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Abstract: Problems in perforated media are complex and require high resolution grid construction to
capture complex irregular perforation boundaries leading to the large discrete system of equations. In
this paper, we develop a multiscale model reduction technique based on the Discontinuous Galerkin
Generalized Multiscale Finite Element Method (DG-GMsFEM) for problems in perforated domains
with non-homogeneous boundary conditions on perforations. This method implies division of the
perforated domain into several non-overlapping subdomains constructing local multiscale basis
functions for each. We use two types of multiscale basis functions, which are constructed by imposing
suitable non-homogeneous boundary conditions on subdomain boundary and perforation boundary.
The construction of these basis functions contains two steps: (1) snapshot space construction and
(2) solution of local spectral problems for dimension reduction in the snapshot space. The presented
method is used to solve different model problems: elliptic, parabolic, elastic, and thermoelastic
equations with non-homogeneous boundary conditions on perforations. The concepts for coarse
grid construction and definition of the local domains are presented and investigated numerically.
Numerical results for two test cases with homogeneous and non-homogeneous boundary conditions
are included, as well. For the case with homogeneous boundary conditions on perforations, results are
shown using only local basis functions with non-homogeneous boundary condition on subdomain
boundary and homogeneous boundary condition on perforation boundary. Both types of basis
functions are needed in order to obtain accurate solutions, and they are shown for problems with non-
homogeneous boundary conditions on perforations. The numerical results show that the proposed
method provides good results with a significant reduction of the system size.

Keywords: multiscale method; discontinuous Galerkin; finite element method; perforated domain;
non-homogeneous boundary condition; GMsFEM; multiscale model reduction; thermoelasticity
problem

1. Introduction

Problems in perforated domains are of great interest additionally proposing many
real-world applications. Take, for example, diffusion in perforated domains, mechanical
processes in granular media, pore-scale flows in porous media, and so on [1–4]. Problems
in perforated domains with non-homogeneous boundary conditions on perforations have
great importance for a lot of applications in physics, biology, geology, and chemistry [5–8].
The main characteristic of perforated domains is the multiscale nature of the underlying
processes. The solution techniques for these problems require high resolution in grid con-
struction to capture complex irregular boundaries of perforations. Using direct numerical
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methods to solve these problems is computationally challenging and expensive. In order
to reduce the size of the system with accurate approximation, we use homogenization
techniques and multiscale methods.

Reduction techniques are widely used today for problems in heterogeneous perfo-
rated media to reduce computational cost. In recent years, many methods have been
developed focused on obtaining solutions on a coarse mesh. The homogenization method
can be used for problems in perforated domains with scale separation [8–10]. For example,
in Reference [11], the author considers the periodic homogenization problem in perforated
domains that are formed by removing a periodic array of small holes from a fixed open
bounded and connected domain with regular boundary. In the numerical homogenization
method, the approximation of the solution on a coarse grid is constructed by calculating
effective properties for coarse grid cells [12]. In Reference [13], the authors construct the
machine learning methods for a fast calculation of effective characteristic for domains with
random inclusions. In addition, for the perforated media without scale separation, the
multiscale techniques are widely used [14,15]. Multiscale methods construct multiscale
basis functions in each coarse-grid cell and couple these basis functions in a global for-
mulation. Several studies have shown employment of multiscale methods as solution to
problems in perforated domains [16–19]. There are also studies presenting the multiscale
approach based on Crouzeix-Raviart coupling of multiscale finite element basis [16,17]. The
generalization of the heterogeneous multiscale finite element method for elliptic problems
in perforated domains is presented in work of Henning and Ohlberger (2009) [18]. In order
to avoid a limited number of degrees of freedom per coarse element, this paper considers
the Generalized Multiscale Finite Element Method (GMsFEM) for solution problems in
perforated domains [19–22]. The GMsFEM is a general multiscale procedure, wherein the
model reduction is based on some local multiscale basis functions that are constructed
using local spectral decomposition. In our earlier study [19], we presented an accurate
multiscale approximation using GMsFEM with several basis functions in each local domain.
The problems with non-homogeneous boundary conditions on perforations are studied in
References [23,24], where authors evaluate construction of the additional basis functions for
perforation boundary. The multiscale model reduction technique, based on Discontinuous
Galerkin Generalized Multiscale Finite Element Method (DG-GMsFEM), is presented in
Reference [22], where we consider the solution of the problems with homogeneous bound-
ary conditions. Additional points of multiscale methods can distinguish methods, such as
upscaling method using non-local multicontinuum method (NLMC) [24,25], which can be
effective for heterogeneous. The main part of the method is the construction of suitable
local basis functions with the capability of capturing multiscale features and non-local
effects. Another method that deserves attention is the constraint energy minimizing gener-
alized multiscale finite element method (CEM-GMsFEM) [26,27]. The main purpose of this
method is that the convergence of the method is independent of contrast and decreases
linearly with respect to the cell size if the oversampling size is chosen appropriately. In ad-
dition, for punctured tasks, the oversampling method can be especially useful and improve
accuracy and convergence [28–30]. Besides, the oversampling strategy is used to reduce
the mismatching effects of boundary conditions imposed artificially in the construction of
snapshot basis functions.

This paper presents an extension of the DG-GMsFEM for problems with
non-homogeneous boundary conditions on perforations. The presented approach is based
on the construction of a separate multiscale space for coarse cell interfaces and for local per-
foration boundary. We present a unified approach for different types of problems: elliptic,
parabolic, elastic, and thermoelastic problems. Using the DG-GMsFEM for coarse grid cou-
pling, we construct multiscale basis functions to generate an accurate lower-dimensional
model on a coarse grid. The paper starts with the construction of the snapshot space
that contains a set of local solutions in each coarse cell with various boundary conditions.
In order to perform a dimension reduction of the snapshot space and define multiscale
basis functions, we solve a local spectral problem in the snapshot space. The construction of
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two types of multiscale basis functions for subdomain boundary and perforation boundary
are presented separately. The presented perforation boundary basis functions are used
to approximate non-homogeneous boundary conditions on perforations. The numerical
results for two-dimensional problems with homogeneous and non-homogeneous boundary
conditions on perforations are presented. We investigate a different number of subdomain
and perforation boundary multiscale basis functions and show that an accurate solution
can be obtained with a large reduction of the system size with a sufficient number of
multiscale basis functions. The coarse grid construction and definition of the local domains
are presented and investigated numerically for each of the considered equations.

This paper is organized as follows. Section 2 contains description of the problem for-
mulation. The fine-scale approximation using the interior penalty discontinuous Galerkin
(IPDG) method is given in Section 3. The multiscale method based on DG-GMsFEM is
presented in Section 4 with the description of the construction of the multiscale basis func-
tions. Section 5 presents numerical results for the two-dimensional problem in a perforated
domain with homogeneous and non-homogeneous boundary conditions on perforations.
Results are shown for the different number of multiscale basis functions, as well as results
for different types of problems (elliptic, parabolic, elastic, and thermoelastic). The results
for quasi-structured and unstructured coarse grid are presented. Finally, the conclusion is
given in Section 6.

2. Problem Formulation

Let Ω be a perforated domain and Γp be the perforation boundary. In this work, we
consider the elliptic equation in perforated domain

L(u) = f , x ∈ Ω, (1)

with
u = gg, x ∈ Γg, (2)

and non-homogeneous boundary conditions on perforation boundary

B(u) = αu + gp, x ∈ Γp, (3)

where f is a given source vector, L denotes a linear differential operator, B is a normal
derivative operator, and ∂Ω = Γg ∪ Γp.

• For the Laplace operator, we have

L(u) = ∇ · q(u), B(u) = q · n, (4)

with
q(u) = −k∇u,

where q(u) is the flux, k is the diffusion coefficient, and n is the outward unit normal
on ∂Ω.

• For the elasticity operator, we have

L(u) = ∇ · σ(u), B(u) = σ · n, (5)

with
σ(u) = 2µε(u) + λ∇ · u I , ε(u) =

1
2
(∇u +∇uTr),

where u is the displacement field, ε(u) is the strain tensor, σ(u) is the stress tensor, uTr

is the transpose of u, and λ and µ are the Lamé coefficients.
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3. Fine-Grid Approximation

This section shows an approximation using the interior penalty discontinuous Galerkin
method (IPDG) on the fine grid that resolves all perforations on the grid level.

Let T h be a fine-grid partition of the domain Ω given by

T h =

Nh
cell⋃

i=1

Ki,

where Nh
cell is the number of fine grid cells. We use E h to denote the set of facets in T h with

E h = E h
o ∪ E h

b , where E h
o and E h

b are the set of interior and boundary facets (see Figure 1).

Figure 1. Illustration of perforated domain Ω (left) and fine grid T h (right).

Defining the jump [u] and the average {u} of a function u on the interior facet by

[u] = u+ − u−, {u} = u+ + u−
2

,

where u+ = u|K+ , u− = u|K− , and K+ and K− are the two cells sharing the facet E. For
boundary facets, we have [u] = u|E and {u} = u|E, E ∈ E h

b .
For IPDG approximation, the following variational formulation of the problem is used:

find uh ∈ Vh such that

a(uh, v) = l(v), ∀v ∈ Vh, (6)

where:

• for the Laplace operator, we have Vh = {v ∈ L2(Ω) : v|K ∈ P1(K), ∀K ∈ T h} and

a(u, v) = ∑
K∈T h

∫
K
(k∇u,∇v) dx + ∑

E∈E h
b,p

∫
E

α u v ds

− ∑
E∈E h

o ∪E h
b,g

∫
E

(
{k∇u · n} · [v] + {k∇v · n} · [u]−

γ f

h
{k}[u] · [v]

)
ds,

l(v) = ∑
K∈T h

∫
K

f v dx + ∑
E∈E h

b,p

∫
E

gp v ds

+ ∑
E∈E h

b,g

∫
E

(
γ f

h
k v− k∇v · n

)
gg ds.
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• for the elasticity operator, we have Vh = {v ∈ [L2(Ω)]2 : v|K ∈ [P1(K)]2, ∀K ∈ T h},
and

a(u, v) = ∑
K∈T h

∫
K
(σ(u), ε(v))dx + ∑

E∈E h
b,p

∫
E

α u v ds

− ∑
E∈E h

o ∪E h
b,g

∫
E

(
{τ(u)}[v] + {τ(v)}[u]−

γ f

h
{λ + 2µ}[u][v]

)
ds,

l(v) = ∑
K∈T h

∫
K

f · v dx + ∑
E∈E h

b,p

∫
E

gp · v ds

+ ∑
E∈E h

b,g

∫
E

(
γ f

h
(λ + 2µ) v− τ(v)

)
· gg ds

,

where τ(u) = σ(u) · n.

Here, γ f is the penalty parameter.
The above systems can be written in the matrix form as follows:

AhUh = Fh,

where
Ah = [ai,j], ai,j = a(ϕi, ϕj), Fh = [ f j], f j = l(ϕj),

with uh = ∑i ui ϕi and Uh = [uj].

4. Multiscale Method

This section describes the construction of multiscale approximation on the coarse
grid using the Discontinuous Galerkin Generalized Multiscale Finite Element method
(DG-GMsFEM) [22,31,32].

Let T H be a coarse-grid partition of the domain Ω with coarse mesh size H (see Figure 2).

T H =

NH
cell⋃

i=1

Ki,

where NH
cell is the number of coarse grid cells, and Ki is coarse cell (local domain). Use

EH to denote the set of facets in T H with EH = EH
o ∪ EH

b . Note that, in DG-GMsFEM, the
multiscale basis functions are supported in each coarse cell Ki.

Figure 2. Coarse grid T H with coarse cell Ki, Γi
g ∪ Γi

p = ∂Ki.
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Defining VH as the multiscale space

VH = span{φi}Nu
i=1,

parabolic, elastic, and thermoelastic Nu = dim(VH) is the number of basis functions.
For the coarse grid approximation, we use a DG approach and have the following

variational formulation: find uH ∈ VH such that

a(uH , v) = l(v), ∀v ∈ VH . (7)

Note that the coarse-scale system can be formed by projecting the fine-scale system
onto the coarse grid. The projection matrix can be assembled using the multiscale basis
functions.

To construct the multiscale space, we start with the construction of the snapshot space
that contains a set of basis functions formed by the solution of local problems with all
possible boundary conditions up to the fine grid resolution in each coarse cell Ki (local
domain) for i = 1, · · · , N, parabolic, elastic, and thermoelastic N is the number of coarse
blocks in Ω. After that, we solve a spectral problem to select dominant modes of the
snapshot space.

Next, we present the details of constructing the multiscale basis functions considering
two types of basis functions related to the two boundaries: (1) subdomain boundaries Γi

g

and (2) perforation boundary Γi
p.

Subdomain boundary muliscale basis functions. In the local snapshot space consist-
ing of functions ui

l , which are solutions to the following local problem

L(ui
l) = 0, x ∈ Ki, (8)

with the following boundary condition on subdomain boundaries,

ui
l = gl

i , x ∈ Γi
g,

and, on perforation boundary, we set homogeneous boundary condition related to (3)

B(ui
l) = αui

l , x ∈ Γi
p,

where l = 1, · · · , Lg
i . Local problems are solved using IPDG approximation on fine mesh

T h(Ki). For Laplace operator, we have Lg
i = Jg

i local problems, where Jg
i is the number of

fine grid facets on Γi
g, and gl

i = δl
i is the Kronecker delta function that has value 1 if i = l

and value 0 else. For elasticity operator, we have Lg
i = d · Jg

i local problems, where d is the
dimension, and gl

i = (δl
i , 0) and (0, δl

i ) for d = 2.
The collection of the solutions of the above local problems generates the snapshot

space in the local domain Ki

Vi,snap
g = {ui

l : 1 ≤ l ≤ Lg
i }, Ri,snap

g =

[
ui

1, . . . , ui
Lg

i

]Tr
.

To reduce the size of the snapshot space, we solve the following local spectral problem
in the snapshot space Vi,snap

g

ÃKi
g ψ̃i

g = λoS̃Ki
g ψ̃i

g, (9)

where
ÃKi

g = Ri,snap
g AKi

h (Ri,snap
g )Tr, S̃Ki

g = Ri,snap
g SKi

h (Ri,snap
g )Tr.

Here, AKi
h and SKi

h are the matrix representation of the bilinear forms aKi (u, v) and
sKi (u, v)
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• For Laplace operator:

aKi (u, v) = ∑
K∈T h(Ki)

∫
K

k∇u · ∇v dx

− ∑
E∈E h

o (Ki)

∫
E

(
{k∇u · n} · [v] + {k∇v · n} · [u]−

γ f

h
{k}[u] · [v]

)
ds,

sKi (u, v) = ∑
E∈E h

b (Ki)

∫
E

k u v ds.

(10)

• For elasticity operator:

aKi (u, v) = ∑
K∈T h(Ki)

∫
K
(σ(u), ε(v))dx

− ∑
E∈E h

o (Ki)

∫
E

(
{τ(u)}[v] + {τ(v)}[u]−

γ f

h
{λ + 2µ}[u][v]

)
ds,

su,Ki (u, v) = ∑
E∈E h

b (Ki)

∫
E
(λ + 2µ)u · v ds.

(11)

It should be noted that the integral in sKi (u, v) is defined on the boundary of the coarse
block Ki and based on the definition of the snapshot space used to extract dominant modes
related to the outer boundary of the local domain.

Next, we arrange the eigenvalues in increasing order and choose the first eigenvectors
corresponding to the first smallest eigenvalues ψi

g,k = (Ri,snap
g )Trψ̃i

g,k as the basis functions

(k = 1, . . . , Mi
g)

Vg
H = span{ψi

g,k : 1 ≤ i ≤ NH
cell , 1 ≤ k ≤ Mi

g}.

The first five eigenvectors for some local domains Ki are depicted in Figure 3 for Laplace
operator and in Figure 4 for elasticity operator.

Figure 3. Illustration of the outer boundary multiscale basis functions for Laplace problem, ψi
g,k for

k = 1, . . . , 5 (from left to right).

Figure 4. Illustration of the outer boundary multiscale basis functions for elasticity problem, ψi
g,k for

k = 1, . . . , 5 (from left to right). First row: displacement X-component. Second row: displacement
Y-component.
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Perforation boundary muliscale basis functions. To handle non-homogeneous bound-
ary conditions on the perforation boundaries, we construct an additional multiscale basis
functions. The snapshot space is constructed by solution of the following problem in local
domain Ki that contains perforations

L(ui
l) = 0, x ∈ Ki, (12)

with the homogeneous boundary condition on subdomain boundaries,

ui
l = 0, x ∈ Γi

g,

and, on the perforation boundary, we set the following boundary condition related to (3)

B(ui
l) = αui

l + gl
i , x ∈ Γi

p,

where l = 1, · · · , Lp
i , where Lp

i = Jp
i for Laplace problem, and Lp

i = d · Jp
i for elasticity

problem (Jp
i is the number of fine grid facets on Γi

p).
We form a snapshot space using local solutions

Vi,snap
p = {ui

l : 1 ≤ l ≤ Lp
i }, Ri,snap

p =

[
ui

1, . . . , ui
Lp

i

]Tr
.

We perform a dimension reduction in the snapshot space using the local spectralproblem

ÃKi
p ψ̃i

g,k = ηS̃Ki
p ψ̃i

g,k, (13)

where
ÃKi

p = Ri,snap
p AKi

h (Ri,snap
p )Tr, S̃Ki

p = Ri,snap
p SKi

h (Ri,snap
p )Tr.

The eigenvalues are arranged in increasing order, and, by choosing the first eigen-
vectors corresponding to the first smallest eigenvalues, we define perforation boundary
multiscale basis functions

Vp
H = span{ψi

g,k : 1 ≤ i ≤ NH
cell,p, 2 ≤ k ≤ Mi

p},

where ψi
g,k = (Ri,snap

p )Trψ̃i
g,k for k = 1, . . . , Mi

p, and Ncell,p is the number of local domains
with perforations. It should be noted that the first eigenvector was not taken because
constant valued vector already exists in outer boundary multiscale space. The perforation
boundary of multiscale basis functions are presented in Figure 5 for Laplace problem and
in Figure 6 for elasticity problem.

Figure 5. Illustration of the perforation boundary multiscale basis functions for Laplace problem,
ψi

p,k for k = 1, . . . , 5 (from left to right).
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Figure 6. Illustration of the perforation boundary multiscale basis functions for elasticity problem,
ψi

p,k for k = 1, . . . , 5 (from left to right). First row: displacement X - component. Second row:
displacement Y-component.

Interior multiscale basis functions. We add one interior basis functions [22,32] con-
structed by solution of the following local problem:

L(φi) = f , x ∈ Ki, (14)

with f = 1 and homogeneous boundary condition on subdomain and perforation bound-
aries,

φi = 0, x ∈ Γi
g, B(φ) = αφ, x ∈ Γi

p.

Finally, there is the following multiscale space:

VH = span{ψi
g,k, ψ

j
p,m, φi : 1 ≤ i ≤ Ng, 1 ≤ j ≤ Np, 1 ≤ k ≤ Mi

g, 2 ≤ m ≤ Mi
p},

where Np = Ncell,p, and Ng = Ncell
Coarse scale system. To construct the coarse grid system, we generate a projection

matrix using multiscale basis functions

R =

[
ψ1

g,1, . . . , ψ
Ng

g,M
Ng
g

, ψ2
p,1, . . . , ψ

Np

p,M
Np
p

, φ1, . . . , φNH
cell

]Tr
.

Using projection matrix, we have the following coarse grid system in matrix form:

AHUH = FH , (15)

where
AH = RAhRTr, FH = RFh.

After the solution of the coarse-scale system, the fine-scale solution for displacement
can be recovered Ums = RTrUH .

5. Numerical Results

We present numerical results for the model problems in the perforated domain Ω =
[0, Lx]× [0, Ly] with Lx = Ly = 1. The computational domain with coarse and fine grids is
presented in Figure 7. The fine grid contains 14,648 vertices and 28,410 cells. The coarse
grid contains 121 vertices and 100 cells (local domains). To construct the computational
domain with computational mesh, we use the mesh generator Gmsh [33].
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Figure 7. Computational domain with coarse (left) and fine (right) grids.

To investigate the presented multiscale method for problems solving in perforated
domains, the following tests are considered: (1) elliptic equation and (2) elasticity equation.
The extension of the method for solution of the parabolic and thermoelasticity problems are
presented in Appendixes A and B . The numerical implementation of the model problems
is based on the FEniCS computing platform [34]. There are two test cases for each problem:

• Case 1. homogeneous boundary conditions on perforations;
• Case 2. non-homogeneous boundary conditions on perforations.

We calculate the following relative errors in L2 and energy norm (semi-norm H1)
between multiscale and fine-grid solution:

eL2 =

√∫
Ω(ums − u)2 dx∫

Ω u2 dx
· 100%, eH1 =

√∫
Ω a(ums − u, ums − u) dx∫

Ω a(u, u) dx
· 100%,

where u and ums are the fine-scale and multiscale solutions, respectively.
To start, there are results for elliptic and elastic equations. Whereat there is evaluation

of the unstructured coarse grids and heterogeneous perforated domains. The results for
parabolic and thermoelasticity problems are given in Appendixes A and B .

5.1. Results for Elliptic Equation

We consider the elliptic equation in the perforated domain Ω with k = 1 and the
following boundary conditions:

• Case 1. Homogeneous boundary conditions on perforations:

u = 1, x ∈ Γg, −k∇u · n = αu, x ∈ Γp.

• Case 2. Non-homogeneous boundary conditions on perforations:

u = 0, x ∈ Γg, −k∇u · n = α(u− 1), x ∈ Γp.

We consider three different α = 1, 25, and 100.
Tables 1 and 2 show relative errors for elliptic problem with different perforation

boundary coefficient α = 1, 25, and 100. Here, M is the number of multiscale basis functions,
and DOFh and DOFH are the numbers of degrees of freedom for fine-grid (reference)
solution and multiscale solution. Here, DOFh = 3 · Nh

cell for fine grid solution, where Nh
cell

is the number of fine grid cells. For multiscale solution, DOFH = (Mg + 1) · Ng + Mp · Np,
where Ng = NH

cell is the total number of coarse grid cells, and Np = NH
cell,p is the number

of coarse grid cells with perforations. For the problem with homogeneous boundary
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conditions (Case 1), we use multiscale space without perforation basis functions (Mp = 0).
Results for multiscale spaces with and without perforation boundary basis functions
(Mp = M) are presented for Case 2 with non-homogeneous boundary conditions. For Case
1, we observe that the relative error in L2 norm is reduced to 1% for α = 1, 25, and 100,
when we take the sufficient number of multiscale basis functions (Mg = 12 and Mp = 0).
For Case 2 of the boundary conditions, the multiscale method gives a solution with a
large error when perforation boundary multiscale basis functions is not taken (Mp = 0).
However, we obtain good results after adding perforation boundary bases (Mp = M). For
example, the relative L2 error for M = 12 multiscale basis functions is 12% for Mp = 0 and
reduced to 1.2% for Mp = M (α = 25). For the test problem with larger α = 100, L2 error
from 21% to 0.67% is reduced. The graphical representation of the Tables 1 and 2 is given
in Figure 8.

Table 1. Elliptic problem with α = 1, 25, and 100. Case 1 (homogeneous boundary conditions).
Relative L2 and H1 error in %. DOFh = 85,230.

α = 1 α = 25 α = 100
M DOFH eL2 eH1 eL2 eH1 eL2 eH1

Mg = M, Mp = 0

1 200 21.92 97.44 96.75 100.0 82.12 100.0
2 300 21.50 95.89 87.83 100.0 66.43 100.0
4 500 7.770 42.57 8.408 32.53 5.417 32.01
6 700 3.382 29.49 4.307 27.96 3.260 27.66
8 900 2.096 21.91 2.509 21.20 1.905 20.11

12 1300 1.201 14.33 1.417 13.33 1.053 13.08
16 1700 1.169 13.89 1.379 12.77 1.004 12.49
20 2100 1.127 13.10 1.349 12.03 0.972 11.81
24 2500 1.116 13.01 1.341 11.95 0.964 11.74
32 3300 1.098 12.80 1.329 11.74 0.957 11.53

Figure 8. Elliptic problem with α = 100. Case 1 (left) and Case 2 (right): Relative L2(top) and
H1(bottom) error with a different number of multiscale basis functions.
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Table 2. Elliptic problem with α = 1, 25, and 100. Case 2 (non-homogeneous boundary conditions).
Relative L2 and H1 error in %. DOFh = 85,230.

α = 1 α = 25 α = 100
M DOFH eL2 eH1 eL2 eH1 eL2 eH1

Mg = M, Mp = 0

1 200 98.00 100.0 90.85 103.2 88.31 110.1
2 300 96.16 98.57 84.23 101.8 82.39 113.5
4 500 35.55 50.93 17.47 131.8 32.63 200.6
6 700 16.33 41.68 14.37 136.5 26.66 223.9
8 900 10.71 37.02 12.64 137.5 21.48 238.5

12 1300 6.896 33.31 12.29 136.9 21.52 237.5
16 1700 6.757 33.12 12.29 136.8 21.58 237.4
20 2100 6.580 32.80 12.29 136.7 21.63 237.1
24 2500 6.532 32.76 12.29 136.7 21.67 236.9
32 3300 6.457 32.68 12.29 136.7 21.68 236.8

Mg = Mp = M

1 251 96.63 97.45 82.96 123.0 66.74 129.7
2 402 93.85 95.23 67.28 116.0 43.93 112.6
4 704 27.84 39.03 6.909 32.68 3.523 33.20
6 1006 12.24 27.74 3.399 27.01 2.316 26.94
8 1308 7.909 20.65 1.747 20.01 1.201 19.30

12 1776 5.238 14.20 1.234 13.17 0.772 12.94
16 2244 5.108 13.80 1.197 12.64 0.735 12.37
20 2644 4.934 13.04 1.165 11.92 0.708 11.71
24 3044 4.887 12.97 1.155 11.86 0.699 11.66
32 3844 4.812 12.78 1.142 11.69 0.692 11.48

Figures 9 and 10 show the fine-grid and multiscale solutions for the elliptic problem
with α = 100 for Case 1 and Case 2, respectively. DOFh = 85,230 is a reference (fine-grid)
solution. For multiscale solution, we used 12 multiscale basis functions (M = 12) for both
Cases. We have DOFH = 1300 for multiscale solution without perforation boundary basis
functions in Case 1 and Case 2 (Mg = M, Mp = 0), and DOFH = 1776 for multiscale
solution with perforation boundary basis functions in Case 2 (Mg = Mp = M). Figure
test1-elliptic shows a reference (fine grid) solution on the left and a multiscale solution on
the right for Case 1. For Case 2, there are three pictures in Figure 10: reference solution
on the left, multiscale solution with Mg = M, Mp = 0 in the center, and multiscale
solution with Mg = Mp = M on the right. For Case 1, the perforation boundary multiscale
basis functions are not needed because of set homogeneous boundary conditions on
perforations (Mp = 0). For Case 2, the multiscale solution without perforation boundary
bases (Mp = 0) gives large errors, but very good results are obtained for multiscale
solver after adding perforation bases to handle non-homogeneous boundary conditions on
perforations (Mp = M).

Figure 9. Elliptic problem with α = 100. Case 1 (homogeneous boundary conditions). Left: Reference
solution (DOFh = 85,230). Right: Multiscale solution with 12 multiscale basis functions, eL2 = 1.053
(Mg = M = 12, Mp = 0, DOFH = 1300).
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Figure 10. Elliptic problem with α = 100. Case 2 (non-homogeneous boundary conditions). Left:
Reference solution (DOFh = 85,230). Center: Multiscale solution with 12 multiscale basis functions
without perforation basis functions, eL2 = 21.52 (Mg = M = 12, Mp = 0, DOFH = 1300). Right:
Multiscale solution with 12 multiscale basis functions with perforation basis functions, eL2 = 0.772
(Mg = Mp = M = 12, DOFH = 1776).

For Case 1 with homogeneous boundary conditions on perforations and Case 2 with
non-homogeneous boundary conditions on perforations, based on results, it could be said
that the presented multiscale method shows good results with small errors and demon-
strates high accuracy for the both cases. Using non-homogeneous boundary conditions on
perforations, the multiscale method using perforation boundary basis functions greatly
improves results.

5.2. Results for Elasticity Equation

Let ∂Ω = Γt ∪ Γb ∪ Γl ∪ Γr ∪ Γp, where Γt, Γb, Γl , Γr be the top, bottom, left, and right
boundaries.

We consider the elasticity equation with λ = µ = 1 with the following boundary
conditions:

ux = 0, σy = 0, x ∈ Γl , uy = 0, σx = 0, x ∈ Γb,

and

• Case 1. Homogeneous boundary conditions on perforations:

σ · n = 1, x ∈ Γt ∪ Γr, σ · n = 0, x ∈ Γp.

• Case 2. Non-homogeneous boundary conditions on perforations:

σ · n = 0, x ∈ Γt ∪ Γr, σ · n = −0.01, x ∈ Γp.

Figures 11 and 12 show the results of the reference (fine-grid) and multiscale solutions
for elasticity problem for Case 1 and Case 2. For illustration 24, multiscale basis functions
(M = 24) are used. For fine grid solution, we have DOFh = 170,460. DOFH = 4900 is
for the multiscale solution without perforation basis functions (Case 1 and Case 2) and
DOFH = 5988 for the multiscale solution with perforation boundary basis functions in
Case 2. The displacements X-component is presented on the first row and Y-component
on the second row. The first column shows the solutions on the fine grid. The second
column shows the multiscale solution using outer boundary multiscale basis functions
with Mp = 0 and Mg = 24. The third column for Case 2 shows a multiscale solution
using outer and perforation boundary multiscale basis functions (Mg = Mp = 24). Here,
DOFh = 6 · Nh

cell , DOFH = (2 ·Mg + 1) · NH
cell + 2 ·Mp · NH

cell,p.



Computation 2021, 9, 75 14 of 29

Figure 11. Elasticity problem. Case 1 (homogeneous boundary conditions). First row: displacement
X-component. Second row: displacement Y-component. Left: Reference solution (DOFh = 170,460).
Right: Multiscale solution with 24 multiscale basis functions, eL2 = 2.117 (Mg = M = 24, Mp = 0,
DOFH = 4900).

Figure 12. Elasticity problem. Case 2 (non-homogeneous boundary conditions). First row: displace-
ment X-component. Second row: displacement Y-component. Left: Reference solution (DOFh =
170,460). Center: Multiscale solution with 24 multiscale basis functions without perforation basis
functions, eL2 = 117.3 (Mg = M = 24, Mp = 0, DOFu

H = 4900). Right: Multiscale solution with
24 multiscale basis functions with perforation basis functions, eL2 = 2.324 (Mg = Mp = M = 24,
DOFu

H = 5988).

Tables 3 and 4 and Figure 13 present relative errors for elasticity problem for Case 1
and Case 2, respectively. Evidently the L2 error reduce from 117% for Mp = 0 to 2.3% for
Mp = M in Case 2 with M = 24. For Case 1, we have 2% of L2 error for Mg = M = 24
with Mp = 0. For both cases, we obtain good results with a sufficient number of multiscale
basis functions.
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Table 3. Elasticity problem. Case 1 (homogeneous boundary conditions). Relative L2 and H1 error in
%. DOFh = 170,460.

M DOFH eL2 eH1

Mg = M, Mp = 0

1 300 95.47 100.0
2 500 94.41 99.24
4 900 73.76 82.19
6 1300 14.50 32.53
8 1700 8.312 26.82
12 2500 6.031 22.41
16 3300 2.566 18.72
20 4100 2.354 18.08
24 4900 2.117 17.59
32 6500 1.893 17.49

Table 4. Elasticity problem. Case 2 (non-homogeneous boundary conditions). Relative L2 and H1

error in %. DOFh = 170,460.

M DOFH eL2 eH1 M DOFH eL2 eH1

Mg = M, Mp = 0 Mg = M, Mp = 0

1 300 113.2 84.90 1 402 98.24 70.33
2 500 111.9 83.33 2 704 92.46 65.32
4 900 119.7 72.36 4 1308 52.99 45.22
6 1300 118.0 64.02 6 1912 8.847 26.20
8 1700 117.5 60.98 8 2516 6.835 20.38

12 2500 117.6 59.82 12 3452 5.762 17.84
16 3300 117.4 59.50 16 4388 2.745 16.50
20 4100 117.4 59.37 20 5188 2.568 16.20
24 4900 117.3 59.29 24 5988 2.324 14.24
32 6500 117.2 58.35 32 7588 2.019 13.20

In Case 1 with homogeneous boundary conditions for elasticity on perforations, good
results with outer basis functions are obtained. In Case 2 with non-homogeneous boundary
conditions for elasticity on perforations, it is seen that, for displacement, we should use
perforation boundary basis functions in order to approximate the non-homogeneous
boundary condition.

5.3. Unstructured Coarse Grids

We consider a solution of the elliptic and elasticity problems using the presented
multiscale method on quasi-structured and unstructured coarse grids. Figure 14 presents
quasi-structured and unstructured coarse grids with an illustration of the local domains.
Coarse grids contain 100 local domains. Problems with Case 2 boundary conditions are
considered for numerical investigation.

Table 5 presents results for elliptic equation with α = 100 for non-homogeneous
boundary conditions (Case 2). The results for elasticity equation are presented in Table 6.
Numerical results are shown for multiscale space with outer and boundary basis functions
(Mg = Mp = M) on quasi-structured and unstructured coarse grids with 100 local domains.
Using 32 multiscale basis functions (Mp = Mg = 32), similar results are obtained with less
than 1% of L2 error for structured, quasi-structured, and unstructured coarse grids with
100 local domains with DOFH = 3844 (4.5% of DOFf = 85,230). By comparing results with
less number of multiscale basis functions (Mp = Mg = 8), it is observed that the error for
structured coarse grid is smaller (1% and 19% for L2 and H1 errors) than for unstructured
coarse grid (4.9% and 33% for L2 and H1 errors). Furthermore, the results show that the
quasi-structured grid give a smaller errors than unstructured coarse grid (2% and 23% for
L2 and H1 errors). For the elasticity problem with M = 32, we have 2% and 13% for L2 and
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H1 errors for structured grid, 3% and 15% for L2 and H1 errors for quasi-structured grid,
and 5% and 22% for L2 and H1 errors for unstructured grid.

Figure 13. Elasticity problem. Case 1 (left) and Case 2 (right): Relative L2(top) and H1(bottom) error
with a different number of multiscale basis functions.

Figure 14. Coarse grids and local domains. (Left): quasi-structured grid. (Right): unstructured grid.

For elasticity problem with a smaller number of multiscale basis functions, there
less errors for a structured grid than an unstructured grid. By comparison of the quasi-
structured and unstructured grids, we see less errors for the quasi-structured coarse grid.
Good results with less errors for any coarse grids can be obtained with a large number of
multiscale basis functions. It should be noted that the main advantage of using unstruc-
tured coarse grids is the similar number of cells in each local domain (load balancing).
Conforming triangulation of the domain with coarse edges is used in construction of the
structured grid, which can be difficult for complex geometries with a large number of
perforations. Though the conforming construction is not needed in the quasi-structured
grid. Numerical results show that the presented multiscale method works very well with
any coarse grid construction concepts.
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Table 5. Elliptic problem. Case 2 (non-homogeneous boundary conditions). Unstructured coarse
grids. Relative L2 and H1 error in %. DOFh = 85,230.

M DOFH
Quasi-Structured Unstructured

eL2 eH1 eL2 eH1

1 251 58.12 101.1 56.66 98.80
2 402 35.39 87.82 45.87 104.1
4 704 6.539 41.82 16.53 60.94
6 1006 3.523 33.69 9.504 43.29
8 1308 2.034 23.72 4.909 33.93

12 1776 1.369 19.11 2.187 25.77
16 2244 1.052 17.04 1.390 22.29
20 2644 0.896 15.76 0.994 19.81
24 3044 0.783 15.06 0.734 17.48
32 3844 0.683 14.33 0.552 15.83

Table 6. Elasticity problem. Case 2 (non-homogeneous boundary conditions). Unstructured coarse
grids. Relative L2 and H1 error in %. DOFh = 170,460.

M DOFH
Quasi-Structured Unstructured

eL2 eH1 eL2 eH1

1 402 89.14 63.53 97.97 83.36
2 704 82.55 59.52 94.60 77.88
4 1308 62.82 49.96 76.75 66.07
6 1912 44.10 41.86 50.62 53.07
8 2516 20.71 30.19 29.94 43.22

12 3452 13.68 24.60 15.75 32.33
16 4388 8.648 20.83 10.57 27.54
20 5188 6.682 18.96 8.107 25.11
24 5988 5.309 17.49 6.705 23.75
32 7588 3.629 15.64 5.407 22.26

5.4. Heterogeneous Coefficients

Finally, we consider the efficiency of the presented method for the solution of the ellip-
tic and elasticity problems with heterogeneous coefficients (k = k(x) and E = E(x)). The
heterogeneous elasticity parameter and heterogeneous diffusion coefficient are presented
in Figure 15. The parameters λ and µ are given as follows:

µ(x) =
E(x)

2(1 + ν)
, λ(x) =

E(x)ν
(1 + ν)(1− 2ν)

,

where E = E(x) is the elasticity parameter, and ν = 0.3 is the constant Poisson’s ratio.

Figure 15. Heterogeneous coefficient.
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Table 7 presents the relative L2 and H1 errors for elliptic (left) and elasticity (right)
problems with heterogeneous coefficients. Case 2 with non-homogeneous boundary condi-
tions for perforation is considered (Mg = Mp = M). For elliptic problem, the results are
presented with α = 100. Numerical results for elliptic and elasticity problems show that
the presented multiscale method works well with heterogeneous coefficients.

Table 7. Elliptic and elasticity problem with heterogeneous coefficients. Case 2 (non-homogeneous
boundary conditions). Relative L2 and H1 error in %.

M
Elliptic Problem Elasticity Problem

DOFH eL2 eH1 DOFH eL2 eH1

1 251 57.72 96.62 402 108.1 76.69
2 402 52.28 91.43 704 105.4 69.97
4 704 16.86 40.61 1308 44.45 44.88
6 1006 11.68 29.68 1912 9.455 29.43
8 1308 4.498 23.30 2516 6.824 23.97

12 1776 2.979 16.56 3452 4.753 21.43
16 2244 3.170 14.98 4388 3.511 20.25
20 2644 3.078 14.35 5188 3.327 19.97
24 3044 3.258 13.75 5988 3.235 19.90
32 3844 3.199 13.65 7588 3.024 17.95

6. Conclusions

This paper presents the multiscale method for solution problems in the perforated
domain with non-homogeneous boundary conditions on perforations. For approximation
on the fine grid that resolved perforations on the grid level, we apply the Discontinuous
Galerkin finite element method and use the solution as a reference solution. To reduce the
size of the fine grid system, we present a Discontinuous Galerkin Generalized Multiscale
Finite Element Method (DG-GMsFEM) with the construction of two types of multiscale
basis functions for subdomain boundary and perforation boundary, separately. Presented
perforation boundary basis functions are used to approximate non-homogeneous bound-
ary conditions on perforations. Numerical investigation of the presented method was
performed for four model problems: (1) elliptic, (2) parabolic, (3) elasticity, and (4) thermoe-
lasticity problems in the perforated domain. The results for two cases with homogeneous
and non-homogeneous boundary conditions are given. For the case with homogeneous
boundary conditions on perforations, the given results are obtained using only subdomain
boundary basis functions. However, for a non-homogeneous boundary condition, both
subdomain and perforation boundary basis functions should be used. Numerical results
are presented for different concepts of the coarse grid construction (structured, quasi-
structured, and unstructured coarse grids). Numerical results show that the proposed
method can provide good results and give a significant reduction of the system size with
appropriate choosing construction of the multiscale basis functions for problems with ho-
mogeneous and non-homogeneous perforation boundary conditions. In future works, we
plan to consider oversampling techniques for multiscale basis function construction, con-
struct a multiscale solver for three-dimensional problems, and consider construction of the
accurate multiscale techniques for nonlinear problems in heterogeneous perforated media.
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Appendix A. Parabolic Problem

We consider the parabolic problem in perforated domain Ω:

∂u
∂t
−∇ · (k∇u) = 0, x ∈ Ω (A1)

with the following boundary conditions

u = gg, x ∈ Γg, −k∇u · n = α(u− gp), x ∈ Γp,

and initial condition T = T0 in Ω for t = 0.
For approximation by time, we use an implicit approximation with a time step τ. We

have the following fine grid approximation on T h using the IPDG method: find uh ∈ Vh
such that

1
τ

m(uh − ǔh, v) + a(uh, v) = l(v), ∀v ∈ Vh,

where

a(u, v) = ∑
K∈T h

∫
K
(k∇u,∇v) dx + ∑

E∈E h
b,p

∫
E

α u v ds

− ∑
E∈E h

o ∪E h
b,g

∫
E

(
{k∇u · n} · [v] + {k∇v · n} · [u]−

γ f

h
{k}[u] · [v]

)
ds,

l(v) = ∑
E∈E h

b,p

∫
E

α gp v ds + ∑
E∈E h

b,g

∫
E

(
γ f

h
k v− k∇v · n

)
gg dx, m(u, v) = ∑

K∈T h

∫
K

u v ds,

and ǔh is the solution from the previous time step.
The matrix form is following

1
τ

Mh(Uh − Ǔh) + Ah(Uh) = Fh,

for uh = ∑i Ui ϕi and with

Mh = [mi,j := m(ϕi, ϕj)], Ah = [ai,j := a(ϕi, ϕj)], Fh = [ f j := l(ϕj)].

In the multiscale method, we construct a multiscale space similar to the Laplace
problem and generate a projection matrix

R =
[

ϕ1
g,1, . . . , ϕ

Ng
g,Mg

, ϕ2
p,1, . . . , ϕ

Np
p,Mp

, ϕ1, . . . , ϕNH
cell

]Tr
.

Finally, we obtain the following coarse grid system for a parabolic problem

1
τ

MH(UH − ǓH) + AH(UH) = FH ,

where
MH = RMhRTr, AH = RAhRTr, FH = RFh,
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and calculation of the coarse-scale solution, we reconstruct the fine-scale solution Ums = RTrUH .
Numerical results. We consider the parabolic problem with k = 1. We set the

following boundary conditions:

• Case 1. Homogeneous boundary conditions on perforations:

u = 1, x ∈ Γg, −k∇u · n = αu, x ∈ Γp,

and perform simulation for tmax = 0.02.
• Case 2. Non-homogeneous boundary conditions on perforations:

u = 0, x ∈ Γg, −k∇u · n = α(u− 1), x ∈ Γp.

and perform simulation for tmax = 0.01.

We consider three different α = 1, 25, and 100. We set zero initial condition and perform a
simulation with 40 time steps.

Figure A1. Parabolic problem with α = 100 for different time layers tm with m = 5, 15, and 40 (from
left to right). Case 1 (homogeneous boundary conditions). Top: Reference solution (DOFh = 85,230).
Bottom: Multiscale solution with 12 multiscale basis functions, eL2 = 2.22 for t1, eL2 = 1.605 for t10,
eL2 = 1.058 for t40 (Mg = M = 12, Mp = 0, DOFH = 1300).

Table A1. Parabolic problem with α = 1, 25, and 100. Case 1 (homogeneous boundary conditions).
Relative L2 and H1 error in %. DOFh = 85,230.

α = 1 α = 25 α = 100
M DOFH eL2 eH1 eL2 eH1 eL2 eH1

Mg = M, Mp = 0

1 200 86.14 99.75 101.6 134.7 83.13 157.8
2 300 85.57 99.22 92.55 124.4 67.41 130.3
4 500 18.58 34.51 9.460 32.42 5.393 31.97
6 700 8.323 28.86 5.001 27.98 3.436 27.71
8 900 4.445 20.53 2.774 20.93 1.959 20.08

12 1300 2.870 14.32 1.734 13.33 1.164 13.10
16 1700 2.784 13.96 1.675 12.79 1.109 12.52
20 2100 2.693 13.28 1.635 12.06 1.076 11.84
24 2500 2.666 13.23 1.622 11.99 1.066 11.76
32 3300 2.625 13.09 1.604 11.79 1.058 11.56
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Figure A2. Parabolic problem with α = 100 for different time layers tm with m = 5, 15, and 40
(from left to right). Case 2 (non-homogeneous boundary conditions). Top: Reference solution
(DOFh = 85,230). Center: Multiscale solution with 12 multiscale basis functions without perforation
basis functions, eL2 = 46.53 for t5, eL2 = 35.14 for t15, and eL2 = 22.84 for t40 (Mg = 12, Mp = 0,
DOFH = 1300). Bottom: Multiscale solution with 12 multiscale basis functions with perforation
basis functions, eL2 = 2.506 for t5, eL2 = 1.621 for t15, and eL2 = 0.742 for t40 (Mg = Mp = M = 12,
DOFH = 1776).

Figure A3. Parabolic problem with α = 100 at the final time. Case 1 (left) and Case 2 (right): Relative
L2 error with a different number of multiscale basis functions.

The reference and multiscale solutions at the different times (tm with m = 5, 15, and
40) are presented in Figure A1 for Case 1 and in Figure A2 for Case 2. The multiscale
solution is obtained using 12 multiscale basis functions (M = 12). In the first row, there is a
fine-scale solution with DOFh = 85,230. In the second row, there is a multiscale solution
with DOFH = 1300 for Mp = 0. In the third row, we give a multiscale solution with
DOFH = 1776 for Mp = M in Case 2. We observe a bad multiscale approximation near the
perforation boundary for Case 2 with eL2 = 22% at final time, if a perforation boundary
basis functions is not used to handle non-homogeneous boundary conditions. For Mp = M
in Case 2, we observe a good multiscale solution with eL62 = 0.7% at final time.
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Table A2. Parabolic problem with α = 1, 25, and 100. Case 2 (non-homogeneous boundary condi-
tions). Relative L2 and H1 error in %. DOFh = 85,230.

α = 1 α = 25 α = 100
M DOFH eL2 eH1 eL2 eH1 eL2 eH1

Mg = M, Mp = 0

1 200 91.97 100.0 88.25 106.2 87.32 113.5
2 300 84.84 98.29 79.71 107.8 80.87 119.0
4 500 13.88 79.31 17.52 146.2 31.49 209.5
6 700 9.709 74.94 15.97 148.1 27.40 228.8
8 900 8.124 72.15 14.66 147.7 22.90 240.5

12 1300 7.552 71.39 14.83 147.6 22.84 238.9
16 1700 7.330 68.91 14.40 146.1 22.90 238.7
20 2100 7.289 68.60 14.41 145.9 22.96 238.4
24 2500 7.280 68.49 14.42 145.8 22.99 238.2
32 3300 7.264 68.39 14.42 145.8 23.01 238.1

Mg = Mp = M

1 251 85.93 79.07 77.39 103.4 63.56 116.3
2 402 75.40 75.78 57.40 99.07 38.96 101.3
4 704 7.938 38.96 5.154 35.27 6.326 36.65
6 1006 4.084 29.37 2.857 27.33 2.897 26.93
8 1308 2.339 21.96 1.566 20.95 1.394 19.50

12 1776 1.289 14.29 0.819 13.35 0.742 12.92
16 2244 1.192 13.19 0.735 12.54 0.654 12.24
20 2644 1.129 12.19 0.701 11.78 0.619 11.59
24 3044 1.117 11.90 0.691 11.61 0.603 11.49
32 3844 1.093 11.59 0.677 11.36 0.588 11.28

Table A3. Parabolic problem. Case 2 (non-homogeneous boundary conditions). Unstructured coarse
grids. Relative L2 and H1 error in %. DOFh = 85,230.

M DOFH
Quasi-Structured Unstructured

eL2 eH1 eL2 eH1

1 251 54.82 96.18 53.32 93.48
2 402 30.56 79.76 41.23 94.00
4 704 8.184 45.51 11.60 56.13
6 1006 4.889 34.72 6.561 41.29
8 1308 3.434 25.08 4.976 35.25

12 1776 3.944 23.14 3.725 27.85
16 2244 1.526 17.72 2.761 23.90
20 2644 1.209 16.25 2.063 21.00
24 3044 0.999 15.26 1.775 18.64
32 3844 0.803 14.43 1.429 16.74

The relative errors for parabolic problem (Case 1) between reference solution and
multiscale solution for α = 1, 25, and 100 are shown in Table A1 and in Figure A3 (left
picture). We have a good multiscale solution with nearly 1–2% of L2 error when we take
12 outer boundary multiscale basis functions. Table A2 and Figure A3 (right picture)
present relative errors for Case 2. Similar to the previous results for the elliptic equation,
we see large errors for Mp = 0 and can obtain a good multiscale solution when we take
the sufficient number of multiscale basis functions with outer and perforation boundary
multiscale basis functions. For example, if 12 multiscale basis functions (M = 12) are taken,
we have 7–22% of L2 errors for Mp = 0 and reduce errors to 1% when we add perforation
boundary basis functions for α = 1, 25, and 100.

Table A3 shows results for non-homogeneous boundary conditions (Case 2) on quasi-
structured and unstructured coarse grids with 100 local domains. We present results for
α = 100. Using 32 multiscale basis functions (Mp = Mg = 32), we obtain similar results
with less than 1% of L2 error for structured, quasi-structured, and unstructured coarse
grids with 100 local domains with DOFH = 3844 (4.5% of DOFf = 85,230).
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Appendix B. Thermoelasticity Problem

We consider the thermoelasticity problem in Ω that is described by a system of
equations for temperature and displacement:

∇ · σ(u)− β∇(T − T∗) = 0, x ∈ Ω,

c
∂T
∂t

+ β
∂∇ · u

∂t
−∇ · (k∇T) = 0, x ∈ Ω,

(A2)

We consider Equation (A2) with the following boundary conditions:

u = gu
g , T = gT

g , x ∈ Γg, σ · n = gu
p, −k∇T · n = α(T − gT

p ), x ∈ Γp,

and initial condition T = T0, u = 0 in Ω for t = 0.
For the IPDG method on the fine grid T h, we have the following variational formula-

tion: find (uh, Th) ∈Wh ×Qh such that

au(uh, v) + b(Th, v) = lu(v), ∀v ∈Wh

1
τ

m(Th − Ťh, q) +
1
τ

d(uh − ǔh, q) + aT(Th, q) = lT(q), ∀q ∈ Qh
,

where
Qh = {T ∈ L2(Ω) : T|K ∈ P1(K), ∀K ∈ T h}

Wh = {v ∈ [L2(Ω)]2 : v|K ∈ [P1(K)]2, ∀K ∈ T h},

with

aT(T, q) = ∑
K∈T h

∫
K
(k∇T,∇q) dx + ∑

E∈E h
b,p

∫
E

α T q ds

− ∑
E∈E h

o ∪E h
b,g

∫
E

(
{k∇T · n} · [q] + {k∇q · n} · [T]−

γ f

h
{k}[T] · [q]

)
ds,

l(q) = ∑
E∈E h

b,p

∫
E

α gT
p q ds + ∑

E∈E h
b,g

∫
E

(
γ f

h
k q− k∇q · n

)
gT

g dx,

m(T, q) = ∑
K∈T h

∫
K

c T q dx,

au(u, v) = ∑
K∈T h

∫
K
(σ(u), ε(v))dx

− ∑
E∈E h

o ∪E h
b,g

∫
E

(
{τ(u)}[v] + {τ(v)}[u]−

γ f

h
{λ + 2µ}[u][v]

)
ds,

lu(v) = ∑
E∈E h

b,p

∫
E

gu
p · v ds + ∑

E∈E h
b,g

∫
E

(
γ f

h
(λ + 2µ) v− τ(v)

)
· gu

g ds,

b(T, v) = ∑
K∈T h

∫
K

β ∇T · v dx, d(u, q) = ∑
K∈T h

∫
K

β∇ · u q dx.

The matrix form is the following:

Au
h(Uh) + Bh(Th) = Fu

h
1
τ

Mh(Th − Ťh) +
1
τ

Dh(Uh − Ǔh) + AT
h (Th) = FT

h ,

for
uh = ∑

i
Uiψi; Th = ∑

i
Ti ϕi,
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with

Mh = [mi,j := m(ϕi, ϕj)], AT
h = [aT

i,j := aT(ϕi, ϕj)], Au
h = [au

i,j := au(ψi, ψj)],

Bh = [bi,j := b(ψi, ϕj)], Dh = [di,j := d(ϕi, ψj)],

Fu
h = [ f u

j := lu(ψj)], FT
h = [ f T

j := lT(ϕj)].

For the construction of the multiscale method for the thermoelasticity problem, we con-
struct multiscale spaces for displacement and temperature, separately. Then, we generate
projection matrices using multiscale basis functions

Ru =
[
ψ1

g,1, . . . , ψ
Ng
g,Mu

g
, ψ2

p,1, . . . , ψ
Np
p,Mu

p
, φ1, . . . , φNH

cell

]Tr
,

RT =

[
ϕ1

g,1, . . . , ϕ
Ng

g,MT
g
, ϕ2

p,1, . . . , ϕ
Np

p,MT
p
, ϕ1, . . . , ϕNH

cell

]Tr
.

Finally, we construct the following coarse grid system for the thermoelasticity problem

Au
H(UH) + BH(TH) = Fu

H

1
τ

MH(TH − ŤH) +
1
τ

DH(UH − ǓH) + AT
H(TH) = FT

H ,

where
MH = RT MhRTr

T , AT
H = RT AT

h RTr
T , Au

H = Ru Au
h RTr

u ,

BH = RuBhRTr
T , DH = RT DhRTr

u , Fu
H = RuFu

h , FT
H = RT FT

h .

After calculation of the coarse-scale solution Uh, TH , we reconstruct a fine-scale solu-
tion, Ums = RTr

u UH and Tms = RTr
T TH .

Numerical results. We consider the thermoelasticity problem with the following
boundary conditions:

ux = 0, σy = 0, x ∈ Γl ∪ Γr, uy = 0, σx = 0, x ∈ Γb ∪ Γt,

− k
∂T
∂n

= 0, x ∈ Γl ∪ Γt ∪ Γr ∪ Γb,

and on perforations, we set

• Case 1. Non-homogeneous boundary condition for elasticity and homogeneous bound-
ary condition for temperature on perforations:

σ · n = −0.01, −k
∂T
∂n

= αT, x ∈ Γp,

and perform simulation for tmax = 0.15.
• Case 2. Homogeneous boundary condition for elasticity and non-homogeneous bound-

ary condition for temperature on perforations:

σ · n = 0, −k
∂T
∂n

= α(T − 1), x ∈ Γp,

and perform simulation for tmax = 0.02.

We set λ = µ = k = c = 1, T∗ = 0, β = 0.0001, and α = 25. We set zero initial
conditions for displacement and temperature and perform simulations with 40 time steps.
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Figure A4. Thermoelasticity problem. Temperature (top) and Displacement (bottom). Case 1 and
Case 2: Relative L2 error with a different number of multiscale basis functions. (1) Mu

g = Mu, Mu
p = 0

and MT
g = MT , MT

p = 0; (2) Mu
g = Mu, Mu

p = 0, and MT
g = MT

p = MT ; (3) Mu
g = Mu

p = Mu and
MT

g = MT , MT
p = 0; (4) Mu

g = Mu
p = Mu and MT

g = MT
p = MT .

Table A4 and Figure A4 show relative errors for the thermoelasticity problem be-
tween a fine-grid and multiscale solution with different multiscale basis functions at the
final time. In presented results, we tested different approaches for choosing Mu

g , Mu
p and

MT
g , MT

p for the coupled process. Here, Mv are the number of multiscale basis functions
for displacement (v = u) and temperature (v = T), DOFv

h and DOFv
H are the numbers

of degrees of freedom for reference (fine-grid) and multiscale solution, and e(v)L2 and
e(v)H1 are the L2 and H1 relative errors for v = u, T. Here, DOFh = DOFu

h + DOFT
h with

DOFu
h = 6 · Nh

cell and DOFT
h = 3 · Nh

cell for fine grid solution. For multiscale solution,
we have DOFH = DOFu

H + DOFT
H with DOFu

H = (2 ·Mu
g + 1) · NH

cell + 2 ·Mu
p · NH

cell,p and

DOFT
H = (MT

g + 1) · NH
cell + MT

p · NH
cell,p.

The results for quasi-structured and unstructured coarse grids with 100 local domains
are presented in Table A5. Numerical results are shown for multiscale space with outer
and boundary basis functions (Mg = Mp = M) for Case 2. We obtain similar results with
4% and 0.3% for displacement and temperature L2 errors for all grids for M = 32.

Figures A5 and A6 show the results of the fine-grid and multiscale solvers for the
thermoelasticity problem at the final time on structured coarse grid. The temperature
distribution is presented on the left figure, the displacement X and Y components are
shown in the center and right figures. In presented results, we used 24 multiscale basis
functions for displacement and temperature (Mu = MT = 24, Mu

g = Mu
p = Mu, and

MT
g = MT

p = MT). Reference solution with DOFu
h = 170,460 for displacement, DOFT

h =
85,230 for temperature is shown in the first row. Solution on a coarse grid using outer and
perforation boundary multiscale basis functions with DOFu

H = 5988 for displacement and
DOFT

H = 3044 for temperature is shown in the second row.
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Table A4. Thermoelasticity problem. Case 1 and Case 2. M = Mu = MT . Relative L2 and H1 error in %. DOFh = 170,460.

M DOFu
H DOFT

H

Case 1 Case 2

e(u)L2 e(u)H1 e(T)L2 e(T)H1 e(u)L2 e(u)H1 e(T)L2 e(T)H1

Mu
g = Mu, Mu

p = 0 and MT
g = MT , MT

p = 0

1 300 200 98.00 99.98 100.0 100.0 99.32 98.98 86.48 105.9
2 500 300 92.01 98.38 100.6 100.4 98.04 97.07 74.55 106.3
4 900 500 72.44 93.63 100.9 98.37 90.47 73.54 14.16 142.4
6 1300 700 36.91 87.77 100.3 93.44 90.01 55.30 13.32 143.3
8 1700 900 32.73 85.34 95.06 87.08 91.23 50.41 12.36 143.4

12 2500 1300 31.88 84.32 93.31 85.43 91.41 48.40 12.25 142.2
16 3300 1700 31.03 83.99 93.04 85.05 91.85 47.36 12.26 142.1
20 4100 2100 30.86 83.82 92.43 84.44 91.79 47.07 12.28 142.0
24 4900 2500 30.37 84.07 92.89 84.64 91.69 47.56 12.30 141.9
32 6500 3300 29.31 82.66 89.80 81.68 91.67 45.92 12.31 141.8

Mu
g = Mu, Mu

p = 0 and MT
g = MT

p = MT

1 300 251 98.00 99.98 99.98 100.0 99.28 97.66 77.45 123.9
2 500 402 92.01 98.38 100.9 100.3 96.78 94.60 56.93 110.3
4 900 704 72.44 93.63 101.1 96.89 93.48 70.98 3.306 31.18
6 1300 1006 36.91 87.77 101.0 89.01 99.56 52.87 1.984 25.50
8 1700 1308 32.73 85.34 95.78 82.69 100.7 48.14 1.057 19.77

12 2500 1776 31.88 84.32 93.97 80.77 101.3 46.12 0.441 12.77
16 3300 2244 31.03 83.99 93.70 80.21 102.1 45.10 0.406 12.17
20 4100 2644 30.86 83.82 93.10 79.59 102.1 44.78 0.373 11.40
24 4900 3044 30.37 84.07 93.56 79.69 102.0 45.30 0.374 11.34
32 6500 3844 29.31 82.66 90.46 76.90 102.0 43.54 0.369 11.10

Mu
g = Mu

p = Mu and MT
g = MT , MT

p = 0

1 402 200 90.81 68.11 91.36 96.15 99.42 95.38 86.48 105.9
2 704 300 82.37 57.77 82.90 91.90 97.80 90.97 74.55 106.3
4 1308 500 45.43 40.88 32.78 53.70 80.07 71.81 14.16 142.4
6 1912 700 12.48 29.04 20.93 35.71 69.01 63.08 13.32 143.3
8 2516 900 7.990 21.90 12.90 25.77 69.64 61.46 12.36 143.4

12 3452 1300 6.163 17.55 9.528 20.61 65.62 56.87 12.25 142.2
16 4388 1700 3.989 16.40 8.771 18.66 66.02 54.52 12.26 142.1
20 5188 2100 3.692 15.82 8.873 17.36 68.14 48.12 12.28 142.0
24 5988 2500 3.255 15.99 8.274 16.95 64.84 46.52 12.30 141.9
32 7588 3300 2.283 12.90 7.604 16.74 59.34 43.95 12.31 141.8

Mu
g = Mu

p = Mu and MT
g = MT

p = MT

1 402 251 90.81 68.11 90.19 102.7 98.54 88.17 77.45 123.9
2 704 402 82.37 57.77 77.77 99.16 95.03 80.46 56.93 110.3
4 1308 704 45.43 40.88 31.77 54.53 62.22 56.58 3.306 31.18
6 1912 1006 12.48 29.04 19.71 35.62 12.12 34.48 1.984 25.50
8 2516 1308 7.990 21.90 11.79 24.15 9.885 29.21 1.057 19.77

12 3452 1776 6.163 17.55 8.775 19.12 7.687 25.99 0.441 12.77
16 4388 2244 3.989 16.40 7.970 17.15 5.304 24.32 0.406 12.17
20 5188 2644 3.692 15.82 7.535 16.35 5.153 23.90 0.373 11.40
24 5988 3044 3.255 15.99 8.087 16.37 5.023 24.03 0.374 11.34
32 7588 3844 2.283 12.90 7.530 15.66 4.698 22.09 0.369 11.10
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Table A5. Thermoelasticity problem. Case 2 (homogeneous boundary condition for elasticity and non-homogeneous
boundary condition for temperature on perforations). Unstructured coarse grids. M = Mu = MT . Relative L2 and H1 error
in %. DOFh = 170,460.

M DOFu
H DOFT

H

Quasi-Structured Unstructured

e(u)L2 e(u)H1 e(T)L2 e(T)H1 e(u)L2 e(u)H1 e(T)L2 e(T)H1

1 402 251 98.47 91.35 76.32 103.8 98.44 93.52 72.88 95.42
2 704 402 94.78 82.68 52.28 92.76 94.43 86.17 54.50 93.85
4 1308 704 72.68 64.89 6.404 37.24 79.52 73.01 15.27 53.38
6 1912 1006 51.18 54.39 3.044 32.04 62.35 63.75 7.285 37.87
8 2516 1308 21.07 36.85 1.496 22.45 46.90 55.00 3.408 30.38

12 3452 1776 13.06 31.33 0.877 18.19 21.52 39.67 1.495 23.10
16 4388 2244 8.606 27.89 0.667 16.36 12.78 32.80 0.941 20.06
20 5188 2644 6.745 26.25 0.543 15.19 8.371 29.68 0.667 18.02
24 5988 3044 5.701 25.20 0.462 14.47 6.383 28.10 0.500 16.17
32 7588 3844 4.834 24.01 0.395 13.68 4.941 26.57 0.384 14.81

Figure A5. Thermoelasticity problem. Case 1 (non-homogeneous boundary condition for elasticity
and homogeneous boundary condition for temperature on perforations). First column: temperature.
Second column: displacement of X-component. Third column: displacement of Y-component.
First row: Reference solution (DOFh = DOFu

h + DOFT
h , with DOFu

h = 170,460 and DOFT
h = 85,230).

Second row: Multiscale solution with 24 multiscale basis functions, e(u)L2 = 3.255 and e(T)L2 = 8.087
(Mu

g = Mu
p = MT

g = MT
p = M, DOFH = DOFu

H + DOFT
H with DOFu

H = 5988 and DOFT
H = 3044).

Case 1 with non-homogeneous boundary conditions for elasticity and homogeneous
boundary conditions for temperature on perforations shows that, for displacement, we
should use perforation boundary basis functions in order to approximate the non-
homogeneous boundary condition for the elasticity part of the coupled system. For tem-
perature, only outer boundary basis functions can be used because we have homogeneous
boundary conditions for temperature. For Case 1 with Mu

g = Mu
p = 24, MT

g = 24, and
MT

p = 0, we obtain a good results with 3% and 8% of L2 errors for displacement and tem-
perature, respectively. When we use only outer boundary basis functions for displacement
(Mu

p = 0), we obtain a large error for both displacement and temperature. In Case 2 with ho-
mogeneous boundary conditions for elasticity and non-homogeneous boundary conditions
for temperature on perforations, we can obtain good results with outer and perforation
boundary basis functions for both displacement and temperature (Mu

g = Mu
p = Mu and

MT
g = MT

p = MT). It should be noted that perforation boundary basis functions should be
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added for displacement due to the coupled process for accurate multiscale approximation
even for non-homogeneous boundary conditions for elasticity on perforations.

Figure A6. Thermoelasticity problem. Case 2 (homogeneous boundary condition for elasticity and
non-homogeneous boundary condition for temperature on perforations). First column: temperature.
Second column: displacement of X-component. Third column: displacement of Y-component. First
row: Reference solution (DOFh = DOFu

h + DOFT
h with DOFu

h = 170,460 and DOFT
h = 85,230). Second

row: Multiscale solution with 24 multiscale basis functions, e(u)L2 = 5.023% and e(T)L2 = 0.374%
(Mu

g = Mu
p = MT

g = MT
p = M = 24, DOFH = DOFu

H + DOFT
H with DOFu

H = 5988 and
DOFT

H = 3044).
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