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Abstract: The center of an F-graph contains at least two vertices, and the distance between any
two central vertices is equal to the radius. In this short note, we describe one way of constructing
these graphs.
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1. Introduction

One class of frequently studied central problems in the application of graphs is
facility location problems. A cluster of emergency facilities, such as a hospital, a fire
station or, a police station, has to locate to a new habitation. We aim to minimize the
response time between the facility and the location of a possible emergency. Thus, these
facilities are separated as much as possible to minimize the interference [1–3]. The simple
model of location facilities with those two conditions is an F-graph. The central vertices
of F-graphs are as separated as much as possible to minimize the interference between
corresponding facilities.

Our terminology and notation are based on [4,5] excluding those given here. Here, we
consider nonempty, finite, connected, and undirected graphs without loops and multiple
edges. Let dG(u, v) denote the distance between the vertices u and v of a graph G = (V, E).
The eccentricity is the maximum distance between v and any other vertex u of G; that is,
eG(v) = max{dG(u, v)|u ∈ V}. The minimum eccentricity among the vertices of G is the
radius r(G), and the set of vertices of G with eccentricity eG(v) = r(G) is the center. The
distance between a vertex v ∈ V(G) and a nonempty subset S of V(G) is the minimum of
the distance dG(v, u) for every u ∈ S.

Buckley and Lewinter define a graph G as an F-graph (the ‘F’ denotes ‘far’) if its
center |C(G)| ≥ 2 and for all u, v ∈ C(G) is dG(u, v) = r(G); see, e.g., [6]. They also show
the existence of such graphs with a prescribed radius and diameter. Kyš gives a necessary
and sufficient condition for a graph to be an F-graph [7]. Figure 1 shows an example of an
F-graph G, whose radius is r(G) = 4, and the center is the set C(G) = {u, v}.
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Figure 1. Example of F-graph G with center C(G) = {u, v}.

2. Construction of F-Graph

The purpose of this note is to propose a construction for connecting two F-graphs,
G1 and G2 such that the resulting graph G will also be an F-graph. Let G be a graph with
r(G) ≥ 2 and a center C(G) and k be a natural number 1 ≤ k ≤ r(G). We denote by
NG(k, C) the set of all vertices v, where dG(v, C(G)) = k.

Lemma 1. Let G be an F-graph with r = r(G) ≥ 2 and k be a natural number 1 ≤ k ≤ b r
2c.

Then, the F-graph G contains a nonempty set NG(k, C) as a subset of V(G).

Proof. Following from the definition of an F-graph, dG(u, v) = r for every u, v ∈ C(G),
u 6= v, and the center contains at least two vertices. Thus, there is at least one shortest path
of length r between two different central vertices. There is at least one vertex on this path
such that the distance between this vertex and at least one of these two central vertices is k.
Thus, NG(k, C) is nonempty.

Lemma 2. Let G be an F-graph with an even radius r = r(G) ≥ 2. Then, for every vertex v where
dG(v, C(G)) 6= r

2 there exists a vertex u in NG(
r
2 , C) such that dG(v, u) ≤ r

2 .

Proof. Suppose dG(v, C(G)) < r
2 . Assume to the contrary that there exists v ∈ V(G)− C(G),

where dG(v, C(G)) 6= r
2 such that for every u ∈ NG(

r
2 , C), there is dG(v, u) > r

2 . Suppose
that v lies on the shortest path P between two central vertices. Clearly, there is a vertex x from
NG(

r
2 , C) in the middle of P. Thus, dG(x, v) ≤ r

2 leads to a contradiction. On the other hand,
suppose that v does not lie on the shortest path between central vertices. There is just one
such vertex ci ∈ C(G) where dG(ci, v) < r

2 . For every cj ∈ C(G), i 6= j is dG(ci, cj) = r and
dG(cj, v) > r

2 . Every shortest path from cj to v contains a vertex y from the NG(
r
2 , C); thus,

dG(v, y) ≤ r
2 leads to a contradiction.

Suppose v = ci is a central vertex; thus, dG(ci, C(G)) = 0. On shortest path P between
ci and other central vertex lies vertex y from the NG(

r
2 , C) and dG(ci, y) = r

2 . Therefore, the
proof holds for this case.

Now, suppose dG(v, C(G)) > r
2 . There is a vertex c ∈ C(G) such that dG(v, c) =

dG(v, C(G)). The shortest path from v to c contains a vertex z ∈ NG(
r
2 , C) such that

dG(c, z) = r
2 (Lemma 1); thus, dG(v, NG(

r
2 , C)) ≤ r

2 .

Lemma 3. Let G be an F-graph with an odd radius r = r(G) ≥ 2. Then, for every vertex v
such that dG(v, C(G)) 6= b r

2c and dG(v, C(G)) 6= d r
2e, there exists a vertex u in NG(b r

2c, C) ∪
NG(d r

2e, C) such that dG(v, u) ≤ b r
2c.
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Proof. Suppose dG(v, C(G)) < b r
2c. Assume to the contrary that there exists v ∈ V(G)−C(G)

where dG(v, C(G)) 6= b r
2c and dG(v, C(G)) 6= d r

2e such that for every vertex, u ∈ NG(b r
2c, C)∪

NG(d r
2e, C) is dG(v, u) > b r

2c. Suppose that v lies on a shortest path P between two central
vertices ci, cj. Clearly, there are vertices x, y from NG(b r

2c, C)∪NG(d r
2e, C) such that dG(ci, x) =

dG(cj, y) = b r
2c. Thus, dG(v, x) ≤ b r

2c or dG(v, y) ≤ b r
2c leads to a contradiction. On the

other hand, suppose that v does not lie on the shortest path between the central vertices.
There is just one such vertex ci ∈ C(G) that dG(ci, v) < b r

2c. For every cj ∈ C(G), i 6= j is
dG(ci, cj) = r and dG(cj, v) > d r

2e. Every shortest path from cj to v contains a vertex y from
NG(b r

2c, C)∪NG(d r
2e, C); thus, dG(v, y) ≤ b r

2c leads to a contradiction.
Suppose v = ci is a central vertex; thus, dG(ci, C(G)) = 0. On the shortest path

P between other central vertices lies vertex y from NG(b r
2c, C) ∪ NG(d r

2e, C) such that
dG(ci, y) = b r

2c. Thus, the proof holds for this case.
Suppose dG(v, C(G)) > d r

2e. There is a vertex c ∈ C(G) such that dG(v, c) = dG(v, C(G)).
The shortest path from v to c contains a vertex z ∈ NG(b r

2c, C) ∪ NG(d r
2e, C), where dG(c, z) =

b r
2c or dG(c, z) = d r

2e (Lemma 1); thus, dG(v, NG(b r
2c, C) ∪ NG(d r

2e, C) ≤ r
2 .

Theorem 1. Let G1 and G2 be two F-graphs with centers C(G1) and C(G2), respectively, and
r(G1) = r(G2) = r. Then, there exists an F-graph G with r(G) = r and C(G) = C(G1)∪C(G2),
containing G1 and G2 as induced subgraphs.

Proof. We constructed the graph for even radius as illustrated in Figure 2. The construction
is based directly on the definition of the F-graph, and, as such, the center contains at least
two vertices, and the distance between any two central vertices is equal to the radius. First,
it is necessary to ensure that the distance between the central vertices of both graphs is
r(G) = r(G1) = r(G2). Following from Lemma 1, the F-graph G1 contains nonempty sets
NG1(

r
2 − 1, C) and NG1(

r
2 , C), and G2 contains nonempty sets NG2(

r
2 − 1, C) and NG2(

r
2 , C).

We constructed a complete bipartite graph such that the set NG1(
r
2 − 1, C) is the first

partition and NG2(
r
2 , C) is the second partition, as well as a complete bipartite graph

with sets NG1(
r
2 , C) and NG2(

r
2 − 1, C) as partitions. Then, for the set of vertices C(G) =

C(G1)∪C(G2), it holds that dG(xi, xj) = r for every xi, xj ∈ C(G), i 6= j. It is then necessary
to ensure that for every vertex y /∈ C(G), it holds that e(v) > r. For every vertex, xj 6∈ C(G)
and xi ∈ C(G); thus, it holds that dG(xi, xj) ≤ r (Lemma 2). We added four nodes,
v1, v2, u1, u2, to V(G). Each vertex c ∈ C(G) is connected by a path with a length of r

2 to
nodes v1 and v2. Finally, we added two disjoint paths, v1 − u1 and v2 − u2, with a length
of r

2 . Following from the construction, graph G is an F-graph.
Suppose the radius is odd, as shown in Figure 3. It is necessary to ensure that the

distance between the central vertices of both graphs is r(G) = r(G1) = r(G2) and, at
the same time, that the distance of the vertex from the center C(G1)(C(G2)) to the non-
central vertex of the graph G2(G1) is dG(C(G1, V(G2)− C(G2))) ≤ r (dG(C(G2, V(G1)−
C(G1))) ≤ r). The existence of sets NG1(b r

2c, C) and NG2(b r
2c, C) is a continuation of

Lemma 1. We constructed a complete bipartite graph with those sets as partitions. If
there existed the set NG1(d r

2e, C), then we constructed a complete bipartite graph with
NG1(d r

2e, C) and NG2(b r
2c, C) as partitions. Similarly, if there existed the set NG2(d r

2e, C),
then we constructed a complete bipartite graph with NG1(b r

2c, C) and NG2(d r
2e, C) as

partitions. Thus, for the set of vertices C(G) = C(G1) ∪ C(G2), it holds that dG(xi, xj) = r
for every xi, xj ∈ C(G), i 6= j. Following this, it is necessary to ensure that for every vertex
y /∈ C(G), it holds that e(v) > r. For every vertex, xj 6∈ C(G) and xi ∈ C(G); thus, it holds
that dG(xi, xj) ≤ r (Lemma 3). We added four nodes, v1, v2, u1, u2, to V(G). Each vertex
from the C(G1) is connected by a path with a length of d r

2e with to v1 and by a path with a
length of b r

2c to vertex v2. Each vertex from the C(G2) is connected by a path with a length
of d r

2e to vertex v2 and by a path with a length of b r
2c to vertex v1. Finally, we added two

disjoint paths, v1 − u1 and v2 − u2, with a length of r
2 . Following from the construction,

the graph G is an F-graph.
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F-graphs represent an ideal model for the relocation of emergency facilities to housing
estates, towns, etc. Such a model is difficult to apply directly in practice. F-graphs can
serve as stepping stones to real applications.

C(G1) C(G2)

v1

u1

v2

u2

NG1(
r
2
− 1, C) NG2(

r
2
, C)

NG1(
r
2
, C) NG2(

r
2
− 1, C)

Figure 2. Construction of the even radius.

Figure 3. Construction of the odd radius.
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