
Citation: Tancoš, Martin, Edita

Chvojka, Michal Jabůrek, and Šárka
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Abstract: The stereotype that children who are more able solve tasks quicker than their less capable
peers exists both in and outside education. The F > C phenomenon and the distance–difficulty
hypothesis offer alternative explanations of the time needed to complete a task; the former by the
response correctness and the latter by the relative difference between the difficulty of the task and
the ability of the examinee. To test these alternative explanations, we extracted IRT-based ability
estimates and task difficulties from a sample of 514 children, 53% girls, M(age) = 10.3 years; who
answered 29 Piagetian balance beam tasks. We used the answer correctness and task difficulty as
predictors in multilevel regression models when controlling for children’s ability levels. Our results
challenge the ‘faster equals smarter’ stereotype. We show that ability levels predict the time needed
to solve a task when the task is solved incorrectly, though only with moderately and highly difficult
items. Moreover, children with higher ability levels take longer to answer items incorrectly, and tasks
equal to children’s ability levels take more time than very easy or difficult tasks. We conclude that the
relationship between ability, task difficulty, and answer correctness is complex, and warn education
professionals against basing their professional judgment on students’ quickness.

Keywords: response time; distance–difficulty hypothesis; Thissen’s model; F > C phenomenon;
game-based assessment; fluid intelligence; balance beam task; IRT

1. Introduction

We hear school men very authoritatively saying that the fast students make the
best grades and the slow ones the poorest. Statements of this kind are usually
based on the assumption that if a student knows the subject in which he is being
tested it should follow that he requires but a short time to make his answer.
Needless to say, this assumption merits confirmation (Longstaff and Porter 1928,
p. 638; as cited in Gernsbacher et al. 2020).

It is highly likely that, when asked to imagine a straight-A student, many teachers
would picture a kid who can answer all their questions without delay and always raises
their hand first. This stereotype is so firm that it has paved the way into the common
language. Many synonyms for the word ‘clever’ have something to do with speed: ‘quick’,
‘nimble’, or ‘fly’ are but some examples of this.

If the stereotype was valid, it could turn into a good heuristic for identifying gifted
pupils or students that may be challenged to fulfil the study requirements. However,
adhering to the stereotype may be dangerous when shown to be invalid, as teachers’
beliefs influence classroom practice (Brighton 2003; Cross 2009; Savasci and Berlin 2012).
A significant amount of literature tackles the stereotype in mathematics. For example,
Seeley (2009, 2016) claims that many teachers have internalised the stereotype. As a result,
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they see fast recall and computation as signs of high mathematical achievement and often
neglect conceptual understanding. Stipek et al. (2001) found that maths teachers with more
traditional values (mathematics being a solid body of knowledge that can be efficiently
mastered without knowing what the symbols the pupils deal with represent; Thompson
1992) emphasised speed in completing a task as a necessary condition for being good at
maths. When Thompson’s study was published, most American maths teachers held such
traditional values. Independently of the ability in question, gifted children should be more
likely to achieve above-average results. Many definitions of giftedness also include a time
component (see, e.g., Subhi-Yamin 2009). Similarly, scales for giftedness ratings often have
items that ask how quick and efficient the child is when dealing with a task (Pfeiffer and
Jarosewich 2003; Renzulli 2021; Ryser and McConnell 2004).

Similar to Longstaff and Porter (1928; as cited in Gernsbacher et al. 2020), we think that
the assumption merits confirmation even today. Most of the research carried out in the area
is quickly becoming outdated. Moreover, some approaches to teaching and learning that
are at odds with the stereotype (e.g., constructivist learning) are becoming more prevalent
in education (Gravemeijer 2020; Steffe and Thompson 2000; Voskoglou and Salem 2020). To
inspect the issue further, we may approach it from a psychological point of view.

1.1. The Uncertain Role of Intelligence

One of the most prominent frameworks for explaining the relationship between
abilities and the time needed to complete a particular task is the Cattell–Horn–Carroll
(CHC; Schneider and McGrew 2018) theory of intelligence. The CHC partitions general
intelligence into three layers: the general intelligence itself (g; as the third-order factor),
broad intellectual abilities (as second-order factors), and, finally, narrow intellectual abilities
(as first-order factors). This common factor model (CFM; van Bork et al. 2017) implies that
the correlation between processing speed and quantitative reasoning (ranging from 0.21 to
0.42, in the current technical manual of the WJ IV Test of Cognitive Abilities depending
on age and specific subtests; McGrew et al. 2014) has arisen due to g. Thus, children
that are both fast and capable simultaneously are so because of their general intelligence.
Alternatively, Jensen (2011) equates g to the periodicity of neural oscillation. As such,
differences in Jensen’s g would manifest through differences in reaction times. Therefore,
both Jensen’s theory and CHC predict that children with higher levels of ability will take
less time to finish a task, albeit with different mechanisms.

Nevertheless, alternative frameworks exist for modelling and understanding intelli-
gence and related abilities. van der Maas et al. (2006, 2021) have shown that intelligence
may be a dynamic system that emerges through mutual causal interactions of its compo-
nents. Dynamical systems have been modelled as networks of partial correlations (or their
equivalents). This allows for uncovering direct and indirect dependencies between the
individual variables. This way, processing speed and particular abilities can still correlate,
yet this dependency could only be induced by relationships with other variables in the
system. Kan et al. (2019) compared factor and network models computed on subtests
from WAIS-IV (Wechsler 2008). They found not only that the mutualistic network model
explained the data better, but also that scores from the arithmetic reasoning subtest were
weakly related only to one of the processing speed subtests (symbol search) and even had
a direct negative relationship (albeit very small) with another processing speed subtest
(coding). The mutualistic model tells a different story—students who are both fast and
capable can be so for two reasons. Firstly, there is a direct relationship between processing
speed (or some of its facets) and particular ability. Secondly, the students are both fast and
capable because they are also good at another (so-called bridging) ability. Such a bridging
ability would connect processing speed with the ability in question.

Regardless of the overarching theoretical framework, the character of the task might
moderate the relationship between people’s ability levels and their response times. Gold-
hammer et al. (2014) showed that, when solving complex problems, students who take
longer also perform better. However, when dealing with routine tasks (like basic reading),
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students who take longer are likely to be less successful than the faster ones. Scherer
et al. (2015) observed that students who spend more time also tend to score higher on
complex problem solving. To sum up, there is evidence against a direct relationship be-
tween the ability to process cognitive challenges quickly and other abilities relevant to the
educational context.

1.2. Refuting the Stereotype

The relationship of cognitive speed with either intelligence or other more specific
abilities is not straightforward and may be relatively challenging to uncover. Firstly, it
is difficult to define what ‘an ability’ really is. Many theories aim to explain the same
phenomenon but define abilities in vastly different ways (see the difference above between
the CHC and Jensen’s g, where the former is an ability, yet the latter one ‘only’ causes
variance in abilities). Consequently, it is not easy to obtain a good proxy for abilities.
Grades do not explain enough variance in abilities on their own (Cucina et al. 2016), and
standardised ability tests are not a common part of the curriculum. One way of empirically
obtaining ability and difficulty estimates is via the item response theory (IRT; de Ayala et al.
2022). IRT is the most prevalent approach in modern psychometrics and is routinely used
in test construction (Borsboom and Mellenbergh 2004). IRT models allow for estimating a
so-called latent ability of each participant directly from answers to a set of items.

Modelling response times (through which cognitive speed is often operationalised)
has a long tradition in psychology. Thurstone (1937) tried to formalise the relationship
between reaction time and difficulty (defined as a ratio of people who were and were
not able to perform a task successfully). van der Linden (2009) proposed a model of
processing speed analogous to the model of speed in physics: processing speed equals the
ratio of mental labour to time. In this paper, we will combine the two approaches. We
will first use IRT modelling to extract empirical estimates of the abilities and difficulties of
individual children and tasks, respectively. Then we will use these estimates to model the
relationship between ability levels and the time needed to complete a task as a system of
multilevel regressions.

The structure of this paper is as follows. First, we introduce the F > C phenomenon,
which states that incorrect answers take more time to complete (Beckmann 2000; Beckmann
et al. 1997). This phenomenon provides a conceptual basis for the model we propose. Then,
we introduce Thissen’s model (Thissen 1983), which formalises the distance–difficulty
hypothesis. This hypothesis states that the time needed to solve a task increases as the
person’s ability nears the task’s difficulty. We then combine these two approaches in a
model where the time needed to solve a task is a dependent variable. This model implies
that children take the most time to solve a task whose difficulty matches their ability level,
and the amount of time differs between correctly and incorrectly solved items1. We then
test all models on data from a game-based test of logical thinking, controlling for children’s
ability levels and varying task difficulties. We report how we determined our sample size,
all data exclusions (if any), all manipulations, and all measures in the study (Simmons et al.
2012). We put our findings into context in the Discussion, with recommendations for future
research and educational practice.

1.3. The F > C Phenomenon

The F > C phenomenon (Beckmann 2000; Beckmann et al. 1997) implies that incorrect
responses take more time than correct ones. The F > C phenomenon can be formally
expressed by Equation (1):

tij = µ + γ FCij + εij, (1)

where tij is the response time of person j on item i, µ is an intercept (average time across
each item and person), FCij is a binary variable that indicates whether the answer to item i
of person j was false or correct, γ is the unstandardised regression coefficient that could be
interpreted as a mean difference in response time between the false and correct answers,
and εij is normally distributed residuals of the model.
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The F > C phenomenon is robust (Beckmann 2000; Beckmann et al. 1997; Preckel and
Freund 2005; Troche and Rammsayer 2005), but, at the same time, the authors admit that
the emergent difference may be an artefact of empirical aggregation, as incorrect answers
are more likely when dealing with the most difficult items in a test. Moreover, Beckmann
and Beckmann (2005) also suggest that the magnitude of the F > C phenomenon may differ
concerning the examinee’s ability. According to the authors, people who performed worse
gave incorrect responses faster than examinees who were more successful. Preckel and
Freund controlled for the ability, which did not have a significant effect, though due to
their relatively small sample we might also attribute this to sampling error. Our study will
examine the effects of both ability and difficulty.

1.4. The Distance–Difficulty Hypothesis

Thissen’s model was initially proposed in 1983. It was later revised by Ferrando and
Lorenzo-Seva (2007), who perceived the model as a formal representation of the distance–
difficulty hypothesis. The hypothesis states that the response time for a task decreases with
the distance between the person’s ability level (θj) and the item’s difficulty (bi). In other
words, people should take more time to solve tasks closer to their ability level. Conversely,
people should spend less time on tasks that are substantially easy or difficult for them.
Since the formal representation of the hypothesis includes an absolute value, the model
implies that the predictive time differences should be the same and symmetrical. Thissen’s
model is formally represented by Equation (2), which assumes a person who answers a set
of items in a test within a certain time:

ln tij = µ + τj + βi − γ|θj − bi| + εij, (2)

where ln tij is a logarithmic transformation of the response time of person j spent on item i
(the transformation is used to achieve normally distributed errors, εij, since the response
times are assumed to be log-normally distributed); µ is the intercept, which could be
interpreted as the mean time spent on all items among the whole sample; τj is a parameter
for the general speediness of person j (how much the person spent on the items on average);
βi is the time required to answer item i by the person of average ability; and γ is the
magnitude of the linear relationship between the ability (θj) and difficulty (bi) absolute
distance and the response time (expected to be negative by definition).

1.5. The Proposed Model

We will build a new model in two steps, testing two expectations. First, we will verify
empirically whether the F > C phenomenon (Beckmann 2000; Beckmann et al. 1997) holds
when controlling for person’s task difficulties, as the authors suggested. We expect the
phenomenon to hold regardless of the item’s difficulty. We will also control for participants’
ability levels.

Secondly, the distance–difficulty hypothesis (Ferrando and Lorenzo-Seva 2007; Thissen
1983) implies that the relationship between the distance from the person’s level of ability
and the time needed is symmetrical, no matter the direction of the difference. We aim
to replicate this hypothesis. If both the distance–difficulty hypothesis, and the F > C
phenomenon hold, we will extend Thissen’s model by the response correctness parameter
(represented by the binary F > C term in Equation (1)). This parameter encodes whether
the item was answered correctly. We expect this model to explain more variance than
the original Thissen’s model. We will inspect whether there is a significant interaction
between the ability–difficulty distance and response correctness. A significant interaction
would suggest that the relationship between the time needed to solve a task and the
ability-difficulty distance differs for correctly and incorrectly answered items.
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2. Materials and Methods
2.1. Participants

The sample consisted of 514 children, 53% girls. The average age was 10.3 years
(SD = 0.8 years), the youngest participant was eight years and two months old, and the
oldest one was twelve years and four months old. Children were recruited in 16 Czech
elementary schools willing to participate in a broader validation study of a giftedness-
screening system. The schools selected the classes that would participate in the study. We
worked with all children in a class whose legal guardians gave informed consent.

Since this research was a secondary data analysis, we performed an a posteriori
sensitivity analysis in the mixedpower R package (version 0.1.0) to determine whether the
sample was sufficient to detect small effects, as proposed by Kumle et al. (2021). The
required sample to reach the sufficient power of 0.8 for all significant parameters in the
two most complex models was 400. The setup script of our sensitivity analysis is in the
Supplementary materials.

2.2. Measures
Triton and the Hungry Ocean

The data were gathered during several group sessions of pilot testing of a game-based
assessment application for the identification of gifted students. The game’s concept is
similar to MathGarden (Straatemeier 2014). Triton and the Hungry Ocean (referred to here
as Triton) is based on the ‘balance beam task’ of Inhelder and Piaget (1958) that was later
adopted by other authors and is currently referred to as Figure Weights (McGrew et al.
2014; Wechsler 2008). The objective is to choose a set of weights for one balance beam to
counterbalance the weights on the other. Triton re-uses this principle in a submarine setting,
including some novel features. The game uses cartoon-like graphics and simple sounds.
There is no time limit for individual tasks.

A sample task is shown in Figure 1, where the individual features of the game are
highlighted. Two circles are outlined by bubbles surrounding a hook (Feature 1). On the
left side, the circle contains a certain number of animals (Feature 2), and the right-side circle
is empty (further referred to as a slot; Feature 3). The player is supposed to fill this empty
slot with one of the five groups of animals from the bottom part of the screen (Feature 4) to
balance out the strength of the sea-creature group on the left side (Feature 2). Creatures of
the same colour, shape, and number have the same strength. In more complex tasks, the
strength of individual animals is expressed via so-called conditions: shorter hooks with
both sides already occupied and balanced (Feature 5). These conditions imply the relative
strength of specific animal types.

Besides moving groups of animals from the bottom part of the screen to the slots and
back, the player is allowed to reset the task (i.e., return all the features to the original state)
by pushing the reset button (Feature 6). They move to the next task by pushing the play
button (Feature 7).

To solve the task, the player needs to deduce the relative strength of the individual
animals, applying primarily logical reasoning. In general, the abilities here fall into fluid
reasoning (within the CHC framework): logical reasoning intentionally and purposefully
aimed at solving novel ‘on-the-spot’ problems. Such problems cannot be solved using
previously learned habits, schemas, or scripts (Schneider and McGrew 2018). To solve
the task, the children apply simple addition, subtraction, multiplication, and division).
Therefore, they apply logical thinking within a mathematical context. This narrow ability is
termed quantitative reasoning within the CHC model. However, we want to emphasise
that the tasks require no advanced mathematical knowledge, and logical reasoning explains
the most variance in the scores.
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The game consisted of 29 tasks, the complexity of which gradually increased, as did
the number of game mechanics involved. At the game’s start, three trial items did not
contribute to participants’ scores. A description of these mechanics is available online
in the supplemental material. A narrated video demonstration showcasing a task intro-
duced each new game mechanic. The response time for each item was recorded from
the moment children were exposed to the item task until they pushed the play button. In
this study, we administered the game on PCs in groups of several children. Each child
worked individually.

2.3. Data Management

We worked with data on the correctness of the solution for each task and the time spent
on solving each task recorded by the Triton and the Hungry Ocean app. Correct responses
were scored as “1”, and false ones as “0”. Response time was recorded in seconds with 0.5 s
intervals. We also collected the participants’ data on gender, age, grade, and the school
they attended.

No participants were excluded due to missing answers. All participants answered
22 tasks; even the last task, 29, had only 3.5% (n = 18) of missing values. All tasks left
unanswered were coded as incorrect, and the corresponding time records were left missing.

2.4. Analysis plan
2.4.1. Preliminary IRT Models

We first needed to establish a well-fitting IRT model using the item response correct-
ness data as an input. This IRT model allowed us to extract children’s ability levels (θj) and
each item’s difficulty parameter (bi). We initially estimated the dichotomous Rasch model
(Bond and Fox 2013) in R version 4.2.2 (R Core Team 2021) using package mirt (version
1.37.1; Chalmers 2012). This model estimates the probability of solving an item as a function
of the participant’s ability. The dichotomous Rasch model is defined by Equation (3) as:

Pij =
e (θj − bi)

1 + e (θj− bi)
, (3)

where Pij is the probability of the correct answer of person j to item i, θj is the ability of
person j, and bi is the difficulty parameter of item i.
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However, the Rasch model (Bond and Fox 2013) did not fit the data well. Since the
design of Triton is based on selecting at least one answer from a set of five options, it
is possible to select a correct answer by guessing. We extended the model by fixing the
guessing parameter (the lower asymptote of the item characteristic curve) of each task
by a reciprocal of all its possible solutions (e.g., if the task has five possible solutions, the
guessing parameter would be fixed to value 0.2). Fixing the parameter led to the so-called
dichotomous quasi-Rasch model with guessing (Linacre 2002), defined by Equation (4) as:

Pij = ci + (1− ci)
e (θj−bi)

1 + e (θj−bi)
, (4)

where Pij is the probability of the correct answer of person j to item i, θj is the ability of
person j, bi is the difficulty parameter of item i, and ci is the guessing parameter of item i.

This model had an acceptable fit. Thus, we extracted every item’s difficulty parameter
(bi) and the ability parameter (θj) of every participant under this model and used these in
the main analyses.

2.4.2. Main Analyses

We built two series of nested linear multilevel regression models. The first set of
models tested the validity of the F > C phenomenon and controlled for task difficulty and
participants’ ability levels. The second set tested the distance–difficulty hypothesis and its
interaction with the F > C phenomenon. We used the lme4 (version 1.1-31; Bates et al. 2015)
R package to estimate these models.

First, we defined a null model (Model 0) as a baseline for both series. Model 0 in-
cluded only fixed and random intercept terms for participants and items to reflect that
all observations were nested in participants who answered the same items. All models
in the series used logarithmic transformation of response time as a dependent variable.
This transformation linearised the relationship between the predictors and the response
time. This is one of the main changes from previous studies on the F > C phenomenon.
Beckmann et al. (Beckmann 2000; Beckmann et al. 1997; Beckmann and Beckmann 2005)
did not check distributional assumptions and used the absolute item response time. This
is problematic, as their analyses assumed normal distribution, but response times are
log-normally distributed (van der Linden 2009). They also did not include any random pa-
rameters in their studies, which would allow for modelling systematic differences between
the items and participants answering the same set of items.

The first model series focused on the F > C phenomenon. At first (Model A1), we
included only a binary predictor for answer correctness (FCij). In the next step (Model A2),
we added the predictors of item difficulty (bi) and person’s ability (θj) as control variables.
Finally (Model A3), we added the interaction term of the answer correctness and the
person’s ability to investigate whether the effect of the F > C phenomenon increases or
decreases with higher/lower levels of participant’s ability. Model A3 is represented by
Equation (5):

ln tij = µ + τj + βi + γ1 FCij + γ2 bi + γ3 θj + γ13 FCij θj + εij, (5)

where ln tij is a logarithmic transformation of the response time of person j on item I; µ
is the fixed intercept (response time of average-ability person spent on average-difficulty
item); τj is the random intercept for each person (general speediness of each person); βi is
the random intercept for each item (average time required to answer each item); γ1, γ2, γ3,
and γ13 are the fixed effects of corresponding predictors; and εij is normally distributed
residuals. The previous models, A1 and A2, could be derived from this equation by setting
select regression coefficients to zero (see Appendix A).

Based on one reviewer’s suggestion, we estimated an additional Model A4, which
included the interaction of a person’s ability and an item difficulty besides all terms from
Model A3, as an exploratory feature. This interaction term tests whether the relationship
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between the children’s ability and response time varies according to the item’s difficulty.
The equation of this model is in Appendix A.

The second model series assessed the distance–difficulty hypothesis and its incremen-
tal validity over the F > C phenomenon. To test the distance–difficulty hypothesis, we
included only the absolute difference between the child’s ability and the difficulty of each
item (|θj − bi|) in the first model (Model B1). We extended the second model (Model B2) by
a binary variable representing the F > C phenomenon (FCij) to assess the incremental valid-
ity of both concepts against each other. The model series ended with the last model (Model
B3), where we added the interaction term of the distance and answer correctness (FCij). By
including this term, we examined whether the distance difficulty effect followed a different
pattern with correct and incorrect responses. Model B3 is represented by Equation (6) as
follows:

ln tij = µ + τj + βi + γ4 |θj − bi| + γ1 FCij + γ14 FCij|θj − bi| + εij, (6)

where ln tij is a logarithmic transformation of the response time of person j on the item i; µ
is the fixed intercept; τj is the random intercept for each person; βi is the random intercept
for each item; γ1, γ4, and γ14 are the fixed effects of corresponding predictors; and εij is a
normally distributed residual2. The previous models, B1 and B2, could be derived from
this equation by setting select regression coefficients to zero (see Appendix A).

3. Results
3.1. Ability Estimates

As previously mentioned, we first estimated the dichotomous Rasch model (Bond
and Fox 2013) to obtain children’s ability (θj) and item difficulty (bi) parameters for the
main analyses. The Rasch model did not fit the item data well (M2(405) = 1255.32, p < .001,
RMSEA = 0.065, SRMSR = 0.069, TLI = 0.867, AIC = 14,200.33, and BIC = 14,327.60). The
empirical reliability of the sum score was rather high (r = 0.847).

We circumvented the issue by modifying the model to the quasi-Rasch model with
guessing (Linacre 2002). The quasi-Rasch model showed an acceptable fit (M2(405) = 888.39,
p < .001, RMSEA = 0.049, SRMSR = 0.075, TLI = 0.924, AIC = 14,000.78, and BIC = 14,128.04).
Moreover, the empirical reliability of this model, r = 0.871, was slightly higher than that
of the previous Rasch model. Item descriptive statistics with fixed guessing parameters
and estimated difficulty parameters are listed in Table A1 (in Appendix B). The parameters
from this model were used in multilevel regression models.

3.2. Null Model

The null model, listed in Tables 1 and 2 as Model 0, provided a baseline for all
subsequent models. The fixed intercept was significant (µ = 3.16, 95% CI [3.00, 3.33]).
This parameter can be interpreted as the response time of an average-ability person on an
average-difficulty item. Transforming the parameter from its logarithmic form, we obtained
an average response time of 23.66 s.

We also found that random intercept terms (participants and items) explained a
significant proportion of response time variance. The differences between the item intercept
(var(βi) = 0.20, 95% CI [0.12, 0.33]) explained more variance of the response time than the
individual differences of children in that characteristic (var(τj) = 0.07, 95% CI [0.06, 0.08]).

3.3. Models Assessing the F > C Phenomenon

In Model A1, we included a binary predictor reflecting the correctness of the answer
on an item. In accordance with the F > C phenomenon, we found that the false answers
took children significantly more time than the correct answers (γ1 = −0.04, 95% CI [−0.06,
−0.01]). However, the effect size was relatively small, and the transformed parameter
indicated that the expected average difference in response times between wrongly and
correctly answered items was 0.87 s.
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In Model A2, the F > C phenomenon effect remained significant once controlled for
item difficulty and children’s ability (γ1 = −0.05, 95% CI [−0.08, −0.03]). In addition, we
found that response time was significantly higher in children with higher ability (γ2 = 0.06,
95% CI [0.05, 0.07]). On the other hand, response time did not have a significant relationship
with item difficulty (γ3 = 0.05, 95% CI [0.00, 0.12]).

In Model A3, we added an interaction of answer correctness and children’s ability,
which was significant (γ13 = −0.12, 95% CI [−0.13, −0.11]). Adding the interaction also
slightly suppressed the F > C phenomenon effect (γ1 = −0.07, 95% CI [−0.09, −0.04]), as
well as the relationship of children’s ability with response time (γ3 = 0.12, 95% CI [0.11,
0.14]). All effects combined, the relationship between children’s ability and response time
was negligible when the item was answered correctly. However, response time increased
with higher children’s ability in case of false answers. Figure 2 illustrates these patterns.
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Figure 2. Predicted response time values according to Model A3 for correct (green) and incorrect (red)
responses depending on children’s ability. With correctly answered items (green line), there is no
substantial relationship between a person’s ability and the time needed to solve an item. On the other
hand, with incorrectly answered items (red line), the time required to answer an item increases with
the ability level. Children with greater ability, therefore, take longer to answer an item incorrectly.

As shown in Table 1, Model A3 was the best, and the information criteria also sup-
ported this model as the best one. All models fitted significantly better than the null model,
and each model had a significantly better fit than the previous models in the sequence.

Table 1. Parameters of the models assessing the F > C phenomenon (interacting with a person’s
ability).

Model 0 Model A1 Model A2 Model A3

95% CI 95% CI 95% CI 95% CI

coef. est. LL UL est. LL UL est. LL UL est. LL UL

Fixed effects
intercept µ 3.16 *** 3.00 3.33 3.18 *** 3.02 3.35 3.15 *** 2.99 3.31 3.19 *** 3.03 3.36
correct answer
(FC) γ1 −0.04 ** −0.06 −0.01 −0.05 *** −0.08 −0.03 −0.07 *** −0.09 −0.04

item difficulty γ2 0.05 0.00 0.12 0.05 0.00 0.11
person ability γ3 0.06 *** 0.05 0.07 0.12 *** 0.11 0.14
FC × ability γ13 −0.12 *** −0.13 −0.11
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Table 1. Cont.

Model 0 Model A1 Model A2 Model A3

95% CI 95% CI 95% CI 95% CI

coef. est. LL UL est. LL UL est. LL UL est. LL UL

Random effects
person intercept
variance var(τj) 0.07 *** 0.06 0.08 0.07 *** 0.06 0.08 0.06 *** 0.05 0.07 0.06 *** 0.05 0.07

item intercept
variance var(βi) 0.20 *** 0.12 0.33 0.19 *** 0.11 0.32 0.17 *** 0.09 0.28 0.17 *** 0.10 0.29

residual variance var(εij) 0.37 *** 0.36 0.38 0.37 *** 0.36 0.38 0.37 *** 0.36 0.38 0.36 *** 0.35 0.37

Goodness of fit
conditional R2 0.417 0.415 0.422 0.439
marginal R2 0.000 0.001 0.055 0.070
log-likelihood −14,193 −14,189 −14,154 −14,008
AIC 28,395 28,389 28,323 28,031
BIC 28,425 28,427 28,376 28,092
∆χ2 (df ) 8.09 (1) ** 70.08 (2) *** 293.23 (1) ***

Notes. coef.—coefficient, est.—estimate, CI—confidence interval, LL—lower limit, UL—upper limit, var—variance;
** p < .010, *** p < .001.

In Model A4, we included the interaction of a person’s ability and an item difficulty.
As we did not hypothesise this exploratory model, we describe and interpret it separately
from Models A1–A3. As seen in Table 2, the ability–difficulty interaction was significant
(γ23 = 0.04, 95% CI [0.03, 0.04]). This means the relationship between the ability and re-
sponse time was stronger for more difficult items. Adding this information also significantly
improved the model fit in comparison with the previous Model A3.

Including the interaction term also partially explained the F > C phenomenon, whose
main effect became non-significant (γ1 = −0.02, 95% CI [−0.04, 0.01]). The strength of the
interaction between answer correctness and children’s ability also noticeably decreased
(γ13 = −0.03, 95% CI [−0.04, −0.01]). Figure 3 aids the interpretation of the additional term.
It further expands the interpretation of Model A3, indicating that the effect of the ability on
time required to answer incorrectly answered items applies only to moderately and highly
difficult items.
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Figure 3. Predicted response time values according to the exploratory model A3 for correct (green
line) and incorrect (red line) responses depending on children’s ability. The graph is divided into
three panels based on different item difficulty levels. The observed difference in slopes of correct and
incorrect responses is visibly weaker in Model A4. This further expands Model A3, as the proposition
that the time required to answer incorrectly answered items (red line) increases with ability level is
applicable only for moderately (e.g., difficulty = 0) and highly (e.g., difficulty = 2) difficult items.
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Table 2. Parameters of the exploratory Model A4 (including the interaction of item difficulty and
person ability).

95% CI

coef. est. LL UL

Fixed effects
intercept µ 3.14 *** 2.98 3.30
correct answer (FC) γ1 −0.02 −0.04 0.01
item difficulty γ2 0.06 0.00 0.12
person ability γ3 0.05 *** 0.03 0.06
FC × ability γ13 −0.03 *** −0.04 −0.01
difficulty × ability γ23 0.04 *** 0.03 0.04

Random effects
person intercept variance var(τj) 0.06 *** 0.05 0.07
item intercept variance var(βi) 0.17 *** 0.10 0.28
residual variance var(εij) 0.34 *** 0.33 0.35

Goodness of fit
conditional R2 0.466
marginal R2 0.097
log-likelihood −13,606
AIC 27,231
BIC 27,300
∆χ2 (df ) 802.28 (1) ***

Notes. coef.—coefficient, est.—estimate, CI—confidence interval, LL—lower limit, UL—upper limit, var—variance;
*** p < .001; goodness of fit comparison with Model A3.

3.4. Models Assessing the Distance–Difficulty Hypothesis

In model B1, we tested the effect of absolute distance between the children’s ability
and item difficulty. This effect was significant (γ13 = −0.13, 95% CI [−0.14, −0.12]). This
means that the response time decreased 1.14 times with each logit unit of the absolute
ability–difficulty distance, which is a moderately strong effect. The fixed intercept showed
the average response time of 33.14 s for zero distance (the item difficulty equivalent to
the person’s ability), where the time was at its maximum. The estimated response time
decreases to 29.03 when the ability–difficulty distance is one logit unit, to 25.45 when the
distance is two logit units, and so on.

Combining ability–difficulty distance with the F > C phenomenon led to Model B2,
where the F > C phenomenon did not show a significant effect (γ1 = −0.02, 95% CI [−0.04,
0.01]); the ability–difficulty distance effect remained unchanged (γ4 = −0.13, 95% CI [−0.14,
−0.12]).

In Model B3, we extended the previous model by the interaction of the ability–difficulty
distance effect and the F > C phenomenon, which was significant (γ14 = 0.05, 95% CI [0.04,
0.07]). Including the interaction also suppressed the F > C phenomenon effect, which
became significant (γ1 =−0.10, 95% CI [−0.13,−0.07]); small suppression was also visible in
the ability–difficulty distance effect (γ4 =−0.16, 95% CI [−0.17,−0.15]). Interpretation-wise,
the interaction effect means that, for false answers, the negative relationship between ability–
difficulty distance and response time is stronger than for correct answers. A graphical
description of these effects is in Figure 4.
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Figure 4. Predicted response time values according to Model B3 as a function of ability–difficulty
distance separated by whether the answer was correct (green) or incorrect (red). Regardless of the
response correctness, items whose difficulty matches the participant’s ability level take the longest
time to solve (with incorrect answers taking the longest). The relationship changes for very difficult
and easy items—with these, correctly answered items take longer than the incorrect ones.

This sequence of models also showed that Model B3 outperformed the preceding
models in fit and information criteria—as listed in Table 3. All three models were signif-
icantly better than the null model; nevertheless, Model B2 did not fit significantly better
than Model B1 (∆χ2(1) = 2.14, p = 0.144).

Table 3. Parameters of the models assessing distance–difficulty hypothesis interacting with the F > C
phenomenon.

Model 0 Model B1 Model B2 Model B3

95% CI 95% CI 95% CI 95% CI

coef. est. LL UL est. LL UL est. LL UL est. LL UL

Fixed effects
intercept µ 3.16 *** 3.00 3.33 3.50 *** 3.31 3.69 3.51 *** 3.32 3.70 3.56 *** 3.37 3.75
correct answer (FC) γ1 −0.02 −0.04 0.01 −0.10 *** −0.13 −0.07
ability–difficulty
distance γ4 −0.13 *** −0.14 −0.12 −0.13 *** −0.14 −0.12 −0.16 *** −0.17 −0.15

distance × FC γ14 0.05 *** 0.04 0.07

Random effects
person intercept
variance var(τj) 0.07 *** 0.06 0.08 0.07 *** 0.06 0.08 0.07 *** 0.06 0.08 0.07 *** 0.06 0.08

item intercept
variance var(βi) 0.20 *** 0.12 0.33 0.25 *** 0.15 0.42 0.25 *** 0.15 0.42 0.26 *** 0.16 0.45

residual variance var(εij) 0.37 *** 0.36 0.38 0.34 *** 0.33 0.35 0.34 *** 0.33 0.35 0.34 *** 0.33 0.34

Goodness of fit
conditional R2 0.417 0.527 0.525 0.542
marginal R2 0.000 0.082 0.081 0.092
log-likelihood −14,193 −13,563 −13,562 −13,537
AIC 28,395 27,136 27,136 27,088
BIC 28,425 27,174 27,181 27,142
∆χ2 (df ) 1260.82 (1) *** 2.14 (1) 49.49 (1) ***

Notes. coef.—coefficient, est.—estimate, CI—confidence interval, LL—lower limit, UL—upper limit, var—variance;
*** p < .001.
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4. Discussion

In this study, we wanted to test the validity of the ‘faster equals smarter’ stereotype.
More precisely, our aim was twofold. First, we wanted to inspect whether the F > C
phenomenon holds when controlling for item difficulty and a person’s ability, as Beckman
et al. (Beckmann 2000; Beckmann et al. 1997; Beckmann and Beckmann 2005) mentioned
that the phenomenon might be a byproduct of empirical aggregation. In our data, the F > C
phenomenon remained significant after controlling for ability and difficulty, albeit with
a small effect size. Item difficulty did not influence the time needed to solve a task, but
children’s ability did, though only with moderately and highly difficult items. Moreover,
we found an interaction between ability level and correctness. Together, these results
mean that children with higher levels of ability take longer to give incorrect answers on
moderately difficult and difficult items than their peers with lower levels of ability. With
correct answers, there is no relationship between ability and time. If the ‘faster equals
smarter’ stereotype is true, it would imply that children with higher levels of ability answer
more quickly in general. Our results, therefore, go against the stereotype, as they imply
either no difference at all or longer response times of children with higher ability levels.

There are several explanations for this phenomenon. High-ability children may, on
average, possess better meta-cognitive skills (Swanson 1992). They may invest some time to
devise a strategy before turning in an answer, regardless of its correctness. These children
may also put more effort into problem solving because of their better self-regulation and
thus show greater persistence (Howard and Vasseleu 2020). High-ability children are also
likely to see difficult tasks as challenging. This positive framing can make them spend
more time on a task, as opposed to their peers that may see difficult tasks as too demanding
(Bouffard-Bouchard et al. 1993). Finally, it is worth noting that the causality can also flow in
the reverse way: high-ability children may be persistent and determined in the first place,
which may, in turn, accelerate their development and make them score high in ability tests.

The small effect size may reflect the true phenomenon’s strength, as Beckman et al.
(Beckmann 2000; Beckmann et al. 1997; Beckmann and Beckmann 2005) violated the dis-
tributional assumptions of their analysis, which likely inflated the estimated effect. The
parametric t-test performed in their study assumed a normal distribution, but response
times are commonly assumed to be log-normally distributed (van der Linden 2009). More-
over, in alignment with the original authors’ proposition, part of the variance in time
previously explained by the correctness as the only parameter has indeed been explained
by children’s ability, which attenuates the main effect of correctness.

Since the F > C phenomenon held, we proceeded to the study’s second aim: to test the
distance–difficulty hypothesis and build a new model that included the relative difference
between the examinee’s ability level and the task difficulty, and the F > C phenomenon.
This allowed us to assess whether the phenomena were incrementally valid over one
another; in other words, whether the relationship between the distance–difficulty term
and the time needed to solve an item differed between correctly and incorrectly solved
tasks. We supported the distance–difficulty hypothesis and found its interaction with the
F > C phenomenon. This means that items that match the children’s ability take the longest
to solve, and the time is even longer for incorrectly answered items. As the difference
between the ability and item difficulty grows (when the examinee works with tasks that
are very easy or difficult for them), the difference narrows to the point when it changes
direction. Tasks that are too easy or too difficult take more time when answered correctly
than incorrectly, as the hypothesis operates with the absolute difference value.

This seems intuitive with items whose difficulty surpasses the child’s ability, as solving
such tasks would require considerable cognitive effort, which would ultimately increase
the time needed to produce a correct answer. Since the order of the items in Triton was
roughly arranged according to their difficulty, the most difficult items were administered
towards the end of the test. In such a setting, children may have been frustrated, bored or
tired. Experiencing the discomfort could have made them simply give up on the task, guess,
or produce an erroneous solution when trying to turn the answer in as soon as possible.
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However, when the tasks were far below their ability levels, children also took longer
to answer correctly. As opposed to very difficult tasks, this may seem surprising. In this
situation, for instance, children could have hesitated about whether the task was that easy
or whether they may have overlooked something or faced a trick question, which would
have made them ponder about the answer and submit it later. Moreover, the solutions
to the easiest task may have seemed obvious, leading children to rush the answer and
answer incorrectly. Since the easiest items were administered at the start of the test, it is also
possible that some children had not understood the instructions fully and underestimated
the task, leading to erroneous answers.

It also is worth noting that the main effect of correctness only became significant once
we added the interaction into the model. The interaction between the distance–difficulty
term and the correctness of the answer removed irrelevant variance of the main term,
strengthening its relationship with response time.

These findings may influence how we perceive time demands in educational practice.
According to our results, solving tasks on newly acquired material, whose difficulty par-
allels a child’s ability, takes the most time. This is in line with classic theories of learning
acquisition, such as Vygotsky’s proximal development zone (Eun 2019; Roth 2020), which
builds upon the thesis that learning primarily happens when dealing with tasks whose
difficulty is close to the child’s ability. Mediated learning experience (Tzuriel 2021) also
works with the mechanism. The mediators adjust the difficulty of the task to provide the
child with appropriate learning stimuli. When facing complex tasks, the mediator should
offer substantial support. On the other hand, with simple tasks, the mediator should
withdraw. Children that seem to take too long to solve some tasks may need this time to
assimilate new knowledge. The need for time may signalise ongoing learning instead of
poor performance.

To our knowledge, this is the first study that combines answer correctness and the
distance between the ability and difficulty to explain variance in response times. We have
shown that both the F > C phenomenon and the distance–difficulty hypothesis hold and
are incrementally valid over one another. Our findings also go against the stereotype that
children who are more able solve tasks quickly. However, our results must be interpreted
with caution, as overall our estimated effects are not of great magnitude. Moreover, it is
essential to remember that our findings concern isolated individual tasks and may differ
when dealing with a whole test.

To illustrate this problem, imagine two students, Patt and Matt, and a test of 10 items
ordered by difficulty. The expected response time for a correct answer (regardless of
difficulty) is larger than for an incorrect answer. Patt’s ability is higher than Matt’s. Patt
answers seven items before she starts struggling and giving incorrect answers that take
longer. Matt already struggles with the fourth item. There are settings when Patt will finish
sooner than Matt, as she takes longer to give incorrect answers but produces fewer of them.
There are also configurations when the difference may be negligible. Since the effect and
parameters estimated in our study were extracted directly from the test data, our results
are not a universal predictive guide. The difference in the total time needed to complete a
specific test between two children with different ability levels depends on the configuration
of the differences between their abilities and the differences in the time needed for giving
correct vs incorrect answers. We do not want to imply that children who are more able will
always finish later. However, we do want to refute the expectation that a more capable
child will automatically finish sooner.

Furthermore, both the F > C phenomenon and the distance–difficulty hypothesis
assume that the test in question is not a timed test. Timed tests are more prevalent in the
educational context, and it is reasonable to assume that, with a time limit, additional factors
need to be considered, for instance, the individual strategies of the test-takers. Cultural
context and school climate may play a role as well. Despite recent developments, the Czech
school system has been mostly seen as authoritarian and focused on memorising (Perry
2005). It prioritises the successful transmission of knowledge over creativity and positive
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learning experience (Straková and Simonová 2013). Children educated in such a system
may not be motivated to keep working on a task without knowing the correct answer
right away. The effects we found may be less or more pronounced in different school
systems; for instance, based on how the school system treats failure or how strongly the
teachers have internalised the ‘faster equals smarter’ stereotype. Finally, while we think
that our computational approach allowed us to remedy some methodological issues of
the studies we built upon, it is not perfect. Our two-step estimation (first IRT and then
multilevel regression model) leads to two sets of errors. Certain modelling approaches,
such as generalised mixed modelling for explanatory item response analyses (De Boeck
and Wilson 2004; Baayen et al. 2008), allow for incorporating the person- and item-level
effects in a one-step estimation that also takes the clustered data structure into account.
It may be interesting to re-analyse our or similar data using these techniques to get even
more accurate estimates of the effects reported in our study. We hope that these limitations
can inform future research on related topics.

Further research can also explore whether our results also hold with knowledge-based
tasks, which would tap into crystallised, as opposed to fluid, intelligence. Teachers often
observe that students who can quickly answer questions tend to have better knowledge
accessibility, suggesting a strong understanding of the subject. Goldhammer et al. (2014)
have shown that students who take longer perform better with complex tasks, but with
routine tasks (like basic reading) the opposite is true. We should investigate and separate
the contexts where we can refute the stereotype from these where it still may apply to some
extent. Overall, the relationship between the time needed to solve a task and children’s
ability, task difficulty, and answer correctness is complex, and the influence of other vari-
ables is yet to be examined. Nevertheless, educational professionals should avoid basing
their professional judgement on how quickly a child processes a task and be aware that
tasks with great learning potential are likely to take a long time.
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Null model (Model 0):
ln tij = µ + τj + βi + εij, (A1)

Model A1:
ln tij = µ + τj + βi + γ1 FCij + εij, (A2)

Model A2:
ln tij = µ + τj + βi + γ1 FCij + γ2 bi + γ3 θj + εij, (A3)

Model A3:

ln tij = µ + τj + βi + γ1 FCij + γ2 bi + γ3 θj + γ13 FCij θj + εij, (A4)

Model A4:

ln tij = µ + τj + βi + γ1 FCij + γ2 bi + γ3 θj + γ13 FCij θj + γ23 bi θj + εij, (A5)

Model B1:
ln tij = µ + τj + βi + γ4 |θj − bi| + εij, (A6)

Model B2:
ln tij = µ + τj + βi + γ4 |θj − bi| + γ1 FCij + εij, (A7)

Model B3:

ln tij = µ + τj + βi + γ4 |θj − bi| + γ1 FCij + γ14 FCij|θj − bi| + εij, (A8)

Appendix B

Table A1. Item descriptive statistics and quasi-Rasch model parameters.

Response Correctness Response Time (in Seconds)

Item Sample Guessing Difficulty M SD M SD Mdn

item 1 514 0.200 −1.28 0.75 0.43 21.19 24.57 15.00
item 2 514 0.200 −1.91 0.81 0.39 19.52 17.80 14.50
item 3 514 0.067 −3.35 0.91 0.28 31.75 24.68 24.00
item 4 514 0.067 −3.12 0.90 0.30 20.80 21.49 16.50
item 5 514 0.050 −1.26 0.71 0.46 47.71 38.18 35.50
item 6 514 0.067 −2.32 0.83 0.37 20.07 15.59 15.50
item 7 514 0.200 −1.97 0.84 0.37 15.96 25.88 10.00
item 8 514 0.100 −2.54 0.86 0.35 24.81 21.55 18.00
item 9 514 0.200 0.17 0.59 0.49 13.52 10.57 10.00

item 10 514 0.050 −1.62 0.76 0.43 34.38 19.46 28.50
item 11 514 0.200 −0.54 0.68 0.47 22.89 18.04 17.50
item 12 514 0.200 −1.55 0.79 0.41 10.87 8.86 8.50
item 13 514 0.200 2.91 0.25 0.44 15.92 16.14 11.00
item 14 514 0.050 −0.17 0.56 0.50 51.22 30.05 44.20
item 15 514 0.200 0.99 0.49 0.50 27.23 19.43 21.00
item 16 514 0.017 0.31 0.46 0.50 50.40 33.98 42.50
item 17 514 0.200 1.40 0.44 0.50 31.63 24.05 26.00
item 18 514 0.200 1.29 0.42 0.49 25.93 20.69 20.00
item 19 514 0.050 0.35 0.48 0.50 42.44 28.52 34.25
item 20 514 0.200 1.74 0.38 0.49 42.19 32.50 33.75
item 21 514 0.200 2.19 0.32 0.47 29.14 23.76 22.50
item 22 514 0.067 3.15 0.19 0.39 61.93 53.74 45.75
item 23 514 0.200 1.44 0.40 0.49 25.45 19.60 19.50
item 24 510 0.100 3.60 0.16 0.37 43.21 36.16 31.75



J. Intell. 2023, 11, 63 17 of 19

Table A1. Cont.

Response Correctness Response Time (in Seconds)

Item Sample Guessing Difficulty M SD M SD Mdn

item 25 507 0.050 3.09 0.15 0.36 60.81 52.38 46.00
item 26 504 0.200 4.88 0.15 0.36 39.15 42.53 26.50
item 27 502 0.200 3.71 0.28 0.45 31.27 28.12 22.50
item 28 500 0.050 5.23 0.06 0.24 44.33 37.55 33.50
item 29 496 0.017 5.80 0.04 0.19 45.70 40.60 35.00

Note. Correct response was scored as “1”, false as “0”, thus, response correctness mean represents the ratio of
correct responses.

Notes
1 In this study, we use the terms ‘item’ and ‘task’ semi-interchangeably. The word ‘item’ refers to a clearly demarcated part of the

test whose psychometric difficulty can be empirically extracted. The word ‘task’ refers to the content of the item. In the case of
Triton, children solve the same ‘task’ (balance both sides of the equation) many times, though are administered ‘items’ of varying
difficulty.

2 Please note that the individual effects of item difficulty (bi) and a person’s ability (θj) are not included in the model, as they are
already used to form the distance–difficulty difference term.
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