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Abstract: The aim of the present paper is to improve an existing blind image deblurring algorithm,
based on an independent component learning paradigm, by manifold calculus. The original technique
is based on an independent component analysis algorithm applied to a set of pseudo-images obtained
by Gabor-filtering a blurred image and is based on an adapt-and-project paradigm. A comparison
between the original technique and the improved method shows that independent component
learning on the unit hypersphere by a Riemannian-gradient algorithm outperforms the adapt-and-
project strategy. A comprehensive set of numerical tests evidenced the strengths and weaknesses of
the discussed deblurring technique.

Keywords: blind image deblurring; Gabor filter; independent component analysis; Riemannian
manifold; gradient-based learning

1. Introduction

Deblurring a grey-scale image consists in recovering a sharp image on the basis of
a single blurred observation (possibly corrupted by disturbances). Blurring artifacts are
caused by defocus aberration or motion blur [1]. In the case of uniform defocus blur, the
physical process that leads to a defocused image is typically modeled by convolution of
the original image with a point-spread function (PSF) plus additive noise [2]. The left-hand
side of Figure 1 shows a schematic of such model, where the original image intensity is
denoted by f and the blurred image intensity is denoted by g. A closely related problem
is blind deblurring from more than a single out-of-focus observation of a sharp image [3].
Motion blur may be modeled as the integration over a light field captured at each time
during exposure [4].

Whenever the PSF is known a priori, it is possible to invoke several deblurring
algorithms that afford reconstructing the original image; otherwise, it is difficult to estimate
the PSF and the original image intensity simultaneously. A class of algorithms, known
as blind deblurring methods, afford the simultaneous estimation of the PSF and the original
image intensity. Indeed, blind deblurring derives from blind deconvolution, a method
capable of undoing convolution with an unknown function [5,6]. Deblurring algorithms are
used in astronomy [7], where it is necessary to treat photographic images taken by terrestrial
telescopes whose quality is degraded by atmospheric turbulence. Blind deblurring of out-
of-focus recorded images is also part of barcode and QR-code processing [8,9].

Over the years, blind deconvolution algorithms have been widely utilized, especially
in mono-dimensional voice/sound signal deconvolution (as in communication channels
to eliminate intersymbol interference or in sound recording to eliminate reverberation).
In [10,11], mono-dimensional deconvolution is extended to bi-dimensional signal decon-
volution that affords recovering an image from one of its blurred observations without
the need to know the PSF. In fact, the author of [10,11] proposed the application of Gabor
filters to a blurred image to decompose a single source image into a number of filtered
pseudo-images, as shown in the central part of Figure 1. Such pseudo-images, together
with the source image, are utilized as inputs to an independent component analysis (ICA)
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algorithm. Under appropriate hypotheses, the first independent component, denoted as
f ′ in Figure 1, may be proven to represent an estimation of the original image f up to
inessential scaling.

f PSF g

Gabor filter 1

Gabor filter 2

Gabor filter 16

· · ·

ICA f ′

Figure 1. Schematic of the blurring process, the filtering process by 16 Gabor filters and of an ICA-
based processing to recover a sharp image from a blurred image according to the method developed
in [11].

Gabor and Gabor-like filters are instrumental in a large number of image processing
techniques, as testified by the abundant literature in the field (see, e.g., [12,13]). Likewise,
independent component analysis is a statistical information processing method that has
found widespread applications in sciences and engineering (see, e.g.,[14–20].

In the contributions [10,11] by Umeyama, the ICA method utilized to separate the
original image out from its blurred version is implemented by an adapt-and-project neural-
learning algorithm. The present paper aims at modifying the original adapt-and-project
neural-learning ICA algorithm by an exponentiated-gradient learning on the unit hy-
persphere and evaluating the ability of such algorithm in learning the first independent
component from a set of pseudo-images so as to recover the original sharp image. In addi-
tion, the present paper illustrates comparative results with respect to the original method
and discusses its strengths and weaknesses through a comprehensive set of experiments
performed on synthetic as well as real-world datasets.

Ultimately, the present paper summarizes a research work carried out by the author
out of curiosity to review and evaluate an older—and cleverly designed—blind image
deblurring algorithm by Umeyama. As such, the present paper does not claim any superi-
ority to current state-of-the-art methods (such as DeblurGAN or DeblurGAN-2 [21,22]).
State-of-the-art algorithms are certainly much more involved and better performing than a
two-equation-based algorithm such as Umeyama’s and one may safely take for granted
that new algorithms are incomparably better than the one discussed in the present paper.
For these reasons, no comparisons with further existing algorithms were carried out in the
context of the present paper.

Manifold calculus (an abridgement for ‘calculus on manifold’) is a branch of math-
ematics that lies at the intersection of mathematical analysis, geometry, topology and
algebra [23]. Manifold calculus turned out to represent the natural language of curved
spaces, such as the sphere and the hyper-sphere, as well as of non-Euclidean spaces, namely
continuous sets endowed with a non-Euclidean distance function. Manifold calculus proves
extremely effective in formulating scientific problems subjected to non-linear (holonomic)
constraints and designing numerical algorithms to solve such problems with applications
to computational mechanics [24], biomedical engineering [25], electrical engineering [26]
and aerospace engineering [27].

The present paper is organized as follows. Section 2 recalls the original theory by
Umeyama and introduces an improved neural learning algorithm designed by means
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of manifold calculus. Section 3 presents several numerical experiments to validate the
proposed learning algorithm, which were performed on synthetic test-images as well as on
real-world blurred images. Section 4 concludes the paper.

2. Theoretical Developments and Methods

The present section summarizes theoretical tools that are instrumental in the de-
velopment of an ICA-based blind image deblurring algorithm, namely Gabor filters in
Section 2.1, blurred-image modeling by convolution by a point-spread function and by
Taylor series expansion in Section 2.2 and an adapt-and-project neural-ICA algorithm in
Section 2.3. In addition, this section introduces an exponentiated-gradient independent
component learning method in Section 2.4.

2.1. Bi-Dimensional Gabor Filters

Gabor filters, widely employed in computer vision, realize multichannel filters that
can decompose an image into a number of filtered pseudo-images [28]. Bi-dimensional
Gabor filters are constructed as the product of a Gaussian bell function and a planar wave
that propagates on a bi-dimensional plane. Each Gabor filter is therefore unequivocally
determined by the standard deviation of a Gaussian function, the direction of propagation
and the wavelength of the associated planar wave.

A bi-dimensional Gabor filter is defined as a complex-valued function whose real and
imaginary parts are conceived as two distinct real-valued filters:R(x, y; ν, k) := exp

(
− x2+y2

2σν
2

)
cos π

σν
(x cos φk + y sin φk),

I(x, y; ν, k) := exp
(
− x2+y2

2σν
2

)
sin π

σν
(x cos φk + y sin φk),

(1)

where a pair (x, y) denotes the location of a pixel in an image in the form x = column-index
and y = row-index; σν := 2

ν+1
2 defines the standard deviation of the Gaussian bell as well

the wavelength of the planar wave; and φk := π
4 k defines the direction of propagation. The

size of a Gabor filter in pixel unit is denoted by G, namely x, y ∈ {−G, . . . , 0, . . . , G }.
Figure 2 shows a set of Gabor filters corresponding to the parameters values ν ∈ { 0, 1 }

and k ∈ { 0, 1, 2, 3 }. Such combination gives rise to eight complex-valued Gabor filters
that correspond to 16 real-valued Gabor filters defined in Equation (1). The first two rows
of Figure 2 show Gabor filters corresponding to ν = 0, while the last rows show filters
obtained upon setting ν = 1. The first and third rows show the filters R(x, y; ν, k), which
mimic the response of a simple biological neuron tuned to respond to a straight line, while
the second and fourth rows show the filters I(x, y; ν, k), which mimic the response of a
neuron tuned to edges.
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Figure 2. Examples of 16 real-valued Gabor filters defined by Equation (1) corresponding to the
parameters values ν ∈ { 0, 1 } and k ∈ { 0, 1, 2, 3 }. In this example, the size of the filters is G = 4.

2.2. A Blurred Image Model Based on Taylor Series Expansion

In the present work, we assume the blur to be uniform, in which case the underlying
physical process that leads to a blurred recording of a sharp image may be modeled by
bi-dimensional convolution between the sharp image intensity f (x, y) and a point-spread
function h(x, y). In short notation, with reference to Figure 1, g := f ⊗ h holds. Non-
uniform blurring may be coped with by estimating the unknown blur-field [2]. In the
present work, we ignore the unpredictable additive disturbance due, for example, to
atmospheric particulate matter that might affect the quality of image recording, since
additive noise in the model may be mitigated by dedicated pre-processing algorithms [29].

According to the above-recalled convolutional model, the brightness (or intensity) of
a pixel in the blurred image g(x, y) is calculated as:

g(x, y) =
M

∑
s=−M

M

∑
t=−M

h(s, t) f (x + s, y + t), (2)

where M represents the spatial extension of the point-spread function (2M + 1 pixels in
both dimensions). The notation f (x + s, y + t) indicates the intensity of a pixel adjacent to
the location (x, y) by an offset (+s,+t).

A key observation that affords linking blind image deblurring to independent compo-
nent analysis is that the intensity f (x + s, y + t) may be expressed in terms of the intensity
f (x, y) of the central pixel and of its spatial derivatives fx(x, y) and fy(x, y) through Taylor
expansion, namely:

f (x + s, y + t) = f (x, y) + α(s fx(x, y) + t fy(x, y)) + . . . . (3)

The above expression is indeed based on a slight abuse of notation caused by an
identification of the discrete function f with its linearly extended continuous version to
which Taylor series may be applied. Such analytic extension requires spatial sampling
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represented by the coefficient α > 0 (which may be safely taken equal to 1 in the computer
implementation or absorbed into other constants).

Replacing the value of the intensity f (x + s, y + t) in the convolutional model (2) by
its Taylor series representation (3), the intensity g(x, y) may be approximated as follows:

g(x, y) = a1 f (x, y) + a2 fx(x, y) + a3 fy(x, y) + . . . , (4)

where 
a1 := ∑M

s=−M ∑M
t=−M h(s, t),

a2 := α ∑M
s=−M ∑M

t=−M s h(s, t),
a3 := α ∑M

s=−M ∑M
t=−M t h(s, t).

(5)

The relationship (4) shows that the recorded image g may be thought of as a linear super-
position of the original sharp image f and of its derivatives, since the convolutional model
g = f ⊗ h is linear.

As a consequence, it is conceivable to recover the first term from the sum (4) by
operating a linear combination of pixel-intensity values that cancels out the higher-order
terms. Since the function f is unknown, the higher-order terms in the right-hand side of the
relationship (4) are likewise unknown. Under the hypothesis that the pixel-intensity values
and their derivatives are independent from one another, the sought linear combination that
is able to separate out the first term from the higher-order term may be learned adaptively
by a neural independent component analysis algorithm (for a survey on independent
component analysis, see, e.g., [30]).

In order to feed an independent component analysis neural network with enough in-
formation to operate the separation of the sharp component from higher-order components,
it is necessary to augment the available recordings (from one to many). Data augmentation
may be obtained by use of the bi-dimensional Gabor filters recalled in Section 2.1. Model-
wise, applying a number of Gabor filters to a blurred image is equivalent to considering
the original image to be convoluted by a filter that, in turns, results from the convolution
between a Gabor filter and a point-spread function, namely h′ := R⊗ h or h′ = I⊗ h,
where R and I denote the Gabor filter functions introduced in Section 2.1. An example of a
blurred image filtered by the 16 Gabor filters shown in Figure 2 is illustrated in Figure 3.

The Gabor-filtered image is, in short notation, denoted by g′ := h′⊗ f . The intensity
value of each Gabor-filtered pseudo-image may thus be written as

g′(x, y) = a′1 f (x, y) + a′2 fx(x, y) + a′3 fy(x, y) + . . . (6)

where we introduce the coefficients
a′1 := ∑M

s=−M ∑M
t=−M h′(s, t),

a′2 := α ∑M
s=−M ∑M

t=−M s h′(s, t),
a′3 := α ∑M

s=−M ∑M
t=−M t h′(s, t).

(7)

The coefficients a′i depend on the shape of the applied Gabor filters.
The relationship (6) shows that the Gabor-filtered blurred image g′ may be expressed

again as a linear superposition of the original sharp image f and of its higher-order spatial
derivatives. Hence, feeding a set of Gabor-filtered blurred images to a neural independent
component analysis algorithm might result in recovering the original image, provided the
sharp image and its higher-order derivatives are sufficiently statistically independent from
one another.
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Figure 3. Images obtained by filtering a blurred image by the 16 Gabor filters shown in Figure 2. The
original (clean) image is shown in Figure 4.

Figure 4. Original image (a1); blurred image (a2); Gaussian-(1,1) point-spread function (a3) (colors
denote different filter values); and deblurred image obtained by the exponentiated-gradient learning
algorithm (a4).

2.3. Blind Deblurring by Independent Component Analysis

Let us assume that the original image to recover is of size n× n and gray-level single
channel, in such a way that the intensity function f may be represented as a n× n matrix.
(Indeed, it is not essential for the image support to be square as all the relationships in this
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paper would hold for rectangular-support images as well.) In addition, let us assume that
exactly the 16 Gabor filters described in Section 2.1 are used to construct pseudo-images
to feed an ICA neural network. As a further working hypothesis, let us assume that
convolution ⊗ does not alter the size of the original image, which entails little information
loss as long as the size 2M + 1 of the PSF and the size 2G + 1 of the Gabor filter are much
smaller than the size n of the image to process.

In order to build a data matrix to input an ICA neural network, the recorded image
g and its 16 Gabor-filtered versions are vectorized into 17 arrays of size n2 × 1, denoted
by gi, with i = 1, . . . , 17. Such arrays are built by piling up pixel intensities scanned in
lexicographic order. These arrays are then arranged into a data matrix X as follows:

X :=


g1
>

g2
>

. . .
g17
>

, (8)

where the superscript > denotes matrix transpose. The obtained data matrix therefore
consists of 17 rows and n2 columns.

As a pre-processing stage prior to performing independent component analysis, the
data matrix needs to undergo three operations termed column-centering, row-shrinking and
column-whitening, to be performed in this exact order.

• Column-centering consists of making the columns of the data matrix X zero-mean.
Let us decompose the matrix X into its n2 columns as follows:

X = [x1 x2 x3 x4 · · · xn2 ], (9)

where each column-array xk has dimension 17× 1. The empirical mean value of the
set of n2 columns is calculated as

m :=
1
n2

n2

∑
k=1

xk, (10)

and the centered columns of the data matrix are defined as

x̌k := xk −m. (11)

Let us denote by X̌ the matrix whose columns are x̌k.
• Row-shrinking is based on empirical covariance estimation and on thresholding the

eigenvalues of the estimated empirical covariance matrix [31]. The empirical covari-
ance matrix associated to the columns of the centered data matrix X̌ is defined by:

Cx :=
1
n2

n2

∑
k=1

x̌k x̌>k =
1
n2 X̌X̌>. (12)

and has dimensions 17× 17. The eigenvalue decomposition of the covariance matrix
reads Cx = EDE>, where E is an orthogonal matrix of eigenvectors and D is a
diagonal matrix of eigenvalues, namely D = diag(d1, . . . , d17), assumed to be ordered
by decreasing values. Rank deficiency and numerical approximation errors might
occur, which might make a number of eigenvalues in D be zero or even negative.
Notice that, in particular, rank deficiency makes the matrix D be singular, which
unavoidably harms the process of ‘whitening’, as explained in the next point. In order
to mitigate such unwanted effect, it is customary to set a threshold (in this study, a
value 10−4 was chosen as threshold) and to retain those ` eigenpairs corresponding to
the ` eigenvalues above the threshold. The corresponding eigenmatrix pair is denoted
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by (Ẽ, D̃), where Ẽ is of size `× n2 and D̃ is of size `× `. Since, most likely, ` < 17,
thresholding has the effect of shrinking the centered data matrix.

• Column-whitening is a linear transformation applied to each column of the data
matrix X̌ to obtain a quasi-whitened data matrix Z = [z1 z2 z3 · · · zn2 ] whose columns
exhibit a unit covariance. Such linear transformation is described by

Z = D̃−1/2Ẽ>X̌. (13)

Notice that the whitened data matrix has size `× n2 and, in general, its covariance
matrix is perfectly unitary only if row-shrinking did not take place, namely, only if
` = 17. If, however, some of the eigenvalues of the empirical covariance matrix Cx are
zero or negative, whitening is not possible since the (non-shrunken) matrix D−1/2 is
either not calculable or complex-valued.

The centered, shrunken and quasi-whitened data matrix Z is fed to an ICA neural
network in order to extract the first independent component, namely, the one independent
component f ′ that corresponds to the original sharp image f (up to an arbitrary—and
inessential—scaling constant that may be compensated for while rendering the image).
In the present instance, the ICA neural network is described by the linear input–output
transformation:

p := w>Z, (14)

where w denotes a real-valued array of size `× 1 of weights termed weight vector. The
array p has size 1× n2. The weight vector, which is subjected to an information-based
learning process, is adapted according to a two-stage non-linear learning rule [11]. The
first stage is described by:

w← w + µZ tanh>(p), (15)

where µ > 0 denotes a learning step size and the function ‘tanh’ denotes a hyperbolic tangent
function that acts component-wise on the array p and represents an activation function for
the single-neuron ICA-type artificial neural system. The second stage is described by a
projection rule:

w← w
‖w‖ , (16)

which normalizes the weight vector to the unit hypersphere and prevents the weight vector
to either drop to zero or to diverge. The two stages are repeated until the weight vector
reaches a stable configuration, which corresponds to a learned neural network. Given
the structure of the above learning procedure, it is referred to in the following as the
update-and-project learning rule.

2.4. An ICA Learning Algorithm Based on Exponentiated Gradient on the Unit Hypersphere

Since the neural weight vector w is to be sought under the compelling constraint
of unit norm, independent component learning may first be formulated as an optimiza-
tion problem on the unit hypersphere. Such optimization problem may be solved by
an exponentiated Riemannian gradient numerical algorithm on the unit hypersphere, as
outlined below.

The real `-dimensional unit hyper-sphere [32] is a smooth manifold defined as

S`−1 := {w ∈ R` |w>w = 1}. (17)

On the basis of manifold calculus particularized to the unit hypersphere, the weight
vector w that extracts the first independent component from the data matrix Z may be
learned by an alternative algorithm to the two-stage method in (15) and (16). The key
concept is to formulate the ICA problem as the search for the maximum of a smooth
function and to employ a numerical exponentiated-gradient-based optimization algorithm
to solve such maximization problem.
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To this aim, let us recall the notion of exponential map exp : TS`−1 → S`−1 (where
TS`−1 denotes the tangent bundle associated to the unit hypersphere), associated to the
canonical metric, defined by

expx(v) :=

{
x cos(‖v‖) + v sin(‖v‖)

‖v‖ if v 6= 0,

x otherwise,
(18)

where x ∈ S`−1, v ∈ TxS`−1 and the symbol ‖ · ‖ denotes standard vector 2-norm. Let us
also recall the expression of the Riemannian gradient of a smooth function ϕ : S`−1 → R
associated to the canonical metric:

∇x ϕ :=
(

I` − xx>
)∂ϕ

∂x
, (19)

where ∂ϕ
∂x denotes the Euclidean gradient at x and I` denotes an identity matrix of size

`× `.
On the basis of the definitions (18) and (19), an exponentiated gradient algorithm to

seek for the maximum point of the function ϕ may be expressed as:

w← expw(µ∇w ϕ), (20)

where, by definition of exponential map,

expw(µ∇w ϕ) = w cos(‖µ∇w ϕ‖) + sin(‖µ∇w ϕ‖)∇w ϕ

‖∇w ϕ‖ , (21)

hence the updating rule may be written as the one-step assignment

w← w cos(‖µ∇w ϕ‖) + sin(‖µ∇w ϕ‖)∇w ϕ

‖∇w ϕ‖ . (22)

The constant µ > 0 denotes again a learning step size to be chosen beforehand.
The function ϕ whose maximum is sought may be related to the ICA problem accord-

ing to the following reasoning. A non-linear function of the weight vector that is a valid
criterion to achieve one-component ICA reads [30]:

Ez[A(w>z)] :=
∫
R`

A(w>z)ρz(z)dz`, (23)

where A : R → R denotes a non-linear function and ρz : R` → R+
0 denotes the joint

probability density function of the ` observations that input the neural network (that the
columns of the data matrix Z constitute realizations of). The symbol Ez[·] denotes statistical
expectation. The integral, which may seldom be evaluated exactly, may be approximated
by a finite sum, hence the criterion function ϕ that arises from the above principle may be
defined as:

ϕ(w) :=
n2

∑
k=1

A(w>zk)Pr(zk)∆z`, (24)

in which Pr(zk) ∈ [0, 1] denotes the probability associated to the sample zk and the
expression ∆z` denotes the volume of a tiny hypercube centered around the sample zk. The
Euclidean gradient of the function ϕ with respect to its vector-type argument w reads:

∂ϕ

∂w
=

n2

∑
k=1

A′(w>zk)zkPr(zk)∆z`. (25)

Taking A := ln ◦ cosh leads to A′ = tanh. Such choice for the discriminant non-
linearity is not compelling although is supposed to loosely match the statistical distribution
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of the source components [30]. For simplicity, the statistical distribution of the samples zk
may be assumed uniform, namely Pr(zk) =

1
n2 , therefore:

∂ϕ

∂w
=

∆z`

n2

n2

∑
k=1

tanh(w>zk)zk =
∆z`

n2 Z tanh(Z>w), (26)

where the hyperbolic tangent function is assumed to act component-wise on a vector-type
argument. Recalling the definition (14), one may write

∂ϕ

∂w
=

∆z`

n2 Z tanh>(p), (27)

where p denotes again the response of the ICA neural network as defined in (14). Since the
volume element ∆z` is constant, it may be absorbed in the learning rate and may thus be
safely set to 1. Conversely, the coefficient inversely proportional to n2 is retained to scale
the sum that grows with the size of the image under processing. Therefore, according to
the general formula (19), the Riemannian gradient of the function ϕ reads:

∇w ϕ =
1
n2

(
I − ww>

)
Z tanh>(p) =

1
n2 (Z− wp) tanh>(p) (28)

In conclusion, the proposed exponentiated-gradient learning rule for the ICA neural
network reads: {

∇w ϕ = 1
n2 (Z− wp) tanh>(p),

w← w cos(‖µ∇w ϕ‖) + ∇w ϕ sin(‖µ∇w ϕ‖)
‖∇w ϕ‖ .

(29)

The exponentiated-gradient learning sweep of the data matrix is repeated until the
weight vector reaches a stable configuration. Progress of learning may be monitored by
checking either the components of the weight vector or the value of the criterion function.

In order to check whether the neural ICA algorithm has reached a stable configuration
of the weights, it is worth monitoring the values of the weights as well as the value taken
by the criterion function ϕ. The absolute value of the index ϕ is not meaningful, since it
depends on the input statistics, but its time-course has meaning, since it tells how effective
a learning session has been.

3. Experimental Results

The present section discusses a number of experimental results obtained on test
images, where the blur is obtained by a known PSF, as well as on real-world images, which
were acquired through a defocused lens. The process of deblurring is carried out by the
adapt-and-project algorithm (on occasions abbreviated as AAP) recalled in Section 2.3 as
well as by the exponentiated-gradient method (occasionally abbreviated as EG) explained
in Section 2.4. Cases of successful deblurring are presented and cases of unsuccessful
deblurring are discussed through a comprehensive set of experiments.

3.1. Experiments on Deblurring Artificially Blurred Images

In the first numerical experiment, a sharp gray-scale image, with n = 240 pixels per
row/column, was artificially blurred by means of Gaussian point-spread functions of
different sizes:

• An isotropic point-spread function with variance 1, denoted as Gaussian-(1,1): The
clean image, the blurred image and the point-spread function are shown in Figure 4.
In this case, the PSF has size M = 3.

• An isotropic point-spread function with variance 2, denoted as Gaussian-(2,2): The
clean image, the blurred image and the point-spread function are shown in Figure 5.
In this case, the PSF has size M = 6.
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Figure 5. Original image (b1); blurred image (b2); Gaussian-(2,2) point-spread function (b3); and
(b4) deblurred image obtained by the exponentiated-gradient learning algorithm.

In blind deblurring, it is indeed customary to assume that the PSF is described by a
Gaussian kernel [33].

The Gabor filters used in these experiments are the ones explained in Section 2.1
with filter size G = 4. Upon applying centering and row-shrinking of the data matrix,
` = 10 rows of the data matrix were retained out of 17. The shrinking sub-procedure
proved, therefore, necessary to achieve a quasi-whitened data matrix. The learning rate for
the neural ICA algorithms discussed in Sections 2.3 and 2.4 was set to µ = 10−5. The results
of the exponentiated-gradient neural ICA-based deblurring algorithm are illustrated in the
rightmost panels of Figures 4 and 5.

Figure 6 shows the evolution of the ` components of the weight vector w during
learning. The total number of iterations was set to 4000, although the convergence of the
weight vector is achieved after nearly 2000 iterations. After that, the weight values change
only slightly, confirming that the learning process has reached a stable configuration and
that the algorithmic implementation is numerically stable. Figure 6 also shows the values
of the learning criterion ϕ during iterations. The shape of such curve confirms that the ICA
neural network gets trained by seeking for the maximum value of the criterion function.

Figure 6. (Left) Time-evolution of the 10 components of the weight vector w during learning of
the exponentiated-gradient ICA neural network. (Right) Time evolution of the learning criterion ϕ

during learning of the exponentiated-gradient ICA neural network.

To compare the original adapt-and-project neural ICA method to the proposed
exponentiated-gradient method, the coefficient of correlation between the original im-
age and the blurred image, as well as between the original image and the deblurred image,
as recovered by both algorithms, were calculated, as shown in Table 1.
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Table 1. Comparison of the original adapt-and-project (AAP) neural ICA method to the proposed
exponentiated-gradient (EG) method: Coefficients of correlation between the original image and the
blurred image and between the original image and the deblurred image.

PSF Original/Blurred Original/Deblurred (AAP) Original/Deblurred (EG)

Gau-(1,1) 0.9658 0.9682 0.9684

Gau-(2,2) 0.8836 0.9484 0.9509

The results summarized in Table 1 show that the Gaussian-(2,2) point-spread function
causes a more severe blur. The Gaussian-(1,1) point-spread function causes a slight blur
that was mitigated equally successfully by both neural learning methods. Both methods
achieve restoration of the original image, as the correlation coefficient between the original
and the restored image is higher than the correlation coefficient between the original and
the blurred image. The level of restoration achieved by the exponentiated-gradient method
is larger than the level of restoration achieved by the adapt-and-project method.

As a further element of comparison, the learning curves of both neural methods
were traced out in the same panel to compare their convergence speed when µ = 10−6.
Figure 7 shows that the exponentiated-gradient method converges more quickly than the
adapt-and-project method. As illustrated in the next subsection, by increasing the learning
step size, the separation between the two curves increases and the EG learning algorithm
may be shown to converge more quickly than the AAP learning algorithm while retaining
numerical stability and independent component extraction ability.

Figure 7. Learning curves of the exponentiated-gradient method and of the adapt-and-project
method, superimposed (horizontal axis in logarithmic scale).

3.2. Limitations of the Restoration Method on Artificially Blurred Images

Image deblurring based on Gabor filtering and first independent component analysis
is not universal and cannot be expected to be able to effectively deblur any sort of images.
The limitations of such method are not only due to the learning rule that the ICA network is
trained by, but also on the fact that the first independent component extracted from a data
matrix does not necessarily coincide with the f -component in the Taylor expansion (6).

It is quite apparent from the experiments how images containing fine details cannot
be recovered from their blurred observations, as can be seen, for instance, in Figure 8. Such
result was obtained by a 533× 800 image blurred by a Gaussian-(2,2) point-spread function.
The number of retained data matrix rows after shrinking was ` = 10. An explanation of this
malfunctioning is that the first independent component extracted by the neural network
from the linear mixing explained by the model (6) is a superposition of the original image
f and of its (higher-frequency) spatial derivatives.
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Figure 8. Images containing fine details could not be deblurred by the first independent component
analysis method.

In addition, it is quite apparent that low-resolution natural images cannot be recovered
from their blurred recordings, as can be seen from the result illustrated in Figure 9. Such
result was obtained on a 177× 284 image blurred by a Gaussian-(1,1) point-spread function.
Even in this experiment, the number of retained data matrix rows after shrinking was
` = 10. Although the neural ICA network reaches a stable configuration of the weights,
hence learns to perform the ICA task, the first independent component extracted by the
neural network does not coincide to a good approximation with the original image f ,
possibly because of the lack of enough statistical information due to a limited number of
pixels in the image.

Figure 9. Low-resolution natural images could not be deblurred by the first independent component
analysis method.

3.3. Experiments on Deblurring Naturally Blurred Images

The adapt-and-project method and the exponentiated-gradient method were applied
to re-focusing a naturally blurred image. In particular, the image shown in the left-hand
panel of Figure 10 was recorded frontally by a digital camera through an out-of-focus lens.
Such blurred image, of size 187× 317, was filtered by 16 Gabor filters and the result was
subjected to centering, shrinking (` = 10) and whitening. The result of deblurring by
first independent component analysis by the two neural learning methods is shown in the
middle panel and in the right-hand panel of Figure 10. The words on the back of the books
are more easily readable in the recovered images.

Figure 10. Image naturally blurred taken frontally by a digital camera through an out-of-focus lens.
From left to right: Recorded image, image deblurred by the adapt-and-project method and image
deblurred by the exponentiated-gradient method.

It is important to underline again that the discussed deblurring method is based on
the hypothesis that the point-spread function keeps constant across the image support.
This is not always true: when an image is recorded non-frontally (i.e., slanted), different
objects in the image are defocused in different ways. Figure 11 shows an image taken
non-frontally through an out-of-focus lens. The image has size 302× 320. Despite the good
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resolution of the recorded image and of the relatively marginal presence of fine details, the
result of deblurring does not appear as good as that shown in Figure 10.

Figure 11. Image naturally blurred taken non-frontally through an out-of-focus lens. From left to
right: Recorded image, image deblurred by the adapt-and-project method and image deblurred by
the exponentiated-gradient method.

3.4. First Comprehensive Set of Experiments

On the basis of the preliminary experiments discussed in the previous subsections,
which evidenced how the recalled/extended blind image deblurring method is effectively
capable of improving the quality of a blurred image, while it cannot under particular
circumstances, we proceeded with a number of experiments on real-world images.

The images used in the present set of experiments exhibit different levels of defocusing
expressed through a percentage. Moreover, most images are in Portable Network Graphics
(.png) format with a resolution of 240 × 240 pixels. In total, 33 images were used in
the present comprehensive test. Each image differs from the others by type (file format,
resolution and distance between two subjects on the same image) or subject (books, plate
tags, cars and text). The first 32 test images are shown in Figure 12.

Table 2 shows a summary of the results obtained on each of these 33 images. The
outcome of each test was evaluated by one of four grades: (A) the image was well recovered;
(B) the appearance of the image is noticeably better than the original one; (C) the image
results to be slightly better than the original one; and (D) the image was not deblurred at
all or was spoiled by the algorithm. In general, a dark foreground contrasting with a light
background favor the focusing of plate tag images.

The results summarized in Table 2 are suggestive of a series of guidelines about the
usage of the deblurring method, as discussed below:

• In general, the discussed deblurring method performed poorly on human faces, unless
the level of blur was moderate.

• When a picture originated from a phone camera, the distance between the subject and
the camera should range between 10 and 30 cm to achieve a good result (over 40 cm
of distance, deblurring was not achieved successfully).

• Distance and defocusing level should be inversely proportional to one another: the
farther the subject, the lower the defocusing level should be.

• In general, the level of defocusing should range between 1% and 40% to achieve a B
or A result; however, there are exceptions. In fact, an excellent result was obtained on
a 100% defocused large-sized text.

• Although most images were of size 240 pixels × 240 pixels, comparable results were
obtained on images whose size ranged between 200 × 200 and 300 × 300 pixels.

• The file format (image encoding algorithm) did not seem to influence the final result.
• In general, objects in the foreground resulted to be more focused than objects in the

background; according to our estimations, good results were achieved up to 7 cm of
staggering with a maximum initial defocusing of 30%.
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Figure 12. Thirty-two (out of thirty-three) test images used in the first comprehensive set of ex-
periments. The colored images were turned grey-level by keeping the first channel of their RGB
representation while discarding the remaining two channels.
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Table 2. Deblurring results on a set of 33 test images included in the first comprehensive set
of experiments.

Image Subject Blur Type Result

01_IM Male face 10% defocusing D

02_IM Male face 30% defocusing D

03_IM Books on background 10% defocusing, 40 cm away D

04_IM Books on background 20% defocusing, 20 cm away A

05_IM Books on background 30% defocusing, 20 cm away C

06_IM Books on background 37.5% defocusing B

07_IM Books on background 37.5% defocusing, 300 × 300 pixels C

08_IM Books on background 37.5% defocusing, 200 × 200 pixels C

09_IM Books on background 50% defocusing, 20 cm away D

10_IM Books staggered of 10 cm 10% defocusing, 40 cm away D

11_IM Books staggered of 10 cm 40% defocusing, 10 cm away C

12_IM Books staggered of 10 cm 10% defocusing, 10 cm away B

13_IM Books staggered of 7 cm 10% defocusing, 10 cm away A

14_IM Books staggered of 7 cm 25% defocusing, 10 cm away A

15_IM Books staggered of 7 cm 30% defocusing, 10 cm away C

16_IM Books staggered of 5 cm 30% defocusing, 10 cm away C

17_IM Lined-up books 30% defocusing, 20 cm away C

18_IM Lined-up books 30% defocusing, 10 cm away D

19_IM Lined-up books 20% defocusing, 10 cm away D

20_IM Giant letter 100% defocusing A

21_IM White tag 100% defocusing D

22_IM White tag 60% defocusing A

23_IM White tag 70% defocusing B

24_IM White tag 80% defocusing D

25_IM Orange tag 60% defocusing B

26_IM Yellow tag 60% defocusing B

27_IM Black tag 60% defocusing D

28_IM Green-white tag 60% defocusing D

29_IM Blue tag 60% defocusing D

30_IM White-green tag 60% defocusing A

31_IM Canary yellow tag 60% defocusing A

32_IM Red-white tag 60% defocusing D

33_IM Car with passenger 20% defocusing A

Pictorial instances of the results summarized in Table 2 are displayed in the following
figures.

Figure 13 clearly illustrates an A-scored result. The deblurring algorithm returns a
clear image of the car, in which it is even possible to spot the silhouette of two occupants.
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Figure 13. Result of deblurring on a comprehensive image set, in particular, on image 33_IM: (Left)
input image; and (Right) output of the ICA neural system.

Figure 14 shows the result of deblurring on an input image that resulted to be slightly
defocused. The ICA-based deblurring algorithm, in this instance, worked fine, since the
books in the foreground are well-focused. The same cannot be said about the book in the
background, thus this result scored a B grade.

Figure 14. Result of deblurring on a comprehensive image set (Image 12_IM): (Left) input image;
and (Right) output of the ICA neural system.

The result illustrated in Figure 15 refers to the same input image as for the previous test
(namely, the image shown in Figure 14), but more severely defocused. In this experiment,
not only the text in the background but even that in the foreground look still out of focus
after processing. For this reason, the outcome of this experiment was scored a C grade.

Figure 15. Result of deblurring on a comprehensive image set (Image 11_IM): (Left) input image;
and (Right) output of the ICA neural system.

Figure 16 clearly illustrates a D-scored result. In this instance, the deblurring algorithm
returns a distorted image of a human face.
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Figure 16. Result of deblurring on a comprehensive image set (Image 02_IM): (Left) input image;
and (Right) output of the ICA neural system.

3.5. Second Comprehensive Set of Experiments

A further series of comprehensive experiments was conducted on a data set of 29
license plate images, 28 of which are shown in Figure 17. In such dataset, therefore, all
pictures concern the same subject.

A purpose of the present group of experiments was to train an ICA neural network
with a sequence of images. At the beginning of the training phase, the weight vector of the
ICA network was instantiated randomly over the unit hypersphere, while each subsequent
learning cycle started from the weight vector configuration learned during the previous
adaptation cycle. Each learning cycle consisted of 4000 presentations of the same image as
input to the neural system. The result of such test is displayed in Figure 18.

As the displayed curves suggest, each time a new image is presented, the learning
cycle starts over and a new stable configuration is reached, which, in general, looks quite
different from the previous one. Such result evidences that the ICA learning process trained
sequentially is unable to fuse the information from several sources and that a globally
optimal solution to the deblurring problem does not seem to exist. Rather, deblurring each
image appears as a separate problem whose solution needs to be learned from scratch. In
other terms, an ICA neural system with a single unit seems unable to generalize while
trained sequentially. Interestingly, with the only noticeable exceptions corresponding to
the Images 10 and 23, the values learned in correspondence of the other 27 images lie
approximately in the same intervals. For the benefit of the reader, a red frame marks
Images 10 and 23 in Figure 17. Image 23 certainly differs from the other images in the same
training set, which justifies a markedly different deblurring filter learned.

To further confirm the above interpretation of the results displayed in Figure 18 by
learning curves, it is instructive to feed a learned ICA network: (a) an image that did not
belong the training set; and (b) an image that did belong to the training set (but that differ
from the last image presented during the learning phase). Figure 19 shows a result for Case
(a), As can be verified directly, the resulting output of the ICA neural system is neither
clear nor very blurred. Figure 20 shows a result for Case (b). Again, the output of the ICA
neural system is neither clear nor very blurred.

The obtained results are indeed dependent on the order of presentation of the single
images; in fact, a different order produces different outcomes for the same experiments.
The result of deblurring an image that did not belong to the training set is illustrated in
Figure 21, while the result of deblurring an image that did belong to the training set is
illustrated in Figure 22. Although the visual results look somewhat appreciable, the learned
refocusing filter w was clearly learned from the ICA neural system to deblur a different
kind of image.
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Figure 17. Twenty-eight test images (out of twenty-nine) used in the second comprehensive set of
experiments. The colored images were turned grey-level by using the first channel of their RGB
representation. (Two images marked by a red-color frame appear as outliers in the experiments
described in the text.)
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Figure 18. Learning curves resulting from a sequential presentation of 29 images belonging to a plate-
tag dataset. In both panels, one may count exactly 29 plateaus, which correspond to 29 seemingly
independent partial learning curves.

Figure 19. Result on deblurring an image that does not belong to a training set of blurred images.

Figure 20. Result on deblurring an image that does belong to a training set of blurred images.
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Figure 21. Further result on deblurring an image that does not belong to a training set obtained by
reshuffling the dataset (namely, by modifying the order of presentation of the single images).

Figure 22. Further result on deblurring an image that does belong to a training set obtained by
reshuffling the data set.

3.6. Experiments on Choosing a Suitable Learning Step Size

Conventional learning algorithms heavily rely on a correct choice of a sufficiently
small value of the learning step size (µ) to warrant numerical stability, yet sufficiently large
to ensure reasonably fast convergence. Manifold calculus-based algorithms rely less on
such trade-off because, for compact manifolds such as the unit hypersphere, numerical
stability is an inherent property of the learning algorithm; hence, in general, larger step
sizes may be selected and faster convergence may be expected.

The above statement is substantiated by a comparison of learning curves obtained on
the image shown in Figure 23.

Figure 23. Image used for a comparison between AAP- and EG-based ICA learning systems. Such
colored image was turned into a grey-level image by extracting the first channel from its RGB
representation.

The result of comparison is shown in Figure 24. The net result is that the EG-based ICA
learning algorithm may converge more quickly that the AAP-based learning algorithm.
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Figure 24. Comparison of learning curves of AAP and EG for a value of the learning step size
µ = 2× 10−4.

4. Conclusions

The aim of this study was to recall a method to achieve blind image deblurring based
on a clever application of the independent component analysis technique and to compare
the originally utilized adapt-and-project first independent component learning method to a
novel exponentiated-gradient learning method. Both methods are based on a convolutional
model of the blurred image and a pre-filtering of the blurred image by a set of Gabor filters.
The discussed methods are potentially able to recover the clean image without knowing
(or estimating) the point-spread function.

Several numerical experimental results are presented and discussed to evidence
objectively the good features of the method as well as its deficiencies and compare the
adapt-and-project first independent component learning algorithm to the exponentiated-
gradient learning algorithm. In particular, the experiments evidenced how the novel
exponentiated-gradient learning method converges more quickly than the adapt-and-
project first independent component learning algorithm and is able to extract an image that
is more coherent to the clean image than the original algorithm.
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