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Abstract: In this work, a new adaptive controller is designed for substrate control of a fed-batch
bioreactor in the presence of input saturation and unknown varying control gain with unknown
upper and lower bounds. The output measurement noise and the unknown varying nature of
reaction rate and biomass concentration and water volume are also handled. The design is based
on dead zone quadratic forms. The designed controller ensures the convergence of the modified
tracking error and the boundedness of the updated parameters. As the first distinctive feature, a new
robust adaptive auxiliary system is proposed in order to tackle input saturation and control gain
uncertainty. As the second distinctive feature, the modified tracking error converges to a compact
region whose bound is user-defined, in contrast to related studies where the convergence region
depends on upper bounds of either external disturbances, system states, model parameters or terms
and model parameter values. Simulations confirm the properties of the closed loop behavior.

Keywords: adaptive control; augmented error signal; fed-batch bioreactor; input saturation;
Lyapunov-like function

1. Introduction

Fed-batch bioreactors allow obtaining high amounts of biomass or products for a
given process time. In turn, this is related to high growth rates or production rates [1,2].
The application of automatic control makes possible to have enhanced productivity during
the process cultivation. To this end, substrate can be regulated at a value that leads to high
growth rate in order to avoid the catabolic repression of the microorganisms [1,2].

Control stabilisation of bioreactors by using PI-like or non-adaptive controllers is
hampered by system uncertainty, mainly lack of knowledge on: structure and coefficients
of the reaction rates, reaction yields, concentration of products, and inflow substrate
concentration. The main uncertainty comes from the reaction rate, as its coefficients usually
vary with time. In addition, the reaction yield usually varies with time as well, and there
could be measurement errors for the inflow substrate concentration, and substrate and
biomass concentrations [3–6]. Controlling substrate and product in fed-batch bioreactors
is also hampered by these challenges [7–10]. Nonlinear and adaptive control are capable
of dealing with these uncertainties, while ensuring the asymptotic convergence of the
tracking error. In addition, they can handle uncertainty on biomass concentration [11–14].
Regarding this, adaptive control of continuous bioreactors is addressed in [14,15], nonlinear
control design for fed-batch processes is addressed in [1,2,9,10,16], and adaptive control for
fed-batch processes in [17].
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In [16] a Lyapunov-based controller is designed for a fed-batch biomass culture. It
is considered that the concentration of substrate and biomass is bounded upon bounded
dilution rate. The controlled output is chosen as the substrate concentration, and the desired
output is chosen as the value of the substrate concentration that leads to maximum product
gaseous outflow rate. The Lyapunov function (W) is defined as a quadratic function of
the output tracking error (e), and the chosen control law is of sliding type, such that the
time derivative (dW/dt) leads to boundedness of W and e and the convergence of e to zero.
However, the controller design disregards the unknown time varying nature of the control
gain, the measurement noises in substrate concentration and culture volume, and also the
effect of input saturation. In [17], the so-called decoupled adaptive controller (DAC) is
applied for the culture of P. pastoris yeast. The substrate feed rate and the air flow rate are
the manipulated variables, whereas the substrate and dissolved oxygen concentrations
are the controlled outputs. The reaction rate terms are unknown. The controller is a
combintaion of DAC and input-output linearizing control (DIOLC). The used DAC scheme
consists of an application of model reference adaptive control (MRAC), and comprises
updated parameters in order to provide estimates of the uncertain reaction rate terms. The
matrix inversion principle is used to handle the combined effect of the two inputs. The
controller was implemented on line, with adequate but improvable performance. However,
the control gains are considered as accurately known in the control design, whereas the
measurement noise in the state variables and the effect of input saturation are not taken
into account by the control design. In [1], an extremum seeking control scheme is proposed
for optimization of the specific growth rate in fed batch processes whose kinetics are
substrate inhibited. The dilution rate is the manipulated variable, whereas the gradient of
the specific growth rate is the controlled variable. The gradient of the specific growth rate
is estimated through a high-order sliding mode observer, whereas the specific growth rate
is estimated through an exponential observer, and the substrate concentration is estimated
through an asymptotic observer, using the knowledge on the substrate to biomass yield
and concentrations of biomass and feed substrate. The controller design is based on a
high-order sliding mode scheme, using the estimates provided by the observer and the
known yield coefficient, but not the kinetic model parameters. The stability of the closed
loop variables is determined through Lyapunov functions. The controller was tested by
simulation, considering measurement noise, and a time varying optimum of the specific
growth rate. However, the uncertainty on the yield coefficient and the measurement
noise in biomass and inflow substrate concentrations and the effect of input saturation are
disregarded in the controller design. In [15], a robust adaptive controller is designed for a
class of continuous wastewater treatment processes. It is assumed that: bacterial growth
rates and inlet pollutant concentrations are unknown, but some upper and lower bounds
are known; the biomass and substrate concentrations are unknown. The output is defined
as the sum of the concentrations of the two substrates, whereas the manipulated input
is defined as the dilution rate. The controller design is based on Lyapunov function, it
uses the estimates of biomass concentration provided by the interval observer, and the
estimates of reaction rates provided by the estimator. However, input saturation is not
taken into account in the control design. In [14], a robust adaptive controller is designed
for continuous bioreactors. The biomass concentration, the biomass growth rate, and the
inflow substrate concentration are considered unknown to the controller, whereas the
gas production is considered known. The substrate concentration is chosen as controlled
output, and the dilution rate is chosen as manipulated input. The lack of knowledge on
the inflow substrate concentration implies unknown control gain. The controller design
is based on Lyapunov function, and uses an arrangement of the substrate uptake rate in
terms of the measured gas production in order to partially tackle the uncertainty in the
biomass growth rate. Moreover, parameter updating is used in order to cope with the
lack of knowledge on the control gain and yield coefficient. However, the effect of input
saturation is not taken into account in the control design. In [2], a controller is designed for
a fed-batch process with dual substrate feeding and additive kinetics. The specific growth
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rate is the output to be controlled, and the feeding flow rates are the manipulated inputs.
The biomass concentration, the working volume, the inflow substrate concentrations, and
the yields of substrate to biomass are assumed known, whereas the specific growth rate is
assumed unknown. The specific growth rate is estimated through a super twisting sliding
mode observer, based on the known biomass concentration. The control law is proportional
to biomass, and it achieves convergence of the tracking error. However, the control gain is
considered accurately known and the effect of input saturation is not taken into account in
the control design.

In addition to the effects of model uncertainty, closed loop performance can be severely
affected by actuator saturation if it is unaccounted in the controller design, and considerable
overshoot may occur [18–23]. In case of adaptive controllers, the stability of the closed loop
system may be lost, and windup phenomenon may occur, in which adapted parameters
change excessively. One possible solution is to stop adaptation during saturation moments,
although this is not an optimal one [19,24]. One strategy used in control design for
nonlinear systems with input saturation is the so-called augmented error signal (AES).
It allows preserving closed loop stability and its effectiveness has been demonstrated in
several mechanical systems. In adaptive controllers with AES strategy, excessive increase
of updated parameters is prevented. The AES strategy is characterized by the fact that the
regular tracking error is modified by adding the state of an auxiliary system which is a filter
in terms of ∆u, the difference between the constrained and unconstrained inputs [19,24,25].

A pioneering incorporation of the AES strategy to Lyapunov-based adaptive control
is the direct learning control scheme presented in [24]. Therein, it is proved that the
closed loop signals are bounded despite input saturation, so that excessive increase of
updated parameters is avoided. In addition, the modified tracking error asymptotically
converges to a compact set of small size. In case that the control gain consists of the
product of an unknown constant and a known function, the uncertainty of the constant is
tackled by using an updated parameter, which is used in the auxiliary system [24]. The
design procedure of the AES strategy of [24] comprises: (i) Formulation of an auxiliary
system, involving the input error ∆u, which is the error between the constrained and
unconstrained input values; (ii) use of the modified tracking error as closed loop state
variable instead of the regular tracking error, the modified tracking error consisting of the
regular tracking error minus the state of the auxiliary system. The main features of the
resulting closed loop system and controller are: (i) The control and update laws are function
of the modified tracking error instead of the regular tracking error; (ii) the modified tracking
error, the regular tracking error, and the parameter updating error are bounded despite
input saturation; (iii) the modified tracking error asymptotically converges to a residual set
of small size. Further control designs for input constrained systems use this AES adaptive
control strategy, and the closed loop system and the controller commonly exhibit the above
features, see [19,26,27]. Furthermore, these AES adaptive control designs incorporate other
strategies, for instance: (i) Recursive backstepping approach, for handling high-order
nonlinear systems (see [19,25,26]); (ii) fuzzy and neural network, for approximating the
unknown system nonlinearities (see [19,26–29]); and (iii) state observers, for handling the
lack of knowledge on unknown states (see [25,28,29]). In [27], an output feedback dynamic
surface control is designed for an input constrained system subject to actuator failures
and saturation. The unknown states are estimated through a state observer. The uncertain
nonlinear terms are identified and approximated online through a Takagi-Sugeno (T-S)
fuzzy system. The “explosion of complexity” is tackled via dynamic surface control (DSC)
strategy. The effect of input saturation is tackled via AES strategy with auxiliary system.
An updated parameter is used in order to tackle the lack of knownledge on an unknown
positive constant that is the maximum value among the auxiliary signal, the desired output,
the upper bound of the external disturbance, and the approximation error. However, the
control gain is considered as accurately known in the control design, and the convergence
region of the modified tracking error depends on the bounds of: external disturbances,
system states, and model coefficients. Therefore, to achieve the convergence of the modified
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tracking error to a compact set of small user-defined size, such bounds must be known.
Current AES robust adaptive control designs exhibit these two limitations (see also [19,25]).

To the authors knowledge, application of AES adaptive control to bioreactors and to
systems with unknown varying control gain is overly scarce; some examples are mentioned
as what follows in which other strategies as state observers and neural networks are
incorporated in the controller. In [25], a general nonlinear time-delay system of n differential
equations is considered, and a recursive output feedback backstepping is used. Moreover,
the model of a two-stage chemical reactor with recirculation is considered as a particular
case of the general system. The reactor model corresponds to a second-order nonlinear
system, where the first state is the known output, while the remaining states are unknown.
The limitation is that the controller design considers the control gain as constant and
perfectly known. In [29], a CSTR is considered, whose model corresponds to a second-
order nonlinear system, where the first state is the known output, whereas the remaining
states are unknown. The controller uses neural network and a high-order sliding mode
(HOSM) observer. An antiwindup compensator is used, which amounts to the auxiliary
system of the AES strategy. The limitation is that the control gain is considered perfectly
known. In [30], a SISO nonlinear system of n order with unknown nonlinear control gain
is considered. The unknown nonlinear nature of the control gain is tackled by using the
Nussbaum function strategy. The main limitation is that the size of the convergence region
of the modified tracking error depends on the unknown model coefficients and bounds.

In this study, a Lyapunov-based adaptive controller is developed for a fed-batch
bioreactor in the presence of input saturation, unknown varying model parameters, out-
put measurement noise, and unknown varying control gain, with unknown upper and
lower bounds. An adaptive robust control design based on dead-zone quadratic forms
is proposed for tackling the lack of knowledge on model parameters, control gain, and
measurement noise. An improved robust auxiliary system is proposed for tackling the
effect of input saturation, subject to varying control gain, with unknown upper and lower
bounds. The stability analysis of the system under the formulated controller includes the
following proofs: boundedness of the parameter updating error; convergence of the modi-
fied tracking error to a compact set of user-defined size; and convergence of the regular
tracking error to a residual set of user-defined size, in the case that the input saturation
eventually ceases. The main contributions of this paper with respect to closely related
studies that consider input saturation are:

- A new auxiliary system is proposed, which is robust against varying and unknown
control gain, and unknown upper and lower bounds. In contrast, in common adaptive
control strategies for input saturation, the control gain is considered as constant and
known in the definition of the auxiliary system (see [25,29]).

- The modified tracking error converges to a compact set whose width is user-defined,
so that model coefficients, and bounds of either external disturbances, system states,
model terms, and model coefficients are not required to be known. This is in contrast
to current adaptive control designs for input saturation (see [25,29,30]), where the
width of the convergence region depends on the aforementioned bounds.

- The noisy measurements of the substrate and volume are considered in the control
design; the imperfectly known control gain is used instead of considering the control
gain as completely unknown.

- The asymptotic convergence of the modified error is proved by means of the Barbalat’s
lemma, and it takes into account the formulated controller, which comprises the
control and update laws and the auxiliary system, involving a saturation function.

The developed strategy for tackling the unknown varying control gain is a major
contribution to the AES adaptive control literature.

The organization of the work is as follows. Section 2 presents: (i) the mass balance
model of the system and the assumptions, including the measurement model; (ii) the
features of the control gain, including boundedness features and their proofs. Section 3
presents the reference model and the statement of the control goal. Section 4 presents the
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adaptive controller design and the determination of the boundedness and convergence
properties of the closed loop state variables. In Section 5, simulations results are presented.
In Section 6, the conclusions are drawn.

The system model and assumptions presented in Section 2, and the reference model
presented in Section 3, are taken from previous works. The proofs of the boundedness fea-
tures of the control gain presented in Section 2 are original work of the authors, developed
on the basis of the features of the state variables and model terms stated in the assumptions.
The statement of the control goal presented in Section 3 mentions the convergence of the
tracking error, the model and its assumptions, and some expected convergence features
of the closed loop system. This is in agreement with robust control studies where the
control goal statement comprises the convergence of the tracking error and in some cases
also includes some challenges of the system and expected convergence features. Thus,
the original results of this study comprise: the design of the adaptive controller and the
boundedness and convergence features, shown in Section 4; the simulations, in Section 5;
the conclusions in Section 6; the determination and proof of the boundedness features of
the control gain, in Section 2; and the statement of the control goal in Section 3.

2. Background and Model Description
2.1. Background: Operation and Control of Fed Batch Processes

Common goals of fed-batch operation are: (i) To tackle the effect of substrate inhibition
and catabolite repression; (ii) to achieve high biomass growth; (iii) to achieve high rate
of product formation [11,31]. The biomass growth, product formation, and growth rate
are highly influenced by the feeding rate. Underfeeding may cause low productivity and
starvation, whereas overfeeding may lead to formation of undesired products [11,32,33].
A high feed rate gives faster growth and lower process time, improving productivity,
but excess carbon source usually leads to accumulation of metabolic by-products that
inhibit cell growth and formation of the target product [7,10]. A no feeding phase can
be used before the feeding phase, featuring substrate consumption and biomass growth,
being the feeding phase initiated when the substrate concentration has decreased until a
critical value [4,34]. Thus, the aforementioned goals can be achieved by either open loop
operation, optimization or control of biochemical variables, with adequate manipulation of
the feeding rate [11,32]. To this end, development and utilization of an appropriate kinetic
description of involved bioprocess phenomena is required. The cell population can be
described through stochastic models involving a probabilistic function that consider the
probability of birth and death of microbial cells depending on the cell age. If probabilistic
functions are not considered in the model, the description becomes deterministic and
other types of distribution can be used, such as the distribution of the average age of
cell population as a function of time. The kinetic models of the culture behavior can be
either structured or nonstructured. In the former case, the constituent components of the
biological system studied and the interactions between them are considered. These models
are complex and the determination of their parameters is quite difficult. In contrast, the
nonstructured models simplify the description of culture behavior by considering the cells
as black boxes with some “average” composition that is characterized through the overall
cell biomass concentrations [35,36]. However, optimization and control are hampered by
modelling mismatch, and control is also hampered by feed disturbances and measurement
noise. Modeling mismatch is caused by complex biochemical processes occurring during
microbial growth and synthesis of metabolites, being highly sensitive to culture conditions.
As a consequence, the development of reliable mechanistic models is challenging, with
changing observed kinetics, unknown parameter variation, and commonly poor model
predictions [7,9,17,37]. In addition, in bioreactor controllers that include integral action,
input saturation may lead to degraded performance of the closed loop system [38,39].

Conventionally, the control of biochemical variables in fed-batch processes is open
loop type (feed-forward), using an exponential feeding rate for regulation of the specific
growth rate, the set point value being chosen so as to avoid formation of undesired product.
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Nevertheless, this approach is robust neither to process disturbances nor to modelling
error [10,40]. In on-line optimization a nonlinear programming problem through control
vector parameterization (CVP) approach is often considered [41,42]. In closed loop control,
on-line feedback of the tracking error is used, with the feed rate as the manipulated
variable, and either substrate concentration, product concentration, or specific growth rate
as controlled variable [10,40]. One possibility is to regulate substrate concentration so as to
favour either biomass growth or product formation. In this case, the set point value must
be chosen according to the objective of the process [10]. One way to avoid formation of
undesired product is to on-line measure its concentration, and to reduce the feed rate if
threshold values are exceeded [10]. In particular, adaptive control of bioreactors uses on-
line parameter adaptation, in order to overcome the lack of knowledge on kinetics [11,38].
Model reference adaptive control (MRAC) methods allow handling model non-linearities,
unpredictable system dynamics, and unpredictable disturbances. The control design is
aimed at minimizing the error between the desired and measured output (tracking error).
The resulting control and update mechanisms depend on the tracking error [11]. The
approach of [14] uses the MRAC scheme as framework, and a Lyapunov function with
dead-zone quadratic forms, in order to tackle the lack of knowledge on varying model
parameters, including unknown varying control gain.

2.2. Model Description

We consider the fed-batch model [43], which corresponds to the model of [6,10,44,45]
with zero maintenance constant, that is, ms = 0:

dS
dt

= −(Yµ)X + (Sin − S)
Qin
V

(1)

dX
dt

= µX + (−1)X
Qin
V

(2)

dV
dt

= Qin (3)

where S is the substrate concentration, X is the biomass concentration, µ is the specific
growth rate of biomass, Y is the yield coefficient, Sin is the inflow substrate concentration,
Qin is the inlet flowrate, V is the volume of the culture medium. Common expressions
of specific reaction rates used for biological systems include Contois, Monod, and Hal-
dane [10,46–48]. Specific reaction rates can be negative for X > 0, see [49–51].

The inlet flowrate Qin is chosen as control input. In practical bioreactor operation,
it is non-negative and must have an upper bound defined by the operational limits of
the pumps [52]. Therefore, the relationship between Qin (denoted as υ) and the designed
unconstrained control input (denoted as u) is:

υ =


umax i f u > umax
u i f u ∈ [umin, umax]
umin i f u < umin

(4)

Remark 1. In the case of no saturation, we have υ = u, so that ∆u = υ − u is zero. In the
case of saturation at the upper bound, υ = umax, we have: z < −Cbe, u > umax. Therefore,
∆u = (−1)(u− umax) < 0. In the case of saturation at the lower bound, υ = umin, we have:
z > Cbe, u < umin. Therefore, ∆u = umin − u > 0.

The following features are considered:

Assumption 1. The substrate concentration S and the biomass concentration X are bounded,
X ∈ R+ and S ∈ (0, Sin) [6].

Assumption 2. The value of Y is positive and unknown, and its upper bounds are also un-
known [3,15,45].
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Assumption 3. The specific growth rate µ is a generic function, it is unknown, bounded, and its
upper and lower bounds are unknown [16,53,54].

Assumption 4. The biomass concentration X is unknown, and its upper bound is also un-
known [3,15,53,55].

Assumption 5. The value of Qin is measured in real time without noise, whereas the values of Sin,
S, V are noisily measured in real time, and the measurement noise models are:

Sim = Sin + δsi (5)

Sm = S + a0 (6)

Vm = V + δv (7)

where Sin, S, V are unknown real values, whereas Sim, Sm, Vm are the noisy measurements, and δsi,
ao, δv are the measurement errors, respectively. The measurement errors and their time derivatives
are unknown, bounded, and their bounds are unknown. The measured values Sim, Sm satisfy
(Sim − Sm) > 0 according to [53,54,56]. The measured value of the volume satisfies Vm > 0.

The measurement models (5) to (7) were stated based on the measurement model
structure (·)m = (·) + δ, where (·)m is the measured value, (·) is the real value, and δ is the
measurement error [57].

Remark 2. The conditions considered in Assumption 1 are accomplished for fed-batch reactor with
control of substrate concentration:

- Real control applications. The substrate and biomass concentrations remain positive and
bounded, and the inflow substrate concentration is lower than the substrate concentration in
real control applications (see [37]).

- Model-based applications. For model (1) to (3), the state variables X, S are upper bounded
for bounded dilution rate Qin/V (cf [16,38]), and X ≥ 0, S < Sin [6]. Moreover, substrate
concentration is kept positive when substrate concentration is controlled [10]. During fed-
batch regime only partial equilibria are possible: biomass or substrate concentrations can be
stabilized, but V cannot, because Qin ≥ 0 so that V > 0 [16].

Remark 3. Assumptions 2 and 3 are related to the uncertainty on the reaction rate terms, which
is due to the unknown time varying nature of the reaction yield and coefficients of the reaction
rates [3–6]. In case of fed-batch reactors, it has been reported that unknown parameter variation
arises as a consequence of complex biochemical processes that occur during microbial growth and
synthesis of metabolites, being highly sensitive to culture conditions [7,9,17,37].

Remark 4. Assumption 5 is related to measurement noise. On-line measurement of biological state
variables, e.g., concentrations of substrates, biomass, metabolic enzymes and product is severely
affected by the following: the required quality of monitored data and sampling frequency depend on
the accuracy of the sensors employed; in many cases, online measurement of the state variables is
not possible, due to the high cost of sensors and extreme operating conditions [58]. Measurement
noise can be expressed in additive form [16].

Remark 5. The online measurement of substrate concentration and the unavailability of biomass
concentration (in Assumptions 4 and 5) are realistic conditions in control of substrate concentra-
tion [15].
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2.3. Features of the Control Gain

In this subsection, we prove some features of the control gain that are required by the
controller design. Since Sin, V measurements are noisy, the control gain b = (Sin − S)/V is
computed as:

bm =
Sim − Sm

Vm
(8)

In order to account for this, we rewrite b in terms of bm, using the measurement
models (5) to (7):

b = bδbm (9)

where
bδ =

Si − S
Sim − Sm

Vm

V
, (10)

bδ is unknown, whereas bm is known. The following properties hold:

Pi) bδ > µb > 0 (11)

µb =
min{Vm}

min{Vm}+ max|δv|
· min{Si − S}

max{Si}+ max{|δ|} > 0 (12)

Pii) bm >
min{Sim − Sm}

max{Vm}
> 0 (13)

Piii) bδ is upper bounded (14)

where µb is positive, constant, and unknown. The proof is provided at what follows. From
(7) it follows that V< Vm + max|δv|. Hence

Vm

V
>

Vm

Vm + max|δv|
Vm

V
>

min{Vm}
min{Vm}+ max|δv|

> 0
(15)

Since Sim − Sm < Sim, using (5), we get:

Sim − Sm < max{Si}+ max|δ| (16)

Assumption 1 implies Si − S > 0. Using this fact, Equation (16) and Assumption 5,
we get:

1
Sim − Sm

>
1

max{Si}+ max{|δ|}
Si − S

Sim − Sm
>

min{Si − S}
max{Si}+ max{|δ|} > 0

(17)

Combining Equations (15) and (17), yields Equation (11).
To prove that bm is bounded away from zero, we notice that the bounded nature of Vm

leads to
1

Vm
>

1
max{Vm}

which implies that Equation (13) holds.
To conclude the bounded nature of δb (10) stated in property (14), we notice from

Assumptions 1 and 5. that: δsi, ao, δv are bounded; (Sim − Sm) > 0; V > 0 and S is bounded
for Qin bounded.
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3. Reference Model and Control Goal
3.1. Reference Model

In adaptive control of bioreactors, the beginning of closed loop operation exhibits a
higher increase of updated parameters and a higher control effort, which in turn implies a
higher possibility of input saturation [14,15,54]. To reduce this effect, one strategy is to set
up the desired behavior of the output, denoted as yd, with continuous evolution from the
initial value yd|to = y|to to the expected set point, being to the time the controller is started
(see [6,14]). To that end, we use the reference model yd = (am/(p + am))r, equivalently,

dyd
dt

= am(−yd + r) (18)

where r is the command signal and am is a positive constant defined by the user, which
determines the speed in which the desired output yd approaches the signal r. We choose
the following conditions on r and yd:

r|to = y|to; yd|to = r|to (19)

Remark 6. The desired output yd is provided by model (18), with conditions (19), so that yd,
.
yd

are bounded and known.

Remark 7. From (19) it follows that e|to = 0 which implies lower control effort at initial time.

3.2. Control Goal

Control goal. Consider: (i) the plant model (1)–(3) subject to Assumptions 1 to 5,
being S the controlled output (y = S) and Qin the control input, so that

ym = y + ao (20)

ym is the noisy measurement of y and y is the unknown real output value, according
to Assumption 5.

(ii) the tracking error e
e = ym − yd (21)

where yd is the desired output, provided by model (18), satisfying conditions (19), with pos-
itive constant user-defined am and user-defined r; (iii) the residual set Ωe = {e : |e| ≤ Cbe}
whose size Cbe is positive, constant, and user-defined.

The goal of the controller design is to formulate a control law and an update law for
the control input υ which corresponds to Qin, such that: (Gi) the tracking error e converges
asymptotically to the residual set Ωe; (Gii) the updated parameter, the tracking error and
control law are bounded upon closed loop (parameter drifting is avoided); (Giii) the control
and update laws involve no discontinuous signals.

Remark 8. The reason for stating condition Giii is that the presence of discontinuous signals in
the control input may lead to input chattering, problems of existence and uniqueness of closed loop
trajectories, and the need of using Filippov theory, as discussed by [59,60].

4. Controller Design and Stability Analysis

In this section, the adaptive robust controller is designed for the bioreactor model (1)–(3)
subject to Assumptions 1 to 5, the control goal stated in Section 3, and the input constraint (4).
Some important tasks of the procedure are: (i) dead-zone quadratic forms are used instead
of the current Lyapunov function; (ii) the unknown varying model parameters are param-
eterized in terms of the control gain, in order to tackle the unknown varying nature of
the control gain; (iii) a new auxiliary system is proposed in order to tackle both the effect
of input saturation and uncertainty on the control gain; (iv) a new treatment of the b∆u
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term is proposed; (v) a saturation function of the modified tracking error is used instead of
discontinuous functions.

For simplicity seek, the substrate Equation (1) is combined with definition (9):

dS
dt

= −(Yµ)X + bδbmυ (22)

where bm is known, whereas bδ is unknown, and both are bounded away from zero,
according to properties (11) to (14). Consider the modified error z = e− ψ, where ψ is the
state of the auxiliary system that will be defined later. Accounting for the tracking error
e = ym − yd yields

z = ym − yd − ψ (23)

Combining with Equation (20) yields z = y + ao − yd − ψ. Differentiating with respect
to time, yields

.
z =

.
y− .

yd −
.
ψ +

.
ao. Combining this with Equation (22) yields

dz
dt

= −(Yµ)X +
.
a0 −

.
yd + bδbmυ−

.
ψ (24)

To handle the uncertainty on Y, µ, X, a0,
.
a0, the following Lyaunov-like function

is used:

Vz =


(1/2)(z− Cbe)

2 f or z ≥ Cbe
0 f or z ∈ (−Cbe, Cbe)

(1/2)(z + Cbe)
2 f or z ≤ −Cbe

(25)

which vanishes for z ∈ (−Cbe, Cbe). An early form of this function is reported by [61,62],
and latter variants are reported by [14,63–65]. The main properties of Vz are:

Vz ≥ 0 (26)

|z| ≤ Cbe +
√

2Vz (27)

Vz, dVz/de are continuous with respect to z (28)

Differentiating (25) with respect to time, yields

dVz

dt
= fz

dz
dt

(29)

fz =
dVz

dz
=


z− Cbe f or z ≥ Cbe
0 f or z ∈ (−Cbe, Cbe)
z + Cbe f or z ≤ −Cbe

(30)

Combining Equations (29) and (24) and adding and subtracting the term c1 f 2
z , yields

dVz

dt
= fz

.
z = −c1 f 2

z +
(
−(Yµ)X +

.
ao
)

fz +
(
c1 fz −

.
yd
)

fz + bδbmυ fz − fz
.
ψ (31)

being c1 a user-defined positive constant. The term−c1 f 2
z provides asymptotic convergence

of f 2
z to zero, as is shown later in the convergence analysis.

The input υ (4) is expressed as υ = u + ∆u, where:

∆u = υ− u (32)

Therefore, bδbmυ fz = bδbmu fz + bδbm∆u fz. Substituting this into Equation (31), yields

dVz

dt
= −c1 f 2

z +
(
−(Yµ)X +

.
ao
)

fz +
(
c1 fz −

.
yd
)

fz + bδbmu fz + bδbm∆u fz − fz
.
ψ (33)
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The term bδ is upper bounded according to property (14), so that it satisfies

|bδ| ≤ µ2 (34)

where µ2 is unknown, positive, and constant. Therefore,

bδbm∆u fz ≤ µ2|bm fz∆u| (35)

In order to tackle the lack of knowledge on µ2, we define the updating error

θ̃b = θ̂b − µ2 (36)

where θ̂b is an updated parameter that will be defined later; it allows tackling the lack
of knowledge on bδ. From the above expression, µ2 can be expressed as µ2 = θ̂b − θ̃b.
Substituting this into (35), yields

bδbm∆u fz ≤ |bm fz∆u|θ̂b − |bm fz∆u|θ̃b (37)

Substituting into Equation (33) and arranging, yields

dVz

dt
≤ −c1 f 2

z +
(
−(Yµ)X +

.
ao
)

fz +
(
c1 fz −

.
yd
)

fz + bδbmu fz

− fz

( .
ψ− sgn( fz)|bm∆u|θ̂b

)
− |bm fz∆u|θ̃b

(38)

Therein, the signal sgn( fz) is discontinuous with respect to z, as can be concluded
from (30). This would lead to a discontinuous signal in the definition of

.
ψ. To remedy this,

we notice from (30) that | fz| can be rewritten as:

| fz| = fzsatz (39)

where

satz =


+1 f or z ≥ Cbe
z/Cbe f or z ∈ (−Cbe, Cbe)
−1 f or z ≤ −Cbe

(40)

Using this property, Equation (38) can be rewritten as:

dVz

dt
≤ −c1 f 2

z +
(
−(Yµ)X +

.
ao
)

fz +
(
c1 fz −

.
yd
)

fz + bδbmu fz

− fz

( .
ψ− satz|bm∆u|θ̂b

)
− |bm fz∆u|θ̃b

(41)

Thus, in order to counteract the effect of the term involving |bm∆u|θ̂b, the auxiliary
system is chosen as

dψ

dt
= −c2ψ + satz θ̂b|bm∆u| (42)

where c2 is a user-defined positive constant, ∆u is defined in Equation (32) and θ̂b is an
updated parameter that is defined later, and it allows tackling the lack of knowledge on bδ.

Remark 9. The main differences of this auxiliary system with respect to that of [24] are: (i) it
involves the saturation function satz, (ii) it involves the bm term instead of considering the control
gain as completely unknown; (iii) it involves an absolute value term that includes the ∆u signal.
This features are due to the robustness strategy.

Substituting Equation (42) into Equation (41) and arranging, yields

dVz

dt
≤ −c1 f 2

z +
(
−(Yµ)X +

.
ao
)

fz +
(
c1 fz −

.
yd + c2ψ

)
fz + bδbmu fz − θ̃b|bm fz∆u| (43)
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The application of the robustness strategy of [14] would imply sgn(u) = (−1)sgn(bδ)
sgn(z) for z 6= 0. Definition (10) and constraint (4) lead to sgn(bδ)= 1 and min (υ) = 0, so
that sgn(u) = −sgn(z). Therefore, u < 0 and v = 0 whenever z > 0. This would imply
frequent saturation in the long term, corresponding to moments when z > 0. In order to
reduce this effect, an additive constant term ua is incorporated in the control input:

bmu = ua + ub (44)

where ua is constant, positive, user-defined, and satisfies ua ∈ [umin, umax], and its value
can be selected as the value of u at initial open loop regime. Equation (44) leads to

u =
1

bm
(ua + ub) (45)

Substituting into Equation (43), yields

dVz

dt
≤ −c1 f 2

z +
(
−(Yµ)X +

.
ao + bδua

)
fz +

(
c1 fz −

.
yd + c2ψ

)
fz + bδub fz − θ̃b|bm fz∆u| (46)

In view of Assumptions 1 to 5, the term −(Yµ)X +
.
ao + bδua is bounded, so that

−(Yµ)X +
.
ao + bδua ≤ µ1, where its upper bound µ1 is unknown, positive, and constant.

Therefore, (
−(Yµ)X +

.
ao + bδua

)
fz ≤ | fz|µ1(

c1 fz −
.
yd + c2ψ

)
fz ≤

∣∣c1 fz −
.
yd + c2ψ

∣∣| fz|
(47)

In order to account for the presence of the unknown bδ, we incorporate the lower
bound µb, defined in Equation (12):

(
−(Yµ)X +

.
ao + bδua

)
fz ≤ µb| fz|

µ1
µb

(48)

(
c1 fz −

.
yd + c2ψ

)
fz ≤ µb | fz|

∣∣c1 fz −
.
yd + c2ψ

∣∣ 1
µb

(49)

where µ1/µb, (1/µb) are unknown, positive, and constant. Adding Equations (48) and (49),
yields(

−(Yµ)X +
.
ao + bδua

)
fz +

(
c1 fz −

.
yd + c2ψ

)
fz ≤ µb| fz|

(
µ1
µb

+
∣∣c1 fz −

.
yd + c2ψ

∣∣ 1
µb

)
= µb ϕ>θ| fz| (50)

where
ϕ =

[
1,
∣∣c1 fz −

.
yd + c2ψ

∣∣]> (51)

θ =

[
µ1
µb

,
1

µb

]>
(52)

Remark 10. To tackle the lack of knowledge on the input gain term bδ, a crucial task was to
incorporate the lower bound µb in the expression of uncertain model parameters in terms of upper
bounds [Equations (48) and (49)], and in the definition of θ [Equations (50) and (52)].

In order to rewritte ϕ>θ in terms of updating errors and updated parameters, we
define the updating error as:

θ̃ = θ̂ − θ (53)

where θ̂ is an updated parameter that will be defined later.

Remark 11. The size of the θ̂ vector is the same as that of θ, and it is not increased by the
incorporation of the additive term ua in the control input.
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The parameter vector θ can be expressed as θ = θ̂ − θ̃, and ϕ>θ can be expressed as
ϕ>θ = −θ̃>ϕ + ϕ> θ̂. Substituting this into Equation (50), yields:(

−(Yµ)X +
.
ao + bδua

)
fz +

(
c1 fz −

.
yd + c2ψ

)
fz ≤ −µb| fz|θ̃>ϕ + µb| fz|ϕ> θ̂ (54)

In view of Property (11), we have µb| fz|ϕ> θ̂ ≤ |bδ|| fz|
∣∣ϕ> θ̂

∣∣. Substituting this into
Equation (54), yields(

−(Yµ)X +
.
ao + bδua

)
fz +

(
c1 fz −

.
yd + c2ψ

)
fz ≤ −µb| fz|θ̃>ϕ + |bδ|| fz|

∣∣∣ϕ> θ̂
∣∣∣

Substituting into Equation (46) and arranging, yields

dVz

dt
≤ −c1 f 2

z − µb| fz|θ̃>ϕ + bδ fz

(
ub + sgn(bδ)sgn( fz)

∣∣∣ϕ> θ̂
∣∣∣)+ (−1)θ̃b|bm fz∆u| (55)

Thus, the control law term can be defined as ub = −sgn(bδ)sgn( fz)
∣∣ϕ> θ̂

∣∣, so as to

obtain dVz/dt ≤ −c1 f 2
z − µb| fz|θ̃>ϕ + (−1)θ̃b

∣∣∣ fzbm∆u . Since it involves the discontinuous
signal sgn( fz), we use the property (39), so that (55) can be rewritten as:

dVz

dt
≤ −c1 f 2

z − µb| fz|θ̃T ϕ + bδ fz

(
ub + sgn(bδ)satz

∣∣∣ϕ> θ̂
∣∣∣)+ (−1)θ̃b|bm∆u fz| (56)

Thus, the control law term ub is chosen as:

ub = −sgn(bδ)satz

∣∣∣ϕ> θ̂
∣∣∣ (57)

Using (45), the control law is:

u =
1

bm

(
ua − sgn(bδ)satz

∣∣∣ϕ> θ̂
∣∣∣)

υ =


umax i f u > umax
u i f u ∈ [umin, umax]
umin i f u < umin

(58)

which is continuous with respect to z and θ̂. Substituting ub (57) into Equation (56), yields

dVz

dt
≤ −c1 f 2

z − µb| fz|θ̃>ϕ + (−1)θ̃b|bm∆u fz| (59)

The update law is chosen so as to tackle the effect of the term −µb| fz|θ̃>ϕ:

.
θ̂ = Γϕ| fz| (60)

where Γ is a 2 × 2 diagonal matrix whose diagonal entries are user defined positive con-
stants. The update law for θ̂b is chosen so as to tackle the effect of the term (−1)θ̃b|bm∆u fz|:

.
θ̂b = γb|bm fz∆u| (61)

where γb is user defined, positive, and constant.

Remark 12. The controller comprises: the control law (4), (58); the update law (60) with the
2 × 2 diagonal matrix Γ whose diagonal entries are user defined, positive, and constant; the update
law (61) being γb user defined, positive, and constant; and the auxiliary system (42). The signals
involved therein are: (i) e (21), z (23), fz (30), ϕ (51), sat z (40), bm (8); (ii) the desired output yd,
provided by model (18), with conditions (19), according to remark 6.; (iii) the input error ∆u (32),
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which involves u (58) and v (4); (iv) the constants c1 and c2, which are user-defined and positive;
(v) the constant ua, which is user-defined, positive, and satisfies ua ∈ [umin, umax].

Remark 13. In the control design procedure, a new treatment of the b∆u fz term is proposed, in view
of the lack of knowledge on b and its upper bound µ2: (i) the b∆u fz term is expressed as function of
its upper bound [Equation (35)]; (ii) the b∆u fz term is expressed as function of parameter updating
error θ̃b and updated parameter θ̂b [Equation (37)]; (iii) the update law for θ̂b [Equation (61)] is
formulated so as to obtain adequate time derivative of the overall Lyapunov function.

Remark 14. The resulting auxiliary system (42) involves significant differences with respect to
current ones ([25,29]), and also different with respect to that of [30]: it involves a saturation
function of z; it involves the updated parameter θ̂b, which is function of fz and ∆u; the ∆u signal
is in absolute value.

Remark 15. Other major features of the control design procedure are:

• The modified error z = e− ψ is used as closed loop state variable instead of the tracking error
e, being ψ provided by the auxiliary system (42);

• In the
.

Vz expression, the effect of b∆u fz term is tackled by means of the term− fz
.
ψ by properly

defining the auxiliary system;
• Due to the lack of knowledge on the lower bound of bδ, that is µδ, µδ is incorporated in the

arrangement of uncertain model terms as function of upper bounds [Equations (48) and (49)];
and µδ is incorporated in the definition of the unknown parameter vector [Equation (52)];

• Due to the the lack of knowledge on the upper bounds of uncertain model terms, the model
terms are arranged as function of upper bounds [Equation (47)]; the model terms are arranged
as function of parameter and regression vector [Equation (50) to (52)]; the model terms are
arranged as function of parameter updating error and updated parameters [Equation (54)];
and the update law for θ̂ [Equation (60)] is defined.

Remark 16. The main features of the formulated control law, update law, and auxiliary system
are: (i) The structure of the reaction rate terms, the plant model coefficients, the control gain and
the upper and lower bounds of model terms are not required to be known; (ii) the known term bm
(8) is used instead of considering the control gain b as completely unknown; (iii) instead of using
discontinuous signals, a saturation function of the modified error z is used in the control law and the
auxiliary system, and the continuous function fz is used in the update laws, in this way undesired
input chattering and the need of using the Filippov theory are avoided.

Remark 17. When z is inside the target region Ωz = {z : |z| ≤ Cbe}, fz = 0, so that θ̂ remains
constant, which is concluded from Equations (60) and (30). In turn, this contributes to the avoidance
of parameter drifting.

4.1. Control Goal

Theorem 1. [Boundedness of the closed loop signals]. Consider the model (1)—(3), subject input
constraint (4) and Assumptions 1 to 5, and signals e (21), z (23), fz (30), ϕ (51), sat z (40). If
the controller (58), (60), (61), (42) is applied, then: (Ti) the signals z, θ̂, θ̂b, e, ψ and bmu remain
bounded; (Tii) |z| ≤ Cbe +

√
2W(xto); (Tiii)

∣∣θ̂b
∣∣ ≤ √2γbW(xto) + µ2.

Proof of Theorem 1. The Lyapunov function is chosen as

W(x) = Vz + Vθ (62)

Vθ =
1
2

µb θ̃>Γ−1θ̃ +
1
2

γ−1
b θ̃2

b

x =
[
z, θ̃>

] (63)
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where Vz is defined in (25), θ̃ in (53) and θ̃b in (36). Differentiating W with respect to time,
yields

.
W =

.
Vz +

.
Vθ

.
Vθ =

1
2

µb

(
.
θ̃
>

Γ−1θ̃ + θ̃>Γ−1
.
θ̃

)
+ γ−1

b θ̃b

.
θ̂b

(64)

Combining this with update laws (60), (61) yields
.

Vθ = µb| fz|ϕ> θ̃ + θ̃b|bm fz∆u|.
Combining this with Equations (64) and (59), yields

.
W ≤ −c1 f 2

z (65)

Arranging and integrating, yields

W(x(t)) + c1

∫ t

to
f 2
z dt ≤W(x(to))

Hence, accounting for (26), we have:

W(x(t)) ≤W(x(to)) (66)

c1

∫ t

to
f 2
z dt ≤W(x(to)) (67)

Thus, W ∈ L∞. In view of (62) one further obtains Vz ∈ L∞, Vθ ∈ L∞. In view of (25)
one further obtains z ∈ L∞. In view of (63), (53), (36) one further obtains θ̃ ∈ L∞, θ̃b ∈ L∞,
and consequently θ̂ ∈ L∞, θ̂b ∈ L∞.

In view of Assumption 1, X and S are bounded since input saturation renders Qin
bounded. Therefore, ym and e = ym − yd are bounded. In view of the definition of z
(23), and boundedness of z, one further obtains ψ ∈ L∞. In view of Equation (51), one
further obtains ϕ ∈ L∞. In this way, all the components of bmu are bounded, and using
Equation (58) one further obtains bmu ∈ L∞. This completes the proof of Ti.

We notice that Equations (66) and (62) lead to Vz ≤ W(xto). Further using property
(27), yields |z| ≤ Cbe +

√
2W(xto). This completes the proof of Tii.

From Equation (66), (62), (63) it follows that (1/2)γ−1
b θ̃2

b ≤W(xto). Hence,∣∣∣θ̃b

∣∣∣ ≤ √2γbW(xto) (68)

Definition (36) yields
∣∣∣θ̂b|≤|θ̃b|+|µ2

∣∣∣. Combining this with Equation (68), yields∣∣θ̂b
∣∣ ≤ √2γbW(xto) + µ2. This completes the proof of Tiii. �

4.2. Convergence Analysis

Theorem 2. [Convergence of signals z, e]. Consider the model (1)—(3), subject to input constraint
(4) and Assumptions 1 to 5, and signals e (21), z (23), fz (30), ϕ (51), satz (40). If the controller
(58), (60), (61), (42) is applied, then: (Ti) the signal z converges asymptotically to Ωz, where Ωz =
{z : |z| ≤ Cbe}; (Tii) if ∆u vanishes, then e converges asymptotically to Ωe, Ωe = {e : |e| ≤ Cbe}.

Proof of Theorem 2. From Equation (67), it follows that f 2
z ∈ L1. In order to apply the

Barbalat’s Lemma, we need to prove that f 2
z ∈ L∞, and d

(
f 2
z
)
/dt ∈ L∞.

Recall that z ∈ L∞, as stated by Theorem 1. Then, it follows from Equation (30) that
fz ∈ L∞. Hence f 2

z ∈ L∞.
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Differentiating f 2
z with respect to time, using (30), yields:

d
(

f 2
z
)

dt
=


2(z− Cbe)

dz
dt f or z ≥ Cbe

0 f or z ∈ (−Cbe, Cbe)

2(z + Cbe)
dz
dt f or z ≤ −Cbe

= 2 fz
dz
dt

From this we conclude that d
(

f 2
z
)
/dt ∈ L∞. So far, we have proved that

(
f 2
z
)
∈ L1,

f 2
z ∈ L∞, and d

(
f 2
z
)
/dt ∈ L∞. Applying Barbalat’s Lemma [66], yields limt→∞

(
f 2
z
)

= 0.
Therefore, in view of (30), it follows that z converges asymptotically to Ωz, where

Ωz = {z : |z| ≤ Cbe}. This completes the proof of Ti.
From (42)), it follows that if ∆u vanishes, then ψ converges to zero. In this case, from

Equation (23) it follows that z converges to e. In view of the convergence of z stated in Ti,
it follows that e converges asymptotically to Ωe, Ωe = {e : |e| ≤ Cbe}. This completes the
proof of Tii. �

The developed controller design considers a fed-batch system, with the substrate
concentration as output to be controlled, and the dilution rate as manipulated input.
Remarkable features of the system are: (i) the control input is constrained; (ii) the mea-
surements of inflow and outflow substrate concentrations are corrupted by noise, which
implies that the control gain is unknown and its bounds are also unknown; (iii) the biomass
concentration and the reaction rate parameters are unknown, and their bounds are also
unknown. The closed loop features are: (i) The modified tracking error converges to a
compact set of user-defined width, which depends on neither model terms, nor modelling
error, nor model coefficients nor disturbance terms; (ii) the absence of excessive increase
of updated parameters is guaranteed; (iii) discontinuous signals are used in neither the
auxiliary system nor the control law nor the update law. To this end, significant improve-
ments were made in the whole control design procedure, and the resulting auxiliary system
includes an additional update law, which allows tackling the lack of knowledge on the
control gain. In summary, the controller design achieves the aforementioned closed loop
features, it takes into account the aforementioned system challenges, and it provides an
improved design procedure. This is a significant contribution to current robust control
studies for input saturated systems, in special AES-based control designs.

Remark 18. The expression
.

W ≤ −c1 f 2
z (65) takes into account the formulated controller, that

is, the control and update laws, the auxiliary system, and the saturation functions, and the fact
that it depends on neither the bounds of external disturbances, unknown system states or model
coefficients. Therefore, the proof of asymptotic convergence of the modified error z is valid upon these
controller features.

Remark 19. The size of the convergence region Ωz, that is Cbe, is user-defined so that it does
not depend on the bounds of either external disturbances, system states, or model coefficients.
Consequently, such bounds are not required by the formulated controller. This is a significant
improvement with respect to current AES-based adaptive controller, e.g., [19,25].

Remark 20. In the case that input constraint were not taken into account, the controller design
would be based on a dead zone function of the tracking error, fe, featuring fe = 0 when the tracking
error e is inside the convergence set Ωe, that is, |e| ≤ Cbe. Moreover, the updated parameters
would be integrals of fe terms. However, the convergence of e and the boundedness of the updated
parameters would not be guaranteed for input constraint. Indeed, during input saturation moments,
the tracking error would increase and e /∈ Ωe. Therefore, the updated parameters would continue
increasing and excessive increase would occur. In contrast, in the case that input constraint is
handled via AES strategy (Section 4): (i) the controller design is based on a dead zone function of the
modified tracking error ( fz), instead of fe, where the modified tracking error is z = ym − yd − ψ, ψ
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is a filter in terms of the input error, and fz = 0 when z is inside the convergence set Ωz, that is,
|z| ≤ Cbe; (ii) the updated parameters are integrals of fz instead of fe terms; (iii) the function fz
is guaranteed to converge to zero and z is guaranteed to converge to Ωz despite input saturation,
as stated by Theorem 2. During input saturation events, the convergence of fz implies that the
updated parameters do not experience excessive increase. In addition, the boundedness of updated
parameter vectors θ̂ and θ̂b is proved by Lyapunov stability theory, in the proof of Theorem 1.

5. Simulation Results

Recall that the formulated controller corresponds to the mathematical model of the
fed-batch submerged cultivation kinetics presented in Equation (1) to (3) subject to input
constraint (4), Assumptions 1 to 5, being the control goal and the desired output yd stated
in Section 3. The control and update laws and the corresponding parameters are stated in
Remark 12. At what follows, the values of S, Sim, Sm, and Vm are generated by using the
model (1) to (3) with specific parameter values, a specific form of µ, and the measurement
noise models (5) to (7) with specific values of measurement errors. These values of Sm,
Sim, and Vm are used by the controller, but the µ expression, the model parameters, the
specific values of measurement errors, and upper or lower bounds of model parameters or
measurement errors are not.

We consider Gluconacetobacter diazotrophicus culture [67], and we assume that an inflow
is incorporated thus resulting in a fed-batch process, so that model (1) to (3) applies. The
model therein is taken to the form (1) to (3), so that µ = µmaxS/(BX + S)− ko. The model
parameters are shown in Table 1.

Table 1. Model parameters.

Parameter Value

Y 7.716
B 1496.2

Sin 100 g/L
µmax 0.7058 h −1

Vto 20 L
ko 0.0179 h −1

Furthermore, the particular values of the closed loop starting time to and the refer-
ence model parameters (am, r) correspond to this culture. The measurement errors are
assumed as:

δsi = Ns, ao = Ns, δv = 0.0028Ns

where Ns is a filtered random signal in the range [−0.2 0.2].
A no feeding phase (Qin > 0) is used before the feeding phase, comprising substrate

consumption and biomass growth. The feeding phase (Qin > 0) is started when Sm reaches
the critical value S∗. Recall that this strategy can be used for fed-batch bioreactors [4,34].

The Qin saturation values, the parameters of the reference model, the user defined
parameters of the control and update laws, and the use of auxiliary system are defined
according to three cases, whereas the desired width of the convergence set is chosen as
Cbe = 0.4 and ua = (umin + umax)/2, S∗ = 20 g/L and to is the time when Sm reaches the
critical value S∗.

The three different cases aims at assessing the capability of the developed controller
to achieve the expected performance under different values of the desired output yd, the
upper limit of the manipulated input umax, the user-defined parameters of the control law,
and auxiliary system, c1, c2, the user-defined parameters of the update laws, γ1, γ2, γb and
the use of auxiliary system:
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(i). The yd trajectory is obtained through the reference model (18), the parameter am, and
the signal r: in the first case, the yd trajectory is a step response of a low pass filter,
ending in a constant value, whereas in the second and third cases it is a combination
of that of the first case, with oscillations, in order to provide high values of dyd/dt.

(ii). The umax signal is higher in the second and third cases compared with the first case.
(iii). The user-defined parameters: in the second and third cases, the values of user-defined

parameters are higher than those of the first case, in order to achieve a small tracking
error despite the increased complexity of the yd signal.

(iv). The use of auxiliary system: in the third case, no auxiliary system is used.

5.1. First Case

The Qin saturation values are umin = 0, umax = 0.0231 L/h. The parameters of the
reference model are chosen as: am = 0.1 and

r =
{

S∗ f or t < to
30 otherwise

(69)

For the control and update laws we use c1 = 1, c2 = 0.3, γ1 = 0.1, γ2 = 0.1, γb = 0.01.
Simulations show that the signals z, e, Sm, u, υ and the updated parameters θ̂1, θ̂2,

θ̂b remain bounded (Figure 1). The modified tracking error z is inside Ωz at initial time,
it is outside during [63.2 70.70] h, and it remains inside afterwards (Figure 1b). There is
an input saturation event during the time lapse [65.40 70.89] h: (i) z < −Cbe, e < −Cbe
(Figure 1b) and the constrained signal υ saturates at its upper bound (Figure 1c); (ii) the
updated parameters increase, but not excessively (Figure 1d), which is in accordance with
Theorem 1. After that time period: (i) υ remains in a periodic behavior with no further
saturation events, so that ∆u = 0 (Figure 1c); (ii) z converges to Ωz (Figure 1b), which is
made possible by parameter updating undergone before; (iii) e converges to Ωe (Figure 1b),
which is due to the convergence of z to Ωz and the ceasing of saturation events (∆u = 0)
in accordance with Theorem 2; (iv) the updated parameters converge to some constant
values, as a consequence of the convergence of z; in fact, they are constant when z ∈ Ωz
(Figure 1d).

5.2. Second Case

The Qin saturation values are umin = 0, umax = 0.0385 L/h, whereas the parameters of
the reference model are am = 1/5 and

r =
{

S∗ f or t < to
30 + 1.2sin

( 2πt
20
)

otherwise
(70)

For the control and update laws we use: ua = 0, c1 = 4, c2 = 3, γ1 = 0.2, γ2 = 0.2, γb = 0.2.
Simulations show that the signals e, Sm, z, u, υ and the updated parameters θ̂1, θ̂2, θ̂b remain
bounded (Figure 2), and the culture volume V is non-decreasing (Figure 3). The modified
tracking error z is inside Ωz at initial time, it is outside during [63.15 67.92] h, and it remains
inside afterwards (Figure 2b). There is an input saturation event during the time lapse
[63.69 69.06] h: (i) z < 0, e < −Cbe (Figure 2b,f) and the constrained signal υ saturates at
its upper bound (Figure 2c,e); (ii) the updated parameters increase, but not excessively
(Figure 2d), which is in accordance with Theorem 1.



Computation 2021, 9, 100 19 of 25Computation 2021, 9, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 1. Simulation results for the first case of reference model and controller parameter values. (a) Time course of the 
measured output 𝑆௠ and the desired output 𝑦ௗ. (b) Time course of the tracking error 𝑒 and the modified error 𝑧. (c) 
Time course of the non-saturated input 𝑢 and the saturated input 𝜐. (d) Time course of the updated parameters 𝜃෠ଵ, 𝜃෠ଶ, 𝜃෠௕. (e) Detail of non-saturated input 𝑢 and the saturated input 𝜐. (f) Detail of the tracking error 𝑒 and the modified error 𝑧. 

5.2. Second Case 
The 𝑄௜௡ saturation values are 𝑢௠௜௡ = 0, 𝑢௠௔௫ = 0.0385 L/h, whereas the parameters 

of the reference model are 𝑎௠ = 1/5 and 

𝑟̅ = ቐ𝑆∗ 𝑓𝑜𝑟 𝑡 < 𝑡௢30 + 1.2𝑠𝑖𝑛 ൬2𝜋𝑡20 ൰  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (70) 

For the control and update laws we use: 𝑢௔ = 0, 𝑐ଵ = 4, 𝑐ଶ = 3, 𝛾ଵ = 0.2, 𝛾ଶ = 0.2, 𝛾௕ = 0.2. Simulations show that the signals 𝑒, 𝑆௠, 𝑧, 𝑢, 𝜐 and the updated parameters 𝜃෠ଵ , 𝜃෠ଶ , 𝜃෠௕  remain bounded (Figure 2), and the culture volume 𝑉  is non-decreasing 
(Figure 3). The modified tracking error 𝑧 is inside Ω௭ at initial time, it is outside during 
[63.15 67.92] h, and it remains inside afterwards (Figure 2b). There is an input saturation 
event during the time lapse [63.69 69.06]h: (i) 𝑧  < 0, 𝑒 < −𝐶௕௘  (Figure 2b,f) and the 
constrained signal 𝜐  saturates at its upper bound (Figure 2c,e); (ii) the updated 

0 50 100
20

25

30

time (hours)

S m
;y

d
(g

/L
)

(a)

 

 
Sm
yd

80 100 120
–1.5

–1
–0.5

0
0.5

time (hours)

e;
z

(g
/L

)

(b)

 

 

z
e

80 100 120

0

0.02

0.04

time (hours)

u;
v

(L
/h

)

(c)

 

 
u
v
v limits

80 100 120
0

0.5

1

time (hours)

up
da

te
d 

pa
ra

m
et

er
s

(d)

 

 

3̂1

3̂2

3̂b

65 70 75
0.01

0.02

0.03

time (hours)

u;
v

(L
/h

)

(e)

65 70 75
–2

–1

0

time (hours)

e;
z

(g
/L

)

(f)

 

 

z
e

Figure 1. Simulation results for the first case of reference model and controller parameter values. (a) Time course of the
measured output Sm and the desired output yd. (b) Time course of the tracking error e and the modified error z. (c) Time
course of the non-saturated input u and the saturated input υ. (d) Time course of the updated parameters θ̂1, θ̂2, θ̂b. (e) Detail
of non-saturated input u and the saturated input υ. (f) Detail of the tracking error e and the modified error z.
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Figure 2. Simulation results for second case of reference model and controller parameter values. (a) Time course of the
measured output Sm and the desired output yd. (b) Time course of the tracking error e and the modified error z. (c) Time
course of the non-saturated input u and the saturated input υ. (d) Time course of the updated parameters θ̂1, θ̂2, θ̂b.(e) Detail
of non-saturated input u and the saturated input υ. (f) Detail of the tracking error e and the modified error z.

After that input saturation time period, υ remains in a periodic behavior with some
further saturation events at its lower limit (umin), (Figure 2c,e) and z ∈ Ωz (Figure 2b,f),
which is made possible by parameter updating undergone before. Considering the whole
closed loop regime, the tracking error e does not converge to Ωe, which is due to the input
saturation events. Indeed, e /∈ Ωe during input saturation events. However, it converges to
a close neighborhood of Ωe, and e ∈ Ωe during time lapses when saturation events cease,
for instance during [101.92 112.5]h (Figure 2b,f), which is due to the convergence of z to
Ωz and ∆u = 0 during these time lapses, according to Theorem 2. The updated parameters
remain constant during the time lapse featuring z ∈ Ωz, and remain unaffected by input
saturation events (Figure 2b,f).
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Figure 3. Simulation results for second case of reference model and controller parameter values.
(a) Time course of the biomass concentration X. (b) Time course of the culture volume V.

5.3. Third Case

In the third case, the Qin saturation values (umin, umax), the parameters of the reference
model (am, r), the user-defined parameters of the control law and auxiliary system (ua, c1,
c2), and the user-defined parameters of the update laws (γ1, γ2) are the same as those of
the second case. However, no auxiliary system is used, or equivalently, ψ = 0, so that θ̂b is
not necessary.

Simulations show that the signals e, Sm, z, u, υ remain bounded but not the updated
parameters θ̂1, θ̂2 (Figure 4). The modified tracking error z is inside Ωz = {z : |z| ≤ Cbe}
at initial time, and it exhibits intermittent dwelling periods inside Ωz but it does not
converge to Ωz (Figure 4b). There are several input saturation events after 89 h, during
which: (i) z > Cbe, e > Cbe (Figure 4b,f); (ii) the constrained signal υ saturates at its lower
bound (Figure 4c,e); (iii) the updated parameters increase as z > Cbe, with no upper bound
(Figure 4d). This simulation indicates us the importance of taking into account the effect of
input saturation, and the effectivity of the improved auxiliary system in avoiding excessive
increase of updated parameters.

5.4. General Discussion on the Simulation Results

The simulations results verify that the developed controller achieves satisfactory
convergence of the modified error z to the predefined compact set Ωz = {z : |z| ≤ Cbe},
with a small steady value and a small settling time, but also: the lack of knowledge on
the exact values and bounds of the control gain and model terms is tackled by means
of updated parameters, such that proper convergence of the signal z is achieved despite
this uncertainty; the effect of input saturation is tackled by means of the auxiliary system,
such that convergence of the signal z is achieved; discontinuous signals are used in neither
the control law, nor the update law nor the auxiliary system, and saturation type signals
are used instead, whereas the convergence of the signal z is not affected by this fact;
excessive increase of updated parameters is avoided; the tracking error e converges to the
user-defined residual set Ωe = {e : |e| ≤ Cbe} during periods with no input saturation.

The simulations show that the updated parameters remain constant when z is inside
its compact set Ωz, which verifies the effect of signal z in the update laws.
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Figure 4. Simulation results for the third simulation case. (a) Time course of the measured output Sm and the desired output
yd. (b) Time course of the tracking error e and the modified error z. (c) Time course of the non-saturated input u and the
saturated input υ. (d) Time course of the updated parameters θ̂1, θ̂2. (e) Detail of non-saturated input u and the saturated
input υ. (f) Detail of the tracking error e and the modified error z.

From the simulations during the oscillatory behavior of yd in the second case for
t ≥ 63.2 h it follows that: (i) excessive increase of the updated parameters is avoided
despite reiterated saturation events, during which the tracking error e remains outside
the compact set Ωe; (ii) the tracking error e converges to Ωe during periods with no input
saturation (∆u = 0), but it is outside Ωe during periods with input saturation (∆u 6= 0).
In addition, the oscillations of yd imply that a higher control effort is required in order
to achieve the convergence of the output y to yd. To this end, higher values of controller
parameters c1, c2, γ1, γ2, γb have been used in the second case. However, the limitation of
the control effort due to input saturation leads to limited speed of the output y, so that it
fails to reach yd, and the values of the tracking error |e| are higher than required, although
only during moments of higher dyd/dt values.

6. Conclusions

In this paper, a new adaptive controller was formulated for a fed-batch culture sub-
ject to output measurement noise, unknown parameter variation, input saturation, and
unknown varying control gain with unknown lower and upper bounds. The proposed
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procedure is novel with respect to that of controller designs aimed at tackling input sat-
uration. The rewriting of the b∆u term, the formulation of the auxiliary system and the
parameterization of the terms related to model parameters are novel tasks. It was ensured
that: (i) Excessive increase of updated parameters is avoided despite input saturation;
(ii) the tracking error converges to a compact set whose width is user-defined, so that
model coefficients, bounds on external disturbances and model terms are not required to be
known; (iii) the modified tracking error and the regular tracking error are bounded despite
input saturation. In addition, saturation functions of the modified tracking error are used
instead of discontinuous signum type functions, so as to avoid undesired chattering. To
this end, the design is based on quadratic forms with vertex dead zone. The proposed
approach can be applied to other SISO nonlinear continuous time systems.
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