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Abstract: This article deals with the problem of designing regression models for evaluating the
parameters of the operation of complex technological equipment—hydroturbine units. A promising
approach to the construction of regression models based on nonparametric Nadaraya–Watson kernel
estimates is considered. A known problem in applying this approach is to determine the effective
values of kernel-smoothing coefficients. Kernel-smoothing factors significantly impact the accuracy
of the regression model, especially under conditions of variability of noise and parameters of samples
in the input space of models. This fully corresponds to the characteristics of the problem of estimating
the parameters of hydraulic turbines. We propose to use the evolutionary genetic algorithm with an
addition in the form of a local-search stage to adjust the smoothing coefficients. This ensures the local
convergence of the tuning procedure, which is important given the high sensitivity of the quality
criterion of the nonparametric model. On a set of test problems, the results were obtained showing a
reduction in the modeling error by 20% and 28% for the methods of adjusting the coefficients by the
standard and hybrid genetic algorithms, respectively, in comparison with the case of an arbitrary
choice of the values of such coefficients. For the task of estimating the parameters of the operation of
a hydroturbine unit, a number of promising approaches to constructing regression models based
on artificial neural networks, multidimensional adaptive splines, and an evolutionary method of
genetic programming were included in the research. The proposed nonparametric approach with
a hybrid smoothing coefficient tuning scheme was found to be most effective with a reduction in
modeling error of about 5% compared with the best of the alternative approaches considered in the
study, which, according to the results of numerical experiments, was the method of multivariate
adaptive regression splines.

Keywords: turbine unit; modeling; nonparametric regression; smoothing coefficient; numerical
experiment; adaptation; evolutionary algorithm; optimization

1. Introduction

Hydroturbine units (HTUs) are the main generating equipment for a significant
number of power plants in Russia and around the world. The technical condition of
such units is one of the key parameters for their efficient and safe operation. Taking into
account the high criticality of the failures of such equipment, the subject of research is the
formation of reliable procedures and systems for evaluating technical condition parameters.
Such systems are based on the measurement, assessment, and prediction of a number of
characteristics that make it possible to make a decision on the technical condition of the
HTU and the parameters of its operating mode.

The highest requirements for operational safety imply the need to build models that
provide the most accurate calculation of a set of current parameters. This is because a
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number of parameters require evaluation in conditions of insufficient information, and to
assess the adequacy of the operation of measuring instruments, taking into account their
possible failure or large measurement errors. The output parameters of such models make
it possible to comprehensively assess the state of the investigated object (HTU); however,
in real operation mode, monitoring some of them is impossible, and some measurements
cannot be performed in synchronous mode. This also requires computational models
that allow for the synchronization of measured and calculated values, which provides the
required sampling level for a complex measuring and control information system. Thus, it
seems relevant to develop and evaluate approaches to modeling that provide the highest
possible accuracy in estimating parameters for HTUs.

In scientific works in this area, to build models for assessing HTU parameters, it
was proposed to use the support-vector method, methods for modeling dynamic modes,
a lateral vibration-response calculation model for a rotor-bearing shaft system, control
models based on fuzzy logic, the kernel clustering method, probabilistic neural networks,
and others [1–13]. In a number of works, from those listed above, the authors managed
to form models that provide fairly good accuracy in estimating the parameters of the
operation of HTU, including those based on vibration characteristics. Nevertheless, the
ever-increasing requirements for the accuracy of computational models in view of their inte-
gration into complex production systems form the need to seek alternative and potentially
more accurate modeling methods for this problem.

In addition to the requirements for high accuracy in assessing the parameters of the
operation of HTUs, the modeling method must be adaptable. Thus, the method should
ensure the construction of models considering the individual parameters of HTUs. This is
because of the high degree of uniqueness of each HTU, which is associated with the pecu-
liarities of manufacturing, installation, operating conditions, duration, and the individual
wear of the elements. This indicates the need to build a model for estimating parameters
for each HTU, and the use of nonparametric approaches would be preferable for such con-
ditions. Thus, the nonparametric approach allows for moving away from rigidly structured
models, the creation of which is difficult taking into account the factors described above.
In addition, the nonparametric approach considered here allows for integrating new data,
obtained and verified by means of measurement and additional control, into the calculation
model. Such reliable observations are simply included in the sample, which produces
the calculated nonparametric model and ensures the adaptation of the model, taking into
account newly obtained asynchronous measurements. In the course of the study, nonpara-
metric Nadaraya–Watson kernel regression was used as the basis for the nonparametric
model [14]. This method of nonparametric modeling is used quite successfully to build
models and forecasting in many industries, including economics [15,16], medicine [17],
energy [18,19], and the geosciences [20]. A brief description of the nonparametric kernel
regression method is provided in Section 2.

The main issue in the application of the method of nonparametric modeling based on
kernel regression estimates is the reasonable choice of the smoothing factor for calculating
each of the bell-shaped functions of the nonparametric kernel. The corresponding problem
can be considered as a multidimensional optimization problem, on the effective solution
of which the quality of modeling depends significantly. A possible approach for solving
this problem is the use of an efficient numerical optimization algorithm. For this purpose,
the use of an evolutionary genetic algorithm with local search is proposed. The genetic
algorithm is one of the most effective methods of global optimization, which found applica-
tions in many areas [21–24]. Complemented by local-search methods, the genetic algorithm
is able to provide excellent properties for solving an optimization problem, similar to
that formulated with respect to smoothing parameters for calculating a nonparametric
regression model. A description of the proposed genetic algorithm with local search is also
given in Section 2.

The use of the optimization algorithm makes it possible to form an additional adapt-
ability contour, providing the versatility of the application of the approach under consider-
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ation in conditions of the different density of measurements of the parameters of the HTU.
Such adaptability, taking into account different ranges of variation of input parameters
and the sampling rate of measuring devices, made it possible to improve the accuracy
of modeling and the effectiveness of the approach in general. The results of a numerical
study of the proposed nonparametric approach with optimization of the parameters of
smoothing of bell-shaped functions by a genetic algorithm with local search are given in
Section 3.

In the first part of the experimental study, the effectiveness of the proposed approach
was evaluated on a set of test problems of regression modeling. To assess the added
efficiency, studies were also carried out using a “pure” nonparametric model without
the optimization of smoothing factors, as well as alternative approaches: artificial neural
networks, as one of the most powerful tools that found application in various tasks of
industrial signal processing [25,26]; genetic programming; and the method of multivariate
regression splines. In the second part of the research, the accuracy of modeling and the
stability of the obtained results were directly assessed on the data of the HTU’s full-scale
tests. A discussion of the results is given in Section 4.

2. Materials and Methods
2.1. Nonparametric Regression Estimation

The general formulation of the regression problem is as follows. Let there be obser-
vations of the input output variables of the process under study V = (xi, yi); i = 1, n, n is
the sample size of observations. There is a dependence y = f (x) between the input and
output variables of the process under study, but the type and structure of the dependence
are not known.

It is necessary for available sample of observations V to find a mathematical expression
ŷ = f̂ (x) that approximates the relationship between input and output variables.

As an optimality criterion, for example, the value of the relative average modeling
error for the sample as a percentage can be used:

W =
100%

n(ymax − ymin)

n

∑
i=1
|ŷ(xi)− yi|, (1)

where i is the numerator; i = 1, n; and ymax and ymin are the maximal and minimal values
of the output parameter, respectively.

To obtain a nonparametric regression estimate, it is necessary to estimate the unknown
conditional distribution density:

p(y/x) =
p(x, y)
p(x)

, (2)

where p(x, y) is the joint probability density function of x and y, and p(x) is the prob-
ability density function of x. For this, the joint distribution density is estimated using
the Rosenblatt–Parsen estimate [27]. The nonparametric regression estimate is calculated
as follows:

ŷ(x) =

n
∑

i=1
yiΦ

(
x−xi
h(n)

)
n
∑

i=1
Φ
(

x−xi
h(n)

) , (3)

where Φ is a truncated bell-shaped function (kernel), (xi, yi) is ith point of the sample
used to build the model, h(n) is a smoothing factor, and n is the sample size. The kernel
regression estimate (3) is named the Nadaraya–Watson estimator. Theorems on the asymp-
totic properties of this estimate are proved. The main idea behind (3) is to give relatively
more weight to the observations closest to the estimated point in the sense of the distance
determined by the kernel.
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Thus, it is possible to restore the relationship between the input and output of the object
using the training sample of object observations to construct a nonparametric estimate.
For the case of constructing a regression dependence on a set of input of parameters,
Formula (3) becomes Formula (4):

ŷ
(

x1, . . . , xm
)
=

n
∑

i=1
yi

m
∏
j=1

Φ
(

xj−xj
i

hj(n)

)
n
∑

i=1

m
∏
j=1

Φ
(

xj−xj
i

hj(n)

) , (4)

where, in addition to Formula (3), m is the dimension of the vector of the input variables x.
A number of conditions are imposed on the kernel bell-shaped function and the

smoothing factor, which ensure the convergence of the nonparametric estimate of the
Nadaraya–Watson regression [27]. There are several types of bell-shaped functions that
satisfy such conditions, such as rectangular, triangular, Epanechnikov, and Gaussian kernels.
A commonly used kernel function is the Epanechnikov kernel [28]:

Φ(z) =
{

0.335− 0.067z2, if z2 ≤ 5
0, if z2 > 5

(5)

The accuracy of the regression model in practical conditions can be improved by selecting
the optimal values of smoothing parameter h(n). In the multidimensional case, the effi-
ciency of the model is determined by the vector of parameters h(n), each component of
which determines the coverage area of the truncated kernel for the corresponding input
variable—the components of vector

→
x .

The optimal value of the components of smoothing parameter vector h(n) is found
from the following relation:

h(n) = c · n−1/5 (6)

where c is a positive constant. It is the choice of constant c that determines the scaling of
the smoothing factor relative to the calculated factor, which is determined on the basis of
the sample size of observations, which has the greatest influence on the quality function.

Thus, in accordance with the dimension of the input feature space used to build
the regression model, the vector of scaling constants of the bell-shaped functions must
be determined to calculate smoothing factor h(n). The performed numerical studies
show that the rational choice of the corresponding constants for the vector of smoothing
factors must be carried out for each task by minimizing the quality indicators (modeling
errors) that characterize the best fit with the experimental data. In this regard, an additional
optimization problem arises, on the solution of which the efficiency of solving the modeling
problem as a whole significantly depends. The manual selection of smoothing parameters
is laborious in the case of a high dimension of the feature space, thereby requiring the use
of formal techniques based on effective optimization algorithms. A genetic algorithm is
proposed to be used as such an algorithm, the application of which is described in the
next section.

2.2. Smoothing Factor: Optimization

The approach described above to the construction of regression models can generally
be characterized as nonparametric. The resulting model does not have a rigid fixed
structure based on an analytical description of the modeled process or dependences of
parameters. Accordingly, such a regression model does not contain a set of numerical
parameters that determine, in conventional analytical models, the fit of the structure to
the conditions of a specific application. The adjustable parameter in the regression model
of form (3) is smoothing parameter h(n). This parameter defines the scope of the kernel
bell-shaped function, and should vary somewhat depending on the density and size of
the sample used to build the regression model. Previous studies showed that the accuracy
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of the built model largely depends on the value of smoothing parameter h(n) [29]. The
model is especially sensitive to this when the level of interference in the measurement
channels increases, leading to noise in the original sample. As mentioned above, the
optimal value of the smoothing factor in the sense of minimizing the quality indicator
is determined by Formula (6). In the multidimensional case, the smoothing parameter
must be defined for each component of the vector of input variables x. An essential
difficulty is the choice of the optimal values of constants c. In the general case, taking into
account the independence of the input parameters, as well as their significant difference
in the measurement ranges and noisiness, it is necessary to ensure the selection of the
corresponding constants independently of each other, and not to use the same value for all
input parameters.

Thus, the optimization problem of multivariate optimization is structured, the tar-
get criterion of which is the function of evaluating the mismatch between the obtained
regression model and the approximated sample data. Such a function must be minimized
considering the selection of the optimal values of the smoothing parameters for each vari-
able. Taking into account the impossibility of providing an analytical calculation of the
solution to such a minimization problem, it can be solved by the method of numerical
optimization. A possible variant of the method for solving the optimization problem can
be the multiple use of one-dimensional optimization methods to separately determine the
constants of the smoothing factors. Considering the experience of applying this approach, it
is still rational to build such a procedure on the basis of the multidimensional optimization
method, which ensures high efficiency in solving optimization problems for the functions
of many variables.

2.3. Genetic Algorithm

On the basis of the experience of previous studies, the use of an evolutionary genetic
algorithm as such a method was proposed. The genetic algorithm is a fairly powerful
heuristic optimization tool that has gained wide acceptance and has a wide range of appli-
cations. The genetic algorithm as a method for optimizing the parameters of models and
classifiers of various types has been repeatedly successfully tested in conditions of various
applications. The breadth of the field of application, owing to the high efficiency of the ap-
proach, is presented in the works and reviews of many researchers of various orientations:
engineering, medicine, biology, chemistry, and the material sciences [22–24,30].

Along with many other methods of global optimization, the genetic algorithm has both
advantages and disadvantages. There are a huge number of different modifications that
provide higher efficiency rates for solving particular optimization problems and improving
the properties of the algorithm [31]. Within the framework of the present study, to improve
the accuracy of the search for the values of the constants for calculating the vector of
smoothing parameters of the regression model of form (3), it is proposed to combine the
genetic algorithm with the local-search method. This combination makes it possible to
increase the local convergence of the genetic algorithm at the final stage of the search for
optimal solutions. Taking into account the rather high sensitivity of the quality criterion of
the nonparametric regression model to the choice of the smoothing factor constants, the
local-search method improves the efficiency of the optimization procedure as a whole. The
following is a very short description of the genetic algorithm as an extended description
can be found in various works devoted to optimization algorithms [21–24,30,31].

The standard scheme of the genetic algorithm assumes the coding of the variables of
the optimization problem into a bit string that combines the components of the search space
vector for any of the points, represented in binary. The set of points that are the current set
of solutions to the problem is combined into a set called a generation. The initial generation
is randomly created, and there are procedures for the step-by-step transformation of
current generations into new generations. For this, the selection of potentially promising
solutions (selection), the formation of new solutions on their basis (crossing), and a random
change of new solutions with a given probability (mutation) are used. After performing
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these operations, the current generation of “parents” is replaced by a new generation of
“descendants” and the cycle is repeated. This happens until a satisfactory solution is found
or a predetermined number of generations is produced. Despite its relative simplicity, even
the standard genetic algorithm is a fairly effective global-search method. On the basis of
such a basic structure of the genetic algorithm, various modifications are built aimed at
expanding the class of problems to be solved, for example, multicriteria word-optimization
problems, or at increasing its efficiency and improving some properties of the basic scheme.

2.4. Genetic Algorithm with Local Search

Within the framework of this work, to improve local convergence when adjusting the
smoothing factors for the regression model, it is proposed to modify the standard genetic
algorithm scheme by adding a local step-by-step random search stage. The practice of using
the genetic algorithm as an optimization algorithm with adjustable parameters has shown
that the greatest difficulty in setting parameters is a contradiction: global search versus
local convergence. Researchers have several tools at their disposal to shift the balance in
one direction or another, but it is practically impossible to track the degree of this balance
shift. This leads to the fact that it is often very difficult and sometimes almost impossible
to tune the standard genetic algorithm in such a way that some “golden mean” in the
considered contradiction was found.

Achieving greater efficiency in solving problems in this case is possible owing to the
use of a hybrid genetic algorithm. A hybrid algorithm is a standard genetic algorithm
supplemented by one of the local-search methods [32]. At the same time, local search
is carried out both after the completion of the genetic algorithm and at each generation
to improve a certain number of individuals. Usually, local search is used for the most
promising individuals of the generation.

Just as the standard genetic algorithm has parallels with the processes occurring in
living nature, so does the hybrid algorithm model the lifetime adaptation of individuals in
the population. In binary space, the search step is carried out as follows:

• The selected position of the binary string encoding the selected solution (the so-called
gene) is inverted.

• The value of the fitness function of the modified solution, which was changed in the
previous step, is calculated.

• If the suitability of the modified solution is higher than the suitability of the original
solution, then the search step is considered to be successful, and the new value of the
gene is fixed. Otherwise, the search step is considered to be unsuccessful, and the
original value is returned to the gene.

• A new local-search step if the number of steps does not exceed the specified num-
ber; otherwise, the search stops and the modified solution returns to the original
set (population).

The considered procedure of local search cannot lead to a deterioration in the fitness
of an individual.

Thus, because of the use of a genetic algorithm hybridized by local search, it is pro-
posed to implement a scheme for constructing nonparametric models with the optimization
of smoothing parameters. An overview of such a scheme is shown in Figure 1.

The convergence of this method is ensured by the fundamental properties of the
genetic algorithm as an optimization procedure for global search with proven convergence
for functions of various types, including nondifferentiable ones. The convergence of the
procedure for adjusting the coefficients using an additional local-search procedure is not vi-
olated as the local-search procedure cannot worsen the properties of solutions generated by
the genetic algorithm. If the local-search procedure fails, the original individual produced
by the genetic algorithm is returned to the generation.
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Figure 1. Smoothing-factor optimization scheme.

2.5. Experimental Study
2.5.1. List of Test Problems

The evaluation of the feasibility and comparative study of the effectiveness of the
approach were carried out in the course of numerical studies. To conduct a preliminary
study of the possibility of applying the proposed approach to the construction of non-
parametric regression models with adjusting smoothing factors, we formed a set of test
functions commonly used for evaluating the basic efficiency of modeling approaches. A
brief description of the functions included in the test set is given in Table 1.

Table 1. Set of test functions.

No. Simulated Function Input Variables

1 y = sin x x ∈ [−4, 3]
2 y = x2

1 sin x1 + x2
2 sin x2 xi ∈ [−4, 3]

3 y = x1·x2
x2

3
xi ∈ [1, 20]

4 y = 100
(

x2 − x2
1
)2 − (1− x1)

2 xi ∈ [−2, 3]

5 y = sin|x|
|x| x ∈ [−2π, 2π]

6 y =
sin
√

x2
1+x2

2√
x2

1+x2
2

xi ∈ [−4π, 4π]

7 y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 xi ∈ [0, 1]

8 y =

√
x2

1 +
(

x2x2 − 1
x2x4

)2
x1 ∈ [0, 100]

x2 ∈ [40π, 560π]
x3 ∈ [0, 1]

x4 ∈ [1, 11]
9 y = π

2 exp
[
−2
(

x2
1 + x2

2
)]

cos[2π(x1 + x2)] xi ∈ [0, 1]
10 y = 0.79 + 1.27x1x2 + 1.56x1x2 + 3.42x2x5 + 2.06x3x4x5 xi ∈ [0, 1]

Such a set of test problems is not exhaustive, but it was used by the authors in
previous studies and showed the suitability for assessing the basic efficiency of approaches
to constructing models of various types. In addition, for previously studied methods, a
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fairly stable correlation was observed between the obtained results using this test set and
the quality of modeling for problems with real data.

The study on the test set also allows for us to assess the stability of the proposed ap-
proach in the conditions of the formation of nonparametric models for samples of different
dimensions and in conditions of overlapping noise of different levels. The variation of the
corresponding parameters is given in Section 2.5.1.

2.5.2. HTU Data

Modern HTUs are complex technological units, the safety and efficiency of which
are the main priorities in their operation. Such equipment is characterized by a number
of properties that actualize the need to build effective computational models to assess
parameters characterizing their operational efficiency and technical condition. The reli-
ability of determining parameters of the technical condition is one of the basic needs in
ensuring the safety of operation. The importance of forming an approach for constructing
effective computational models is because each HTU is a unique product of mechanical
engineering. In addition to this, each hydraulic unit has features of installation, positioning,
and operation. That is, each stage of the HTU life cycle of even one model line or one
HTU hall is individual, which obviously affects the patterns and relationships underlying
the measured and target design parameters of functioning efficiency, and the parameters
that determine the reliability and safety of operation. One of the main directions of such
parametric analysis of the operation of HTUs is based on the use of a set of operational
indicators and vibration parameters as input parameters of computational models. The
vibration parameters determined at the fixed measurement points for such rotating equip-
ment as a HTU are an essential informative source for determining the calculated indicators
of efficiency and safety. Their inclusion in the integrated model, along with the measured
parameters, makes it possible to fully assess the current state of the HTU, if necessary, to
correct the operating modes, and rationally plan the operational and repair periods.

In order to briefly explain the source of obtaining the initial sample parameters,
measured directly on the HTU, we present a diagram of an HTU with a typical arrangement
of measuring sensors in Figure 2.

Figure 2. Hydroturbine unit (HTU) with typical arrangement of measuring sensors: 1, generator
stator; 2, rotor; 3, hydraulic unit shaft; 4, hydraulic turbine; 5, exciter; 6, upper crosspiece; 7,
upper guide bearing; 8, thrust bearing; 9, turbine bearing; 10, turbine cover; �, installations of
measuring transducers.
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The total number of measuring transducers is determined by the characteristics of
a particular HTU, which is monitored to collect diagnostic information. The generalized
diagram contains a number of measuring transducers that are excessive for this study, some
of which are intended to bring the monitoring system to the requirements of regulators. To
carry out numerical studies in the monitoring process, the following 10 parameters were
simultaneously measured: radial vibration of the turbine bearing housing (µm); radial
vibration of the generator bearing housing (µm); shaft runout in the area of the turbine
bearing (µm); shaft runout in flange connection (mm); vertical vibration of the turbine
cover (µm); vertical vibration of the upper cross (µm); unit capacity (MW); upstream and
downstream levels (m); guide vane opening (mm); and blade rotation angle (degrees). The
following were considered to be output parameters: dynamic force on the turbine bearing,
dynamic force on the generator bearing, dynamic force on the thrust bearing (turbine cover)
in the axial direction, and the total load on the bearings (indicated as HTU Param 1–4,
respectively, in Section 3).

Thus, the dataset used in the study includes 1280 observations, each of which is
described by 10 input and 4 output parameters. The output parameters make it possible
to comprehensively assess the state of the investigated object (HTU); however, in real-
life operation, monitoring some of them is impossible, and some of the measurements
are extremely expensive. Therefore, the creation of models describing the relationship
between input and output parameters, allowing for simulating the output parameters for
the 10 inputs monitored in real time, is an urgent task. Obviously, when using adequate
models, fixing the moments when the simulated values of the output parameters exceed
the critical values prevents the development of emergency situations and the occurrence of
security incidents.

2.5.3. Numerical Experiment Technique

For a preliminary study of the nonparametric regression method on test functions from
the set described above, samples of input variables were generated, and the values of the
output parameters were calculated for the corresponding functions. For a comprehensive
assessment of the adaptability of the approach, the samples were formed five times for
each value according to the number of points in the samples and the level of imposed
interference. Additive noise formed in accordance with Gaussian normal distribution with
a mathematical expectation equal to 0 and a standard deviation equal to the specified
percentage of the variation interval of the corresponding function was used as noise.
Sample-generation parameters for test functions from the considered set are shown in
Table 2.

Table 2. Parameters of samples for test functions.

Sample parameter Unit Values

Sample size Points 20, 50, 100, 250, 1000
Additive noise level Percentage of function-variation level 0, 5, 10, 25

Because, in contrast to the test problems, the available sample for the HTU was
fixed, to ensure the correctness of the results of the study of methods, the sample was
repartitioned into a training sample used to build a model and a test sample used to obtain
the final estimates of the adequacy of the corresponding models.

To ensure the unity of the numerical experimenting scheme, such repartitioning was
performed five times in the following proportion: 85% of the sample was used directly
to build and adjust the model, and 15% of the original sample was used as a test sample
to calculate the values entered in the table of results. Taking into account the selected
distributions during each repartitioning, the training sample was formed in the amount of
1090 patterns, and the test sample in the amount of 190 patterns. The error in each run was
calculated using the quality criterion of the regression model determined by Formula (1).



Computation 2021, 9, 83 10 of 15

For the settings of other methods considered in the course of numerical studies, the
following parameters were determined. For the method of artificial neural networks, the
automatic generation of networks with multilayer-perceptron architectures and network
architecture with radial basis functions was used. The maximal number of neurons on
hidden layers was set equal to 30, and the maximal number of hidden layers for a multilayer
perceptron was chosen to be 2. The sample was split into training and test samples in
accordance with the above scheme in the proportion of 85% and 15%, respectively, with
multiple repartitioning and cross-validation. The same scheme for forming the tuning and
test samples and validating the results was used for the method of symbolic regression
(genetic programming). The construction of a symbolic regression model was carried
out using the following parameters of the evolutionary process: the maximal number of
generations was 200, the number of individuals in a generation was 50, the mutation was
standard, and the crossing was one-point. The maximal depth of the symbolic regression
tree was set to 12 levels. The method of multivariate adaptive regression splines was used
in accordance with the standard implementation scheme in applied software package for
statistical analysis Statistica.

The tables of results below show the estimates of the mean value obtained for each
sample on the basis of the results of running the modeling algorithm of nonparametric
regression five times. Taking into account the probabilistic initialization of solutions in
the used genetic algorithm for adjusting the smoothing factors, and thereby obtaining
stable results, a 5 × 5 numerical research scheme was used. That is, to obtain each value,
25 values were used, obtained in the course of separate numerical experiments (runs).

For all methods, in order to obtain correct results of numerical experiments, the
same limitation on the amount of computational resources available to the method for
obtaining a solution was used. This was limited at the level of assessing the use of CPU
time owing to the use of a software timer. ANOVA methods were used to investigate the
statistical significance of differences in the effectiveness of the used approaches. A pairwise
comparison of the investigated methods was carried out to reveal statistical significance in
the distinguishability of the obtained results during testing at the significance level of 0.05.

2.5.4. Genetic Algorithm Parameters

To use the genetic algorithm, it is necessary to select the parameters that control the
process of finding solutions. This task is quite capacious for research and goes beyond the
scope of this study. For use here, the parameters of the genetic algorithm were selected in
the course of a preliminary study on a representative set of functions. The main parameters
of the genetic algorithm include the number of generations and the size of the population,
the type of selection, the type of crossing, the probability of mutation, and the proportion
of substitution in a generation.

The number of generations and the size of the population were selected to provide
similar computation times on average compared with the alternative modeling approaches
discussed in this article. The population size was limited to 50 individuals, and the
maximal number of generations of tuning parameters was 200 or until the stop criterion
for no improvement in the solution was met for 25 generations.

The type of selection was defined as tournament selection with a tournament size of 5,
the type of crossing was single-point, the type of mutation was medium, and the percentage
of replacement in a generation was 90%. Such a set of parameters was chosen on the basis
of the average highest efficiency of the algorithm when running along test functions.

3. Results

Tables 3–5 show the results of a comparative study of the proposed nonparametric
regression method with the adaptation of smoothing factors using a genetic algorithm
and a genetic algorithm with local search to solve this problem. Criterion (1) was used
for comparison.
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Table 3. Results of the study of nonparametric models with a random value of smoothing factors on
the test set.

Noise Level

Sample Size

20 50 100 250 1000

Mean Modelling Error, %

0 9.8 9.6 8.8 7.8 7.2
5 10.2 10.0 9.2 8.1 7.8

10 10.6 10.4 10.1 8.4 8.2
25 16.3 14.8 13.9 11.1 10.6

Table 4. Results of the study of nonparametric models by adjusting smoothing factors with a standard
genetic algorithm (GA) on a test set.

Noise Level

Sample Size

20 50 100 250 1000

Mean Modelling Error, %

0 5.2 3.5 2.9 1.8 1.0
5 5.4 3.6 3.0 1.9 1.5

10 5.6 3.7 3.1 2.0 1.8
25 6.1 4.1 3.7 2.6 2.5

Table 5. Results of the study of nonparametric models by adjusting smoothing factors by a hybrid
GA with local search on a test set.

Noise Level

Sample Size

20 50 100 250 1000

Mean Modelling Error, %

0 3.9 2.7 1.5 1.3 0.7
5 4.1 2.8 1.6 1.4 0.8

10 4.2 2.9 1.7 1.4 0.8
25 4.7 3.6 2.7 2.1 1.5

The method of random selection of constants c for calculating the smoothing factor
in accordance with Formula (6) was implemented as a basic option for assessing the
effectiveness of the methods for adjusting the smoothing factors. The random generation of
values was carried out in the same range of [0.01; 100], which was also used when searching
for solutions using the methods of the genetic algorithm and the genetic algorithm with
local search. The results for the baseline approach are shown in Table 3.

The next stage of numerical research was the evaluation of the method that used a
standard genetic algorithm to find the optimal set of constant values for calculating the
smoothing factors for each of the input variables. The search range was chosen to be
[0.01; 100] for each parameter, the number of which corresponds to the dimension of the
input space of the test function. The accuracy of the presentation of the solutions (maximal
sampling step) was determined to be 0.01. Thus, the number of sampling steps of the search
along one dimension of space was 104. In accordance with the decision-coding scheme in
the genetic algorithm in the form of a bit string, a sequence was determined to encode one
constant of the smoothing factor in the size of 14 bits. The set of constants that determined
the smoothing factors for all the variables of the problem was coded as a concatenation of
the bit sequences of each constant, decoding the solution in a standard way for the genetic
algorithm. The results of a statistical study of the quality of constructing nonparametric
models with the adjustment of the smoothing factors by the genetic algorithm are shown
in Table 4.
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Further, studies were carried out suggesting the use of an additional procedure that
provides a higher local convergence of the genetic algorithm. In general, the main stages
are performed in full accordance with the scheme of the standard genetic algorithm. In
addition to this, at every 10th step (preliminary estimate for test optimization problems), a
local-search procedure was performed to refine solutions and search for improved options
in the vicinity of points already formed by the basic procedure. The preservation of
parity in the use of computing resources was ensured by a proportional reduction in the
population size by 10% to 45 individuals in comparison with the basic genetic algorithm,
the parameters of which are given above. The results of applying such a hybrid scheme of
the genetic algorithm and local search to adjust the smoothing factors of nonparametric
models are shown in Table 5.

Studies carried out on a set of test functions showed the possibility of a significant
increase in the adequacy of the regression model by adjusting the smoothing factors. At
the same time, the use of local search in addition to the global search method—the genetic
algorithm—made it possible to find an even more efficient set of smoothing factors for
bell-shaped functions. For a more detailed discussion of the results, see Section 4.

The next stage, after confirming the operability and increasing the efficiency of the
nonparametric regression approach, was its comparative study with other methods of
constructing regression models on the problem of estimating the parameters of a HTU
by vibration characteristics considered in the study. In accordance with the scheme of
numerical studies described above, estimates of errors were obtained, calculated with
Formula (1) for samples, one of which was directly used for constructing the model, and
the second was used to assess the quality of the constructed model. Regression models
were built for each of the four output parameters; their construction was carried out in
accordance with the accepted scheme of numerical studies. The results were averaged over
the results of multiple model building. The corresponding values of the estimates of the
modeling error are shown in Table 6.

Table 6. Results of the study of modeling approaches on problem of estimating HTU parameters.

Modeling
Approach

Mean Modelling Error, %

HTU
Param 1

HTU
Param 2

HTU
Param 3

HTU
Param 4

Nonparametric regression (hybrid-genetic-algorithm tuning) 6.9 5.0 7.5 6.1
Artificial neural networks 13.8 13.6 11.1 14.2

Regression by genetic programming 17.2 16.8 18.5 18.4
Multivariate adaptive regression splines 8.8 6.1 8.8 7.6

The results for each of the series of numerical experiments were tested for statistical
significance, which was confirmed in the course of testing the corresponding hypotheses.

4. Discussion

The results of the numerical study of efficiency on a set of test functions confirmed the
possibility and necessity of formalizing the approach to the choice of smoothing coefficients
in the case of using the nonparametric regression method. An arbitrary choice of a constant
that determines the value of the smoothing factor in the case of failure can lead to a
significant decrease in the effectiveness of the proposed approach, which is accompanied
by an increase in modeling error. Consequently, it is necessary to rationally approach the
choice of the appropriate value for the smoothing factor, but its manual selection, especially
in the case when the dimension of the space of input variables increases, is difficult.
Statistical studies showed that, even for functions used with the number of input variables
from 1 to 4, the use of smoothing factor adjustment algorithms makes it possible to achieve
a significant refinement of the nonparametric regression model. The implementation
of such a procedure using the global-search method, a genetic algorithm, provided a
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reduction in modeling error by about 20% compared with the method of multiple random
selection of the smoothing factors. Taking into account the high sensitivity of the model
quality criterion to the choice of the smoothing factor, an approach that provides the local
refinement of smoothing factors constants is even more effective. This was implemented
using a hybrid genetic algorithm, which improved the model’s accuracy by up to 10%
compared with that of the standard genetic algorithm, and up to 30% compared with
multiple random enumeration.

In terms of the results of a numerical study of the effectiveness of the proposed ap-
proach for assessing the parameters of an HTU, the higher accuracy of nonparametric
models with the adjustment of blurring factors was statistically confirmed. The most
effective for solving this problem were the computational models—the nonparametric
model and the model of multidimensional adaptive regression splines. Between them, the
differences in the results were about 10%–15% in terms of the magnitude of the modeling
error, which is a fairly good result. However, the software used showed less computational
load when constructing the multivariate adaptive spline model. Thus, a standard trade-off
was demonstrated between the accuracy of the model and the time of its construction, the
priorities at the resolution of which are selected from the conditions of a particular applica-
tion. The advantage of the nonparametric regression approach is stability in processing
noisy data. The results of neural-network modeling were somewhat disappointing, but
this may have been because of the peculiarity of using networks with a fixed structure of
multilayer perceptrons and networks with radial-basis functions. In further studies, it is
proposed to use neural networks with an automated procedure for forming a structure as
a more powerful alternative [33]. Taking into account the experience of the application,
it is proposed to form ensembles of models including neural networks for their ability
to generalize and precise nonparametric procedures that ensure the local efficiency of
the models.

The symbolic regression method based on genetic programming made it possible to
form less efficient models on average in terms of approximation accuracy. Nevertheless,
the models built in this way can be considered as basic analytical parametric dependencies,
the generation of which in an automated mode is a complex and demanded problem. It
seems that it is precisely the combined analytical cores based on models of various classes
that can be one of the solutions for the creation of integrated systems for the computational
processing of production data for HTU. They make it possible to, on the one hand, solve the
problem of the fast and accurate calculation of the values of operational parameters and, on
the other hand, form support for decisions in the search for cause-and-effect relationships
when analyzing the features of the operation of a specific HTU. This is provided by a
combination of the models evaluated in this study, which demonstrated the features of
their application in solving such a problem.

5. Conclusions

In the course of this study and its results, the problem of constructing models for cal-
culating the parameters of the functioning of a HTU was solved. The operating conditions
of such equipment, and restrictions imposed on the means of measuring and monitoring
the parameters of the technical condition of the HTU, have actualized the problem of con-
structing computational models for use in the integrated monitoring system and ensuring
operational safety. Taking into account the high variability of the parameters of HTUs,
owing to the individual characteristics of the passage of such equipment through the stages
of the life cycle, nonparametric regression models were used as basic models in the study. It
was estimated that the quality of such models is largely determined by the effectiveness of
the selection of smoothing factors that determine the coverage area of the basic bell-shaped
functions. In this regard, a procedure was proposed for finding the optimal values of such
parameters on the basis of an evolutionary genetic algorithm. To improve the accuracy of
determining the parameters, in addition to the standard optimization scheme using the
genetic algorithm, the local-search stage was also proposed for use. The corresponding
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procedure can be characterized as a hybrid genetic algorithm. The study of the basic
genetic algorithm and the proposed hybrid scheme for choosing the smoothing factors
when restoring test functions from a test set was carried out. The high efficiency of the
improved hybrid schemes for optimizing smoothing factors for nonparametric modeling
was shown. Taking into account the insignificant increase in computational complexity that
was leveled out by reducing the population in relation to the basic scheme of the genetic
algorithm, it is reasonable to further use the hybrid genetic algorithm for such problems.

Then, the approach was directly used for the formation of models for calculating
parameters characterizing the technical condition of the HTU. As alternatives to the main
approach under consideration, the parametric method was also investigated—the method
of reconstructing symbolic regression by genetic programming, modeling based on artificial
neural networks, and the method of multivariate adaptive regression splines. Analysis of
the obtained results confirmed the relatively high efficiency of the nonparametric method
with the adjustment of the smoothing factors by the hybrid genetic algorithm. On average,
relative to other approaches, the nonparametric regression model provides 10%–15% reduc-
tion in modeling error. Such a result, taking into account the confirmation of its statistical
significance, can be considered to be essential for the problem under consideration.

In the future, it is possible to build combined models that provide the possibility of
both fast nonparametric calculation and the determination of functional dependencies. This
would make it possible to ensure the greater stability of the results of model calculations
within the framework of an integrated decision-support system for the operation of HTUs.
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