.nlm.nih.gov/pubmed/24832349
http://dx.doi.org/10.1063/1.4866998
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)70:4/5<681::AID-QUA14>3.0.CO;2-5
http://dx.doi.org/10.1016/S0065-3276(03)42061-3
http://dx.doi.org/10.1103/PhysRevLett.83.4361
http://dx.doi.org/10.1103/PhysRevA.63.052502
http://dx.doi.org/10.1016/j.cplett.2005.11.066
http://dx.doi.org/10.1088/0953-4075/42/1/015003
http://dx.doi.org/10.1103/PhysRevA.59.3359
http://dx.doi.org/10.1103/PhysRevLett.85.4229
http://www.ncbi.nlm.nih.gov/pubmed/11060605
http://dx.doi.org/10.1103/PhysRevLett.87.113002
http://dx.doi.org/10.1103/PhysRevLett.76.1212
http://dx.doi.org/10.1016/j.theochem.2009.08.018
http://dx.doi.org/10.1103/PhysRevLett.90.043005
http://dx.doi.org/10.1103/PhysRevA.85.042518
http://dx.doi.org/10.1063/1.4934963
http://dx.doi.org/10.1007/s00214-018-2352-7
http://dx.doi.org/10.3390/computation7040059
http://dx.doi.org/10.1103/PhysRev.90.317
http://dx.doi.org/10.1103/PhysRevA.14.36
http://dx.doi.org/10.1063/1.1398093
http://dx.doi.org/10.1163/156856704322798070


Computation 2021, 9, 73 11 of 12

49. Staroverov, V.N.; Scuseria, G.E.; Davidson, E.R. Effective local potentials for orbital-dependent density functionals. J. Chem. Phys.
2006, 125, 081104. [CrossRef]

50. Krieger, J.B.; Li, Y.; Iafrate, G.J. Derivation and application of an accurate Kohn-Sham potential with integer discontinuity. Phys.
Lett. A 1990, 146, 256–260. [CrossRef]

51. Krieger, J.B.; Li, Y.; Iafrate, G.J. Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer
discontinuity: Exchange-only theory. Phys. Rev. A 1992, 45, 101–126. [CrossRef] [PubMed]

52. Krieger, J.B.; Li, Y.; Iafrate, G.J. Systematic approximations to the optimized effective potential: Application to orbital-density-
functional theory. Phys. Rev. A 1992, 46, 5453–5458. [CrossRef] [PubMed]

53. Nagy, Á. Alternative derivation of the Krieger-Li-Iafrate approximation to the optimized-effective-potential method. Phys. Rev. A
1997, 55, 3465–3468. [CrossRef]

54. Wigner, E. Effects of the electron interaction on the energy levels of electrons in metals. Trans. Faraday Soc. 1938, 34, 678–685.
[CrossRef]

55. Kato, T. On the eigenfunctions of many particle systems in quantum mechanics. Commun. Pure Appl. Math. 1957, 10, 151–177.
[CrossRef]

56. Steiner, E. Charge Densities in Atoms. J. Chem. Phys. 1963, 39, 2365–2366. [CrossRef]
57. March, N.H. Self-Consistent Fields in Atoms; Pergamon Press: Oxford, UK, 1975.
58. Nagy, Á.; Sen, K.D. Exact results on the curvature of the electron density at the cusp in certain highly excited states of atoms.

Chem. Phys. Lett. 2000, 332, 154–158. [CrossRef]
59. Ayers, P.W. Density per particle as a descriptor of Coulombic systems. Proc. Natl. Acad. Sci. USA 2000, 97, 1959–1964. [CrossRef]
60. Nagy, Á.; Sen, K.D. Higher-order cusp of the density in certain highly excited states of atoms and molecules. J. Phys. B 2000, 33,

1745–1752. [CrossRef]
61. Nagy, Á.; Sen, K.D. Ground- and excited-state cusp conditions for the electron density. J. Chem. Phys. 2001, 115, 6300–6308.

[CrossRef]
62. Süle, P.; Nagy, Á. Comparative test of local and nonlocal Wigner-like correlation energy functionals. Acta Phys. Chem. Debr. 1994,

29, 31.
63. Zhou, Z.; Chu, S. Spin-dependent localized Hartree-Fock density-functional calculation of singly, doubly, and triply excited and

Rydberg states of He- and Li-like ions. Phys. Rev. A 2005, 71, 022513. [CrossRef]
64. Glushkov, V.N.; Levy, M. Highly Excited States from a Time Independent Density Functional Method. Computation 2016, 4, 28.

[CrossRef]
65. Glushkov, V.N. Orthogonality of determinant functions in the Hartree-Fock method for highly excited electronic states. Opt.

Spectrosc. 2015, 119, 1–5. [CrossRef]
66. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density

Phys. Rev. B 1988, 37, 785–789. [CrossRef] [PubMed]
67. Roy, A.K.; Chu, S.I. Density-functional calculations on singly and doubly excited Rydberg states of many-electron atoms. Phys.

Rev. A 2002, 65, 052508. [CrossRef]
68. Harbola, M.K.; Sahni, V. Quantum-Mechanical Interpretation of the Exchange-Correlation Potential of Kohn-Sham Density-

Functional Theory. Phys. Rev. Lett. 1989, 62, 489–492. [CrossRef] [PubMed]
69. Sahni, V.; Li, Y.; Harbola, M.K. Atomic structure in the Pauli-correlated approximation. Phys. Rev. A 1992, 45, 1434–1448.

[CrossRef]
70. Puchalski, M.; Kedziera, D.; Pachucki, K. Ionization potential for excited S states of the lithium atom. Phys. Rev. A 2010, 82,

062509. [CrossRef]
71. Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 5.8); National Institute of Standards and

Technology: Gaithersburg, MD, USA, 2020. Available online: https://physics.nist.gov/asd (accessed on 8 May 2021). [CrossRef]
72. Orestes, E.; da Silva, A.B.F.; Capelle, K. Excitation energies from ground-state density-functionals by means of generator

coordinates. Phys. Chem. Chem. Phys. 2009, 11, 4564–4569. [CrossRef]
73. Staroverov, V.N.; Glushkov, V.N. Effective local potentials for excited states. J. Chem. Phys. 2010, 133, 244104. [CrossRef]
74. Tatewaki, H.; Koga, T.; Sakai, Y.; Thakkar, A.J. Numerical Hartree-Fock energies of low-lying excited states of neutral atoms with

Z ≤ 18. J. Chem. Phys. 1994, 101, 4945–4948. [CrossRef]
75. Casida, M.E. Generalization of the Optimized Effective Potential Model to Include Electron Correlation: A Variational Derivation

of the Sham–Schluter Equation for the Exact Exchange-Correlation Potential. Phys. Rev. A 1995, 51, 2005–2013. [CrossRef]
76. Grabowski, I.; Hirata, S.; Ivanov, S.; Bartlett, R.J. Ab initio density functional theory: OEP-MBPT(2). A new orbital-dependent

correlation functional. J. Chem. Phys. 2002, 116, 4415–4425. [CrossRef]
77. Nagy, Á. Relative information in excited state orbital free density functional theory. Int. J. Quantum. Chem. 2020, 120, e26405.

[CrossRef]
78. Ghosh, S.K.; Berkowitz, M.; Parr, R.G. Transcription of ground-state density-functional theory into a local thermodynamics. Proc.

Natl. Acad. Sci. USA 1984, 81, 8028–8031. [CrossRef]
79. Nagy, Á. Excited-state Density Functional Theory of Coulomb systems. J. Chem. Phys. 2020, 153, 154103. [CrossRef] [PubMed]
80. Liu, S.B. Information-Theoretic Approach in Density Functional Reactivity Theory. Acta Phys. Chim. Sin. 2016, 32, 98–118.

[CrossRef]

http://dx.doi.org/10.1063/1.2345650
http://dx.doi.org/10.1016/0375-9601(90)90975-T
http://dx.doi.org/10.1103/PhysRevA.45.101
http://www.ncbi.nlm.nih.gov/pubmed/9906704
http://dx.doi.org/10.1103/PhysRevA.46.5453
http://www.ncbi.nlm.nih.gov/pubmed/9908794
http://dx.doi.org/10.1103/PhysRevA.55.3465
http://dx.doi.org/10.1039/tf9383400678
http://dx.doi.org/10.1002/cpa.3160100201
http://dx.doi.org/10.1063/1.1701443
http://dx.doi.org/10.1016/S0009-2614(00)01250-1
http://dx.doi.org/10.1073/pnas.040539297
http://dx.doi.org/10.1088/0953-4075/33/9/306
http://dx.doi.org/10.1063/1.1402165
http://dx.doi.org/10.1103/PhysRevA.71.022513
http://dx.doi.org/10.3390/computation4030028
http://dx.doi.org/10.1134/S0030400X15070115
http://dx.doi.org/10.1103/PhysRevB.37.785
http://www.ncbi.nlm.nih.gov/pubmed/9944570
http://dx.doi.org/10.1103/PhysRevA.65.052508
http://dx.doi.org/10.1103/PhysRevLett.62.489
http://www.ncbi.nlm.nih.gov/pubmed/10040248
http://dx.doi.org/10.1103/PhysRevA.45.1434
http://dx.doi.org/10.1103/PhysRevA.82.062509
https://physics.nist.gov/asd
http://dx.doi.org/10.18434/T4W30F
http://dx.doi.org/10.1039/b902529d
http://dx.doi.org/10.1063/1.3521492
http://dx.doi.org/10.1063/1.467417
http://dx.doi.org/10.1103/PhysRevA.51.2005
http://dx.doi.org/10.1063/1.1445117
http://dx.doi.org/10.1002/qua.26405
http://dx.doi.org/10.1073/pnas.81.24.8028
http://dx.doi.org/10.1063/5.0015611
http://www.ncbi.nlm.nih.gov/pubmed/33092360
http://dx.doi.org/10.3866/PKU.WHXB201510302


Computation 2021, 9, 73 12 of 12

81. Rong, C.; Wang, B.; Zhao, D.; Liu, S.B. Information theoretic approach in density functional theory and its recent applications to
chemical problems. WIREs Comput. Mol. Sci. 2019, 10, e1461. [CrossRef]

82. Geerlings, P.; Chamorro, E.; Chattaraj, P.K.; De Proft, F.; Gázquez, J.L.; Liu, S.B.; Morell, C.; Toro-Labbé, A.; Vela, A.; Ayers, P.W.
Conceptual density functional theory: Status, prospects, issues. Theor. Chem. Acc. 2020, 139, 36. [CrossRef]

http://dx.doi.org/10.1002/wcms.1461
http://dx.doi.org/10.1007/s00214-020-2546-7

	Introduction
	DFT for Coulombic Excited States
	Orbital-Dependent Exchange-Correlation Functional
	Discussion
	References

