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Abstract: The present study investigates how the quality of knowledge representations contributes
to rule transfer in a problem-solving context and how working memory capacity (WMC) might
contribute to the subsequent failure or success in transferring the relevant information. Participants
were trained on individual figural analogy rules and then asked to rate the subjective similarity of
the rules to determine how abstract their rule representations were. This rule representation score,
along with other measures (WMC and fluid intelligence measures), was used to predict accuracy
on a set of novel figural analogy test items, of which half included only the trained rules, and half
were comprised of entirely new rules. The results indicated that the training improved performance
on the test items and that WMC largely explained the ability to transfer rules. Although the rule
representation scores did not predict accuracy on the trained items, rule representation scores did
uniquely explain performance on the figural analogies task, even after accounting for WMC and
fluid intelligence. These results indicate that WMC plays a large role in knowledge transfer, even
when transferring to a more complex problem-solving context, and that rule representations may be
important for novel problem solving.
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1. Knowledge Representations: Individual Differences in Novel Problem Solving

Research on novel problem solving (i.e., problems with which the solver is not al-
ready familiar) is incredibly diverse, with problem solving being studied in the context
of intelligence and reasoning (e.g., Bethell-Fox et al. 1984; Carpenter et al. 1990; Snow
1980), analogical transfer (e.g., Cushen and Wiley 2018; Gick and Holyoak 1980), expertise
(e.g., Chi et al. 1981; Novick 1988; Wiley 1998), and even skill acquisition (e.g., Anderson
1987; Patsenko and Altmann 2010). Separately, these domains have addressed different
aspects of problem solving (e.g., learning, transfer, knowledge, individual differences,
strategy use, etc.) but the lack of communication across those areas has left a large hole
in our understanding of how all of these complex processes interact with each other. In
particular, studies involving reasoning tasks primarily focus on the role of stable individual
differences, such as working memory capacity (WMC; Ackerman et al. 2005; Jarosz and
Wiley 2012; Unsworth et al. 2014). In contrast, studies using classic problem-solving tasks
or domain-specific tasks (e.g., physics problems) have focused more on strategies and
knowledge (Chi et al. 1981; Holyoak and Koh 1987; Novick 1988). Although individual
differences in reasoning and problem solving (Kubricht et al. 2017; Ricks et al. 2007; Sohn
and Doane 2003, 2004) have been studied from both a working memory and a knowledge
perspective, there remain questions about how the two interact.

2. Working Memory Capacity and Problem Solving

Much of the early work that investigated individual differences in problem solving
used tasks designed to measure fluid intelligence (Gf) because they have a great degree of
variability and are intended to be novel, and thus they should not be driven by individual
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differences in knowledge (Carroll 1993). These tasks were helpful in trying to isolate
the non-knowledge-based cognitive processes that contributed to reasoning and problem
solving. Early work in this area used tasks such as geometric analogies (Bethell-Fox et al.
1984) or Raven’s Advanced Progressive Matrices (RAPM; Raven et al. 1962) to assess Gf. In
many of these tasks, the stimuli are a series of shapes and patterns that change according
to rules. The objective of the task is to extract the rules and apply them. An example of a
figural analogy problem is shown in Figure 1.
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Figure 1. Figural analogy example. Note. An example figural analogy item used in the current study.
The answer to this item is B.

Specific attributes of the stimuli have been shown to increase the difficulty of the
problems. These features include how many rules and transformations are included, as
well as the number of objects or elements in the problem (Bethell-Fox et al. 1984; Mulholland
et al. 1980). The difficulty in the maintenance of these transformations and elements has
been ascribed to individual differences in WMC, with storage limits and attentional control
being a large barrier to maintaining and manipulating all of the necessary information in
memory (Bethell-Fox et al. 1984; Carpenter et al. 1990; Jarosz and Wiley 2012; Mulholland
et al. 1980; Primi 2001).

Though there are currently many different theories that postulate different structures
for working memory (Baddeley 2000; Barrouillet et al. 2004; Cowan 2005; Oberauer et al.
2003; Unsworth 2016), Unsworth (2016) suggested three components that make up WMC:
primary memory, attentional control, and retrieval from secondary memory. Each of these
subcomponents may play an important role in the relationship between WMC and Gf
(Unsworth et al. 2014), and together explain virtually all of their shared variance. For exam-
ple, the capacity account (Carpenter et al. 1990) of the WMC and Gf relationship would
argue that primary memory allows one to hold the various rules, objects, or goals and
subgoals required in a temporary storage space during problem solving. According to the
distraction account (Jarosz and Wiley 2012; Wiley et al. 2011), attentional control provides
the necessary resources to focus on desired information while ignoring irrelevant or dis-
tracting information coming from within or between problems. Retrieval from secondary
memory is the process of retrieving previously learned information and can be useful in
retrieving rules and transformations that correctly led to previous solutions, a key process
in the learning account (Verguts and De Boeck 2002). Each of these components explains
unique variance in WMC (Unsworth 2016; Unsworth et al. 2014; Unsworth and Spillers
2010) and appear to uniquely contribute to problem solving and reasoning (Unsworth et al.
2014). However, although these subcomponents can fully explain WMC’s relationship with
Gf, WMC does not account for all of the variability found in Gf tasks (Ackerman et al. 2005;
Kane et al. 2005; Oberauer et al. 2005).

Although the role of WMC has been heavily studied within reasoning tasks, the
mechanistic role it plays during solution and how WMC processes differ from other
cognitive processes involved in reasoning tasks remain unclear. Kovacs and Conway
(2016) argue that Gf is unlikely to be a unitary construct and, rather, performance on Gf
tasks reflects multiple basic processes that are necessary for most Gf tasks. Given that
WMC is also comprised of more basic processes and that the shared processes between
WMC and Gf do not account for all of the variability in Gf (Ackerman et al. 2005; Kovacs
and Conway 2016; Unsworth et al. 2014), other mechanisms must be considered to fully
understand individual differences in reasoning and problem solving.
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3. Individual Differences in Knowledge

The reasoning literature primarily focuses on tasks where the solver has no knowledge,
but this is not entirely reflective of problem solving encountered in a real-world setting. In
most cases, solvers will have some knowledge pertaining to the problem or will be able to
look up information about the problem. Understanding when and how information from
memory is used during problem solving is crucial to understanding problem solving as
a whole.

3.1. Expertise and Representation

Several studies investigating the effects of expertise on problem solving have shown
drastic differences in how experts solve problems in their field when compared to novices.
The classic study by Chase and Simon (1973) demonstrated an extreme form of chunking,
with chess experts recalling four times the information that novices did. Additional research
indicated that WMC could help to compensate for a lack of knowledge (Sohn and Doane
2003, 2004), but also that expertise could compensate for a lower WMC, as knowledge
becomes more proceduralized and automatic (Patsenko and Altmann 2010).

In addition to having access to more information in memory, experts also show distinct
differences from novices in how they represent that information in memory. Experts
tend to focus on deeper, more semantically driven representations of problems, whereas
novices are more likely to focus on surface features that may not actually be helpful in
solving the problem (Chi et al. 1981). Experts’ knowledge representations tend to be
highly interconnected, which enables them to move quickly and freely between concepts
that are related (Kohl and Finkelstein 2008). Experts are also better at solving problems
that are lacking in a clear goal or representation (Simon 1977) by adding in constraints
and elaborating on the problem, while novices simply start listing answers or responses
to the problem (Voss et al. 1983). Indeed, experts have been shown to create and use
goals and subgoals when stuck, whereas novices engage more in exploration (Hershey
et al. 1990; Kohl and Finkelstein 2008). Experts’ ability to create goals, Hershey et al.
(1990) argue, comes from having plan-like scripts or schemas to help direct them. These
highly developed scripts for familiar problems function similarly to productions in the skill
acquisition literature, where the scripts and plans increase automaticity. Taken together, this
suggests that experts do not simply have more knowledge, but are creating interconnected,
abstract representations that benefit them in future problems.

3.2. Analogical Transfer

The analogical transfer literature focuses on the ability to generalize previously learned
information given in a source problem to a new target problem. Looking at how participants
solve a target problem after being given a structurally identical source, multiple studies
have found that participants are unlikely to spontaneously transfer solutions (Gick and
Holyoak 1980, 1983; Holyoak and Koh 1987; Novick 1988), and even hints do not guarantee
transfer (Gick and Holyoak 1983). However, giving participants additional source problems,
especially those presented in a spaced-out structure (Gick and Holyoak 1983; Wharton
et al. 1994), as well as giving participants a delay between problems (Holyoak and Koh
1987), has been shown to be helpful in building better representations. Findings from the
skill acquisition literature also replicate the positive effects of including additional source
problems and presenting them in a spaced presentation (Carlson and Yaure 1990). Creating
a deeper and richer representation appears to be a key element in transferring knowledge.

Although the representation of the source is crucial for understanding structural
similarities between analogs, surface similarities (i.e., how much the problems superficially
resemble each other) between the source and the analog also contribute to analogical
transfer (Holyoak and Koh 1987) by acting as a cue that there is relevant information in
memory. In the absence of surface similarities, solvers must rely on their own internal
ability to retrieve a previously learned solution. If solvers represent the source based
upon its surface features, then it is less likely that solvers will easily retrieve the source
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when given a dissimilar target. However, if solvers represent the source in a more general
and abstract way (i.e., an emphasis on the deep structure of the source problem, and not
surface features), then the target should be a sufficient cue to retrieve the source because
the structure, rather than the surface features, is the focus point.

There is some evidence to suggest that the ability to generalize previously learned
solutions may actually be driven by WMC or reasoning processes. Kubricht et al. (2017)
indicated a positive relationship between analogical transfer and Gf, with additional aids
(e.g., providing more source problems) benefitting low-Gf individuals, whereas high-Gf
individuals performed well regardless of whether those aids were present. This suggests
that high-Gf individuals can more easily form general and abstract representations of
the source that can then be transferred more readily. Similar studies have demonstrated
the role of diffuse attention in analogical transfer (Cushen and Wiley 2018). Increased
attentional resources stemming from WMC may cause fixation on irrelevant details that
prevent an individual from noticing that a source and analog are related. In the absence
of a more general representation, diffuse attention may help in noticing more remote
relationships. Furthermore, the ability to access remote ideas may be helpful in generating
more general representations. The results from a study by Cushen and Wiley (2018)
demonstrate that performance on the Remote Associates Test does indeed predict analogical
transfer, even after accounting for WMC. Furthermore, Remote Associates Test performance
also predicted the completeness of someone’s representation (as measured by a summary
of the source problem). However, these results are incongruent with Storm and Bui (2016),
who found that the propensity to mind wander negatively predicted analogical transfer,
even if hints were included. It is possible that performance on the Remote Associates Test
taps into an ability to reach remote ideas that is not driven by diffuse attention, or that
diffuse attention is only helpful for a portion of the analogical transfer process. Cushen
and Wiley (2018) note that once a relationship has been established, the solver must still
map the source to the analog. Thus, analogical transfer as a whole may require flexibility in
the capacity to use multiple processes.

3.3. Learning on Novel Tasks

Despite the fact that many tasks used to study reasoning are intended to provide novel
situations, that does not mean that learning cannot occur throughout the task. Several
studies involving Gf tasks have demonstrated that participants learn the rules during the
task and use them as they approach new problems (Bors and Vigneau 2003; Harrison et al.
2015; Loesche et al. 2015; Verguts and De Boeck 2002). Although participants may be using
this information to help them solve problems, the ability to learn these rules well and
apply them is more complicated than simply solving a problem correctly. Loesche et al.
(2015) provided participants with the rules before completing the RAPM, and although
performance did improve, it did not increase to such a point that knowing the rules
was sufficient for solving all problems on the RAPM. They noted that this finding was
especially sensitive to how well participants initially learned the rules. This is consistent
with previously discussed findings in both the skill acquisition literature (Carlson and
Yaure 1990; Cooper and Sweller 1987) as well as studies looking at analogical transfer (Gick
and Holyoak 1983; Kubricht et al. 2017; Wharton et al. 1994). Interestingly, increases in
performance due to rule knowledge do not necessarily change the validity of the tests.
Schneider et al. (Schneider et al. 2020; Schneider and Sparfeldt 2021a, 2021b) demonstrated
that though learning the rules could increase test performance across several Gf tasks, this
increase did not change those tasks’ correlations with other measures of intelligence. This
further emphasizes the need to understand how, mechanistically, learning rules influences
solution success.

Learning on the RAPM is also sensitive to feedback, as well as exposure to rules
throughout the task (Verguts and De Boeck 2002). Additionally, even if participants are
given the same problems over multiple sessions, they are inconsistent in solving them.
This is true even if they correctly solve the problem the first time (Bors and Vigneau
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2003). These results clearly demonstrate that learning and knowledge do play a role in
reasoning tasks, but also that previously solving a problem is not a guarantee for solving
the same or a similar problem again. An individual’s ability to recognize that previously
learned information is relevant, as well as their ability to successfully retrieve the relevant
information, are additional processes to consider in conjunction with problem solving or
reasoning processes.

4. Summary

Problem solving is clearly a complex task that draws upon many different cognitive
processes. Individual differences in WMC are a large contributing factor to problem solving
success (Ash and Wiley 2006; Carpenter et al. 1990; Sohn and Doane 2003; Unsworth et al.
2014), but there also appears to be room for other processes. Individual differences in
knowledge also play a significant role in problem solving (Bors and Vigneau 2003; Chi
et al. 1981; Luchins 1942; Wiley 1998). This knowledge can come in the form of expertise
or as information that was learned on a previous problem, depending on the task. There
is, however, a more complex relationship between knowledge and problem solving. More
knowledge does not necessarily mean improved performance (Bors and Vigneau 2003; Gick
and Holyoak 1980). Sometimes knowledge can lead to fixation (Luchins 1942; Wiley 1998),
sometimes knowledge is not necessary if an individual has high levels of other cognitive
abilities, such as WMC (Sohn and Doane 2003, 2004), and sometimes knowledge cannot be
used because the individual is unable to transfer it to another problem (Gick and Holyoak
1983; Holyoak and Koh 1987; Kubricht et al. 2017). What seems to be generally beneficial
is the production of a general, abstract representation. In addition, the roles of WMC and
knowledge are not necessarily completely distinct, and they likely influence each other.

5. The Present Study

Although the combination of several literatures has provided information on how
knowledge and WMC contribute to and interact during problem solving, there are several
research questions that have remained unanswered. Of primary concern are the differential
problem-solving processes accounted for by WMC and knowledge. WMC clearly con-
tributes to problem solving, but the mechanisms through which it acts remain under debate
(Carpenter et al. 1990; Verguts and De Boeck 2002; Wiley et al. 2011). Because WMC may
contribute to knowledge at the encoding stage as well as the retrieval stage, it is important
to identify what is breaking down when a solver fails to find or transfer a solution.

To start to isolate knowledge-specific problem-solving processes from general cogni-
tive processes (e.g., attention) in the present study, several changes were made to existing
methods in the problem-solving domain. Concerns with analogical transfer stimuli (i.e.,
using a small sample of fairly difficult problems) were resolved by using a figural analogy
task. This ensures that there are multiple target and source problems, as well as making it
easier to create problem isomorphs. Additionally, a reasoning task contains more active
problem solving than when solely using classical analogical transfer materials. This ensures
that there is enough variability in the task that individual differences in problem-solving
skill will still be measured.

To keep track of knowledge and transfer throughout the task, stimuli were constructed
such that all problems could be decomposed into rules. For example, one problem may
require two objects to swap locations, a rotation of those objects, as well as a size change.
Another problem may only require a rotation and a size change. Problems were considered
unique based upon the combination of rules. To test the effects of increased knowledge
on problem solving and transfer, participants first learned a select set of individual rules
during a training phase, then were tested on more complex problems involving multiple
rules. Figure 2 provides an illustration of the general procedure.
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To avoid biasing participants towards a particular representation of the rule, partic-
ipants were not given the rule explicitly. Rather, rules were learned by solving simple
problems that contained only one of those rules, (e.g., a problem where the answer is a
single size change). The single-rule problems were designed to be solved fairly easily,
such that participants could induce the rule on their own. This was accomplished by only
using one rule, reducing the visual complexity of items compared to the standard figural
analogies task, and reducing the number of response options from five to four. Furthermore,
two variations of each rule were shown during the training phase.

During the test portion, participants solved items that included at least two rules. Half
of the test items were comprised of only the rules given in the training portion, and the
other half were comprised of entirely new rules. If participants were able to successfully
transfer the rules learned in the training portion, even in a context where multiple pieces
of information must be used, then participants should have higher accuracy on the test
items that were comprised of the trained rules when compared to the items that consist of
new rules.

Both the expertise literature and the analogical transfer literature have demonstrated
that knowledge representations are crucial to knowledge being used, with an emphasis on
structure and less emphasis on surface features being particularly beneficial for transferring
that knowledge. As such, the representation quality of the rules may be critically important.
To measure this, participants were asked to rate numerically how similar they thought two
problems were. Participants were shown only the A:B component of a problem rather than
the full version with A:B :: C:? so that they could focus on the rule and not on problem
solving. The A:B components they saw came from the rules shown in the initial training
phase problems. This ensured that participants were making similarity judgements on
items for which they had successfully induced the rule previously. Of primary interest was
how closely the individual rated slightly different versions of the same rules compared to
completely different rules. For example, did the solver rate a 90-degree rotation rule and a
45-degree rotation rule as equally different when compared to a rotation rule and a size-
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change rule, or did they treat the two versions of the rotation rule as equally similar as two
different 90-degree rotation problems? Where participants fell on this spectrum was used
to assess their representation, with participants ranging from more general representations
(the 90-degree rotation and 45-degree rotation were very similar) to more item-specific,
less general representations (the 90-degree rotation and 45-degree rotation were treated as
completely separate rules).

If rule representations do indeed help to facilitate retrieval, then more general repre-
sentations should correlate with higher accuracy on the trained-rule problems. Ratings
on the rule representation measure may also correlate with performance on novel-rule
problems because the processes that facilitate the generation of general representations
may also play a role in other reasoning processes. However, it is expected that there would
be a stronger relationship for the trained-rule problems because the novel-rule problems
should not be drawing on retrieval processes as much.

The final set of factors to consider is the role of individual differences in WMC and
reasoning. It is unclear whether WMC and/or Gf help to develop more general repre-
sentations, but it is reasonable to expect that WMC and Gf will interact with the training.
Because WMC may play a large role in initially learning the rules and then later facilitating
the retrieval of those rules during problem solving, WMC should have a stronger relation-
ship with accuracy for the trained items, and Gf should have a stronger relationship with
accuracy for the novel items. Furthermore, relationships between the individual differences
measures and the rule representation measures can be investigated. Specifically, one ques-
tion is whether or not the rule representation measure can explain unique variability on the
figural analogies task, or if WMC/Gf determine the quality of the representation. If the
rule representation measure does uniquely explain performance on the figural analogies
task after accounting for WMC and Gf, then this would provide a novel measure that
could potentially explain solution transfer. If, however, the knowledge representation
measure can be explained by WMC/Gf, then this would provide some further specificity
on why WMC and/or Gf explain performance. Whether rule representations correlate or
are predicted by WMC or Gf will also be investigated. This will help to further clarify if
rule representations are truly unique, share some processes with WMC and/or Gf, or can
be entirely explained by WMC and/or Gf.

6. Method
6.1. Participants

The target sample size for the study, after accounting for participants who fail to
complete the tasks correctly or outliers, was set at 200 participants. This was based on
simulated analyses demonstrating that 200 participants would be sufficient for detecting
moderate effect sizes within a regression model containing a continuous predictor variable,
a binary predictor variable, and an interaction term between the two predictor variables.
Furthermore, correlations ranging from .3 to .5 begin to stabilize (remain within a window
of ±.1 at 80% confidence) at around 212 and 143 participants, respectively, indicating that
200 participants should be sufficient in detecting moderate correlation coefficients as well
(Schönbrodt and Perugini 2013). However, because the study was administered entirely
online and previously collected online studies at this university have had attrition rates
ranging from 40–50%, a new target of 400 participants was set. A total of 418 participants,
collected from a pool of Mississippi State University students, completed all tasks in the
study. Of those 418 participants, 173 participants failed to meet the inclusion criteria for
one or more of the tasks. Twenty-five additional participants were removed for falling
outside of 2.5 standard deviations away from the mean on at least one of the tasks or were
multivariate outliers, according to Mahalanobis distance (Ghorbani 2019). This resulted in
a final sample of 220 participants.
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6.2. Materials
6.2.1. Modified Figural Analogies Task

The modified figural analogies task is based on the figural analogies test by Lohman
and Hagen (2001; Form 6, Level H, Test 8 of the cognitive abilities test). Some of the
items from the original task were used in the modified version, but most of the items were
created specifically for this experiment. In the standard figural analogies task, participants
are shown a set of objects in the form of A:B :: C:? Participants must induce the rule(s)
governing the changes from A to B and then apply that rule to the analog, C. Participants
select their answer from five response options. An example item is shown in Figure 1.

The modified figural analogies task was split into three parts: a training portion,
the Rule-Similarity Judgement Task (RSJT), and a test portion (see Figure 2). For the
training portion, participants solved figural analogies items that consisted of only one rule.
Thus, participants could learn the rule easily, but it was still through their own induction
processes. Then, for the RSJT, participants saw the A:B portion of two figural analogy items
and rated how similar they thought the two rules were. The RSJT only used rules that were
present in the training portion. Lastly, participants solved a series of figural analogy test
items that more closely resembled the items normally shown in the figural analogies task.
The test items were comprised of two or three rules, with some items being comprised of
rules seen in the training portion and other items being entirely novel. Participants solved
both types of problems and the two sets were counterbalanced across participants so that
each set of rules was used as the training set and as the novel set at some point.

Figural Analogies Training

The participants solved 14 problems in the training portion; 2 problems for each rule.
The two problems for each rule were slightly different versions of the rule. For example,
for the “size change” rule, one problem was a size change where the object increased in
size and the other was a size change where the object decreased in size. This resulted in a
total of 14 single-rule items to be used in the training portion for each set, and 28 different
versions in total. Participants only solved one set of 14 problems (7 rules) in the training
portion because the other set of 7 rules was used to make up the novel rules condition in
the test portion.

Prior to data collection, a larger set of rules were piloted. Some of the rules originated
from the original figural analogies task, whereas others were generated specifically for
this study. Pilot data indicated that the final set of 14 rules were all treated as distinct by
participants and that the expected interpretation of the rule matched with participants’
verbal descriptions of the rules. For example, many participants described a rule wherein
an object duplicates as “double”, “duplicating”, “multiply by 2”, “copy shape” or some
other variation. These types of responses were consistent for the other rules, wherein there
was some variation in the words participants chose, but the overall explanation aligned
with the expected interpretation. The full list of rules, and which set they belonged to, can
be found in Appendix A. Participants were given an unlimited amount of time to solve the
training items. Because the validity of the RSJT and the effect of training both depended
on participants successfully inducing the rules, participants were removed from analyses
if they missed more than 4 problems in the training portion. Of the 418 participants that
completed all tasks, 89 failed to meet the inclusion criteria for the training portion.

Rule-Similarity Judgement Task (RSJT)

After solving the 14 training items, participants made similarity judgements on the
rules using a scale that ranged from 0 to 100, in intervals of 5. They were shown all of the
items in a random order and had unlimited time to make the judgement.

Participants were shown only the A:B portion of the problem so that they could focus
on only the rule. The rules used in the similarity judgement portion were the same rules
used in the training portion, so participants had already demonstrated their ability to
induce the single rule, which is necessary for making a comparison. Each comparison could
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be categorized into three conditions: the exact same version of the same rule (“same-version
comparison”), two different versions of the same rule (“different-version comparison”),
and different versions of different rules (“different-rule comparison”). Examples of the
stimuli are provided in Figure 3. An example of the same-version comparison condition
would be a comparison between two different 90-degree rotation items. An example of the
different-version condition would be a 90-degree rotation item and a 45-degree rotation
item comparison. An example of the different-rule condition would be a 90-degree rotation
item being compared to an increase in size; the size-change rule.
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Figure 3. RSJT comparison stimuli example. Note. The same version comparison example includes
two swap rules, the different version comparison includes two slightly different swap rules, and the
different rule comparison includes a swap rule and a size change rule.

Pilot analyses indicated that participants were responsive to the different types of com-
parisons, with the average rating for same-version comparison being the highest (M = 82.33,
SD = 28.55), and the average rating for different-version comparison (M = 56.56, SD = 35.95)
being between same-version and different-rule comparisons (M = 18.32, SD = 25.06). Fur-
thermore, there were almost no two rules that were treated as being too similar, except for
three different-rule comparisons that had an average rating over 30. These rules, however,
were separated into different groups to prevent any issues that might have been caused
by their similarities. Finally, subtle differences in the types of rules (quantifiably different
rules, such as rotation, vs. qualitatively different rules, such as color change) did not
systematically contribute to participants’ similarity judgements.

In order to provide a sufficient number of comparisons, six A:B items were created
for each rule, including three for each rule version (i.e., three 90-degree rotation items and
three 45-degree rotation items). The six A:B items were drawn with enough variation that
there were no isomorphs during the same-version comparisons. However, all items were
drawn with most shapes being square-like to encourage participants to look at the rule
and not simply make a similarity judgement based upon surface features. An example of
the six items for the numeracy rule is shown in Figure 4. With six items, six same-version
comparisons were shown (three per rule), six different-version comparisons were shown
(more combinations were technically possible, but six comparisons were randomly selected),
and twelve different-rule comparisons per rule were shown. Although more combinations
are possible, only two comparisons per rule (one per version) were selected to be matched
with other rules. This resulted in a total of 126 comparisons: 42 same-version comparisons,
42 different-version comparisons, and 42 different-rule comparisons. All comparisons were
shown in a random order across all participants. Prior to starting the similarity judgement
portion, participants were given three practice trials, one per comparison type, so that they
could adjust to the procedure and the types of comparisons they would be making.
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To ensure that participants were completing the similarity judgement task appropri-
ately and not simply selecting random responses, a t-test was calculated for each participant
to determine if they were treating the same-version rule condition differently than the
different-rule condition. Given that these fall on two extremes, participants should rate
these differently, and thus this served as a manipulation check. Of the 418 participants that
completed all tasks, 57 failed to meet the inclusion criteria for the RSJT.

Figural Analogies Test

For the test portion, participants completed a total of 30 figural analogy problems.
Half of the problems were comprised entirely of rules used in the training portion and
the other half were comprised of novel rules. However, what constituted trained rules or
novel rules depended on which set of rules the participant received in the training portion,
with the two set of rules counterbalanced across participants. Pilot analyses from a larger
sample of figural analogy problems were used to create the sample of thirty problems to
ensure that the two sets of problems were equal in difficulty. The figural analogies test
problems consisted of two or three rules (seven two-rule problems for Set A and nine
for Set B, with the remainder of the set being three-rule problems), with some problems
consisting of entirely distinct rules, whereas other problems used two versions of the same
rule in a problem (paired-rule items). The paired-rule items were introduced to increase the
number of problems used in the figural analogies test portion while still ensuring that no
two problems used the same combination of rules. Furthermore, the practice of using two
rules conditional on some other factor (such as the size of the object) is a technique used
in the RAPM (Raven et al. 1962) and therefore has precedent for being used in a Gf task.
The distinct-rule items could be comprised of two or three rules, but the rules were always
unique (e.g., color change, size change, and rotation). The paired-rule items could also
consist of two or three rules, but always included two rules that were actually two versions
of the same rule. For example, one problem may have a 90-degree rotation for the larger
object and a 45-degree rotation for the smaller object. If the paired-rule item consisted of
three rules, then the third rule was an additional distinct rule. Pilot analyses indicated that
the paired-rule items did not differ in difficulty when compared to the distinct-rule items.
Set A did include more paired-rule items than Set B (nine and seven, respectively), but this
was a result of prioritizing balanced difficulty across the two sets.
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Participants were shown the 30 problems in a random order and were given a maxi-
mum of 60 s to solve the problem. If they had not selected a response after 60 s, they were
moved to the next problem and that item was marked as incorrect. To encourage accurate
performance on the task, a 20 s penalty screen appeared if participants selected a response
in less than 5 s and it was incorrect. The screen notified the participant that they selected
their response quickly and encouraged them to make sure that they were performing the
task correctly. To serve as a manipulation check, the example figural analogies item shown
in the instructions (A:a :: R : ?) was drawn to resemble the figural problems more closely
(adding triangles and rectangles around the letters) and placed randomly in the figural
analogies test portion. Participants that failed to solve the manipulation check item (52/418)
were removed from analyses.

6.2.2. Working Memory Capacity
Automated Operation Span

The automated operation span (Unsworth et al. 2005) is a complex span working
memory task that tests an individual’s ability to remember letters while solving simple
math problems in between the presentation of the letters. For the math portion, participants
were shown a simple math problem followed by a number. They had to determine if the
number was the answer to the previous problem or not. They were then shown a letter that
was to be recalled at a later time. After several iterations, participants were asked to recall
the letters in the sequence that they saw them in. Participants completed 2 blocks, with
each sequence length, ranging from 3 to 7 letters, being presented once per block. The task
was scored using the partial scoring method, where a participant’s total is comprised of the
total correct letters recalled in the correct position of the sequence. Participants completed
a shortened version (Foster et al. 2015) of the task (two blocks instead of three) to try and
reduce fatigue because participants completed all tasks online. Participants were removed
if they failed to score at least 80% accuracy on the math portion (40/418).

Automated Symmetry Span

The automated symmetry span is very similar to the automated operation span, but
it uses visual stimuli rather than verbal stimuli (Unsworth et al. 2009). Instead of math
problems, participants determine if an image is symmetrical or not. Then, they are shown a
4 × 4 grid with a single red square filled in. After several iterations, of which range from
2 to 5 to be remembered red squares, participants recall the location of the red squares in
the sequence they were presented. Participants completed two blocks (Foster et al. 2015)
and the task was scored using the partial scoring method. Participants were removed if
they failed to score at least 80% accuracy on the symmetry portion (59/418).

6.2.3. Gf Measures
Paper Folding Task

The paper folding task (Ekstrom et al. 1976) shows participants a piece of paper that is
then folded several times. A hole is then punched through the folder paper and participants
must determine what the unfolded paper would look like. Participants were shown a total
of 20 items, with 3 min to complete the first 10 and another 3 min to complete the second
set of 10. An example item is shown in Figure 5. Because it was easy to click through this
task and the study was administered online, participants were excluded from all analyses
if their average response time across all items was less than two seconds (25/418).
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Letter Series

The letter series task (Kotovsky and Simon 1973) requires participants to identify a
pattern in a sequence of letters and provide what the next letter in the sequence would
be according to that pattern. For example, participants might be given ‘ababababa’, with
the correct answer being ‘b’. Participants solved 15 items with no time limit for the task.
Similar to the figural analogies test portion, however, participants were shown a 20 s time
penalty screen if they selected their response in less than 5 s and it was incorrect. To find
participants that were clicking through the task, the problem “abcde” was added as the
tenth item (changing the total to 16 items). However, after data collection was completed, it
was realized that “abcde” could be solved with multiple answers, so instead participants
were excluded from analyses if their accuracy was less than three. Three was chosen
because the first two items of the letter series task are extremely easy and most participants
did solve the “abcde” item correctly, suggesting that most participants genuinely doing the
task should be able to solve at least three problems correctly. Of the 418 participants that
completed all data, 66 failed to meet the inclusion criteria for the letter series task.

6.3. Procedure

Participants completed all tasks in a single session, entirely online. Participants were
told prior to starting the study that they must complete the study in one sitting so they
should only begin when they are ready. Participants were given a final warning screen
before starting the study to not begin unless they were ready. Participants completed
the modified figural analogies task first, followed by the automated operation span task,
the symmetry span task, the paper folding task, and the letter series task. All tasks were
completed in this order, with a short one-to-two-minute break provided between each task.

7. Results

Composite scores were generated for the WMC and Gf measures by taking perfor-
mance on the two tasks (operation span and symmetry span for WMC and paper folding
and letter series for gf), z-transforming the scores, and then taking the average of the two
tasks1. For the modified figural analogies task, three rule-representations scores were
generated from the RSJT, one score for each type of comparison (i.e., the same rule and
the same version of the rule, or “same version”; the same rule but a different version
of the rule, or “different version”; or a different rule and different version, or “different
rule”). These were calculated by first recentering all the scores for each participant such
that their minimum score became −1 and their highest score became 1. The recentering
was performed across all of their judgement scores and was not split by type of comparison.
This was carried out to account for participants using the scale differently2. Next, the
average score was taken for each type of comparison for each participant, producing three
scores: their average same-version comparison score, different-version comparison score,
and different-rule comparison score. The primary measure of focus was their average
score for the different-version comparisons. If participants have a positive value for their
different-version score from the RSJT, then this would indicate that they are treating the
different-version items similar to the same-version items, suggesting their representation
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of that rule is more general and that they are not treating different versions as entirely
different rules. Conversely, if their different-version score is negative, then this would
indicate that they are treating the different-version rules as separate rules.

7.1. Summary Statistics and Correlations

All summary statistics are included in Table 1 and the correlations between all tasks
are shown in Table 2. The RSJT scores were split by the two stimulus sets in Table 1 so
that reliability could be calculated for each set. Reliability was calculated using Cronbach’s
alpha at the item level for the figural analogies test items, letter series, and the RSJT same-
version and different-version scores (averaged across each rule, treating it as an item).
Split-half reliability was used for paper folding and the RSJT different-rule scores. Split-half
reliability was used for the RSJT different-rule scores because they could not be averaged by
rule, as two rules were shown in the different-rule comparisons. Parallel-forms reliability
was used for operation span and symmetry span.

Table 1. Descriptive statistics.

n M SD Min Max Skew Kurtosis Reliability

FA Accuracy 220 11.59 4.21 4.00 24.00 0.48 0.68 0.65
RSJT SV A 115 0.69 0.15 0.26 0.96 −0.50 1.31 0.70
RSJT SV B 105 0.77 0.15 0.26 1.00 −1.18 2.51 0.76
RSJT DV A 115 0.35 0.21 −0.19 0.75 −0.55 0.83 0.68
RSJT DV B 105 0.20 0.23 −0.40 0.63 −0.25 0.47 0.71
RSJT DR A 115 −0.68 0.25 −1.00 −0.09 0.46 0.13 0.89
RSJT DR B 105 −0.68 0.26 −1.00 0.01 0.50 0.24 0.88
Operation Span 220 41.07 6.66 22.00 50.00 −0.58 0.56 0.67
Symmetry Span 220 19.70 4.90 8.00 28.00 −0.30 0.29 0.61
Paper Folding 220 11.10 3.36 4.00 19.00 −0.34 0.42 0.66
Letter Series 220 8.85 3.20 2.00 15.00 −0.07 0.23 0.76

Note. FA refers to figural analogies, SV refers to same version, DV refers to different version, and DR refers to
different rule.

Table 2. Task correlations.

1 2 3 4 5 6 7 8 9 10

1. FA Accuracy -
2. RSJT SV 0.29 * -
3. RSJT DV 0.11 0.45 * -
4. RSJT DR −0.17 * −0.14 * 0.33 * -
5. Operation Span 0.27 * 0.05 −0.11 −0.10 -
6. Symmetry Span 0.37 * 0.09 0.04 −0.09 0.14 * -
7. Paper Folding 0.45 * 0.15 * 0.07 −0.09 0.14 * 0.30 * -
8. Letter Series 0.42 * 0.13 0.03 −0.08 0.17 * 0.30 * 0.32 * -
9. WMC Composite 0.43 * 0.10 −0.05 −0.13 0.74 * 0.77 * 0.29 * 0.31 * -
10. Gf Composite 0.54 * 0.17 * 0.06 −0.10 0.19 * 0.37 * 0.81 * 0.82 * 0.37 * -

Note. * p < .05. FA refers to figural analogies, SV refers to same version, DV refers to different version, and DR
refers to different rule.

7.2. Predicting Figural Analogies Accuracy with Training, RSJT Scores, WMC, and Gf

The first set of analyses investigated whether accuracy on the figural analogies test
items changed as a function of training, the participant’s rule representation as measured
by the RSJT different-version scores, and the WMC and Gf measures. To determine this,
generalized linear mixed-effects models (GLMM) were used to predict item accuracy on the
test items with the fixed effects hierarchically introduced. A logit link function was used to
predict the binary accuracy data. The maximum random effects structure included random
intercepts for subject and item, with random slopes added for training for both subject
and item. The general procedure for the models was to include all fixed effects and the
maximum random effects structure initially and to then gradually reduce the complexity of
the random effects structure if the model failed to converge or was singular (Bates et al. 2015;
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Matuschek et al. 2017). The structure could be reduced by removing correlation parameters
or removing random effects that failed to explain a significant portion of variance (i.e., if
variance was not greater than zero at α = 0.20). All binary predictors were coded using
sum contrast coding (−1, 1) and all continuous predictors were z-transformed.

The first model predicted figural analogy accuracy with fixed effects for the training
(items comprised of previously seen or novel rules) and the participants’ RSJT different-
version score with a test for an interaction between RSJT different-version scores and
training. The results of the model, Model 1, are shown in Table 3. There was a significant
interaction between the training manipulation and RSJT different-version scores, shown in
Figure 6; however, the relationship was in the opposite direction of what was predicted.
The interaction illustrates a small relationship between RSJT different-version scores and
accuracy, but only when participants are solving problems comprised of novel rules. The
RSJT scores did not predict accuracy at all for the trained items. It is worth noting that only
three participants fell outside of −1.7 standard deviations away from the mean for the RSJT
different-version scores but were within −2.5 standard deviations. The removal of these
participants did not change the results of the model.

Table 3. Predicting figural analogy accuracy with RSJT different-version scores, WMC, and Gf.

Predictors β SE Odds
Ratio z p

Model 1
Intercept −0.56 0.13 0.57 −4.14 <.001
Training 0.07 0.04 1.07 1.65 0.098
RSJT DV 0.10 0.05 1.10 1.81 0.071
Training × RSJT DV −0.07 0.03 0.93 −2.28 0.022

Model 2
Intercept −0.59 0.13 0.55 −4.43 <.001
Training 0.07 0.04 1.08 1.75 0.080
RSJT DV 0.11 0.05 1.12 2.33 0.020
WMC 0.44 0.06 1.56 7.21 <.001
Training × RSJT DV −0.08 0.03 0.93 −2.34 0.019
Training × WMC −0.06 0.04 0.94 −1.38 0.168

Model 3
(Intercept) −0.59 0.13 0.55 −4.47 <.001
Training 0.07 0.04 1.08 1.75 0.080
RSJT DV 0.08 0.04 1.09 1.93 0.053
WMC 0.28 0.06 1.32 4.74 <.001
Gf 0.37 0.05 1.44 7.33 <.001
Training × RSJT DV −0.08 0.03 0.92 −2.50 0.012
Training × WMC −0.09 0.04 0.92 −2.00 0.045
Training × Gf 0.07 0.04 1.07 1.90 0.058

Model 4 (Final Model)
Intercept −0.59 0.13 0.55 −4.47 <.001
Training 0.07 0.04 1.07 1.68 0.094
RSJT DV 0.08 0.04 1.09 1.93 0.054
WMC 0.28 0.06 1.32 4.66 <.001
Gf 0.37 0.05 1.44 7.29 <.001
Training × RSJT DV −0.07 0.03 0.93 −2.28 0.023

Note. Training was coded with −1 for the novel-rules condition and 1 for the trained-rules condition. DV refers to
different version.
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Figure 6. Interaction between RSJT different-version scores and training. Note. The plot was generated
using the predict function in R to generate log odds ratio accuracy data based upon Model 1 (Table 3).
The data points represent item level data for all participants and the linear slopes were generated
with the geom_smooth function in ggplot. The circles represent trained-rule items and the squares
represent novel-rule items.

The next analysis introduced the WMC and Gf composite measures into the GLMM.
WMC and Gf were added into the models to determine if rule representations accounted
for unique variance or if they could be explained by other processes. Both WMC and Gf
measures were included because prior work investigating analogical transfer has shown
that Gf may contribute to building representations (Kubricht et al. 2017), but WMC was not
accounted for in that study.

WMC and Gf were added on top of the RSJT different-version scores, with WMC and
Gf also tested for interactions with training. Because the inclusion of interaction terms
can make it difficult to interpret main effects, nonsignificant interactions were removed
for the final model, Model 4. However, the WMC and Gf models with all interaction
terms are also included. All models’ results are shown in Table 3. For WMC, shown
in Model 2, there was no significant interaction with training, though WMC did predict
accuracy on the figural analogies task. For Gf, in Model 3, there was also no significant
interaction, but Gf did predict accuracy on the figural analogies task. The interaction
between RSJT different-version scores and training did remain significant after including
both Gf and WMC, indicating that the RSJT scores were measuring something unique from
Gf and WMC.
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7.2.1. Interim Discussion: Task Learning

The interaction between RSJT different-version scores and training was in an un-
expected direction. These results may indicate that processes that would normally be
beneficial in solving figural analogies problems become less important or less likely to
be used when participants have been trained on the rules. This is similar to findings in
the expertise literature, where dependence on other cognitive processes, such as working
memory, decreases as expertise increases. The lack of an interaction between WMC and
training was also unexpected, given prior work showing that the relationship between
performance on Gf tasks and WMC changes depending on whether items are comprised of
novel or previously seen rules (Harrison et al. 2015; Loesche et al. 2015; Wiley et al. 2011).
However, it has also been noted that participants learn throughout a task, even if all of the
rules are novel, and that the frequency of rules used can bias participants’ expectations and
use of rules (Verguts and De Boeck 2002). Therefore, a post hoc analysis was conducted to
investigate the relationship of WMC and training on accuracy while also accounting for
learning throughout the task.

7.2.2. Task Learning Post Hoc Analysis

Learning throughout the task was assessed using trial number, so a separate anal-
ysis tested for a three-way interaction between WMC, training, and trial number, while
predicting accuracy on the figural analogies task. The results of the GLMM are shown in
Table 4. The three-way interaction was significant (p = .003), as shown in Figure 7. Post hoc
comparisons demonstrated that WMC and trial continued to interact for the novel-rule
items (p = .021) but not for the trained-rule items (p = .07). However, there was still a
main effect of WMC (p < .001) and trial (p = .02) for the trained-rule items (even with
the interaction term removed). The models for the post hoc comparisons can be found
in Appendix A. The results of the three-way interaction and the post hoc comparisons
suggest that high-WMC individuals improve on the novel-rule items over time whereas
the low-WMC individuals do not. Although the interaction term between WMC and trial
was not significant for the trained-rule items, the main effects of WMC and trial indicate
that high-WMC individuals were more likely to solve trained-rule items, but both high and
low-WMC individuals improved on the trained-rule items over time. Notably, there were
no significant interactions with Gf for training and trial number, so these results appear to
be unique to WMC.

Table 4. Predicting figural analogy accuracy with WMC, training, and trial.

Predictors β SE Odds Ratio z p

Intercept −0.58 0.13 0.56 −4.35 <.001
Training 0.07 0.04 1.07 1.62 0.105
WMC 0.44 0.06 1.55 7.02 <.001
Trial 0.09 0.03 1.10 3.27 0.001
Training × WMC −0.05 0.04 0.95 −1.29 0.199
Training × Trial 0.01 0.03 1.01 0.28 0.776
Trial × WMC 0.02 0.04 1.02 0.43 0.666
Training × Trial × WMC −0.13 0.04 0.88 −2.99 0.003

Note. Training was coded with −1 for the novel-rules condition and 1 for the trained-rules condition.
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but a tertiary split was used to plot the data. The circles represent trained-rule items and the squares
represent novel-rule items.

7.3. Predicting RSJT Different-Version Scores

After investigating the relationship between memory retrieval and accuracy, a closer
look at the rule representation measure was conducted to determine if WMC and/or Gf
could explain the ability to generate more general rule representations. The second analysis
used a linear mixed-effects model (LMM) to predict the RSJT different-version scores for
each rule, with the WMC and Gf measures used as predictors. The random effects structure
included random intercepts for subject and rule. The p-values were generated using the
lmertest package in R. The results of the model can be found in Table 5. Neither Gf nor
WMC predicted the RSJT different-version scores.

Table 5. Predicting RSJT different-version scores.

Predictors β SE df t p

Intercept 0.00 0.18 13.36 −0.02 0.983
WMC −0.04 0.04 216.03 −1.01 0.315
Gf 0.04 0.03 216.02 1.40 0.162

7.3.1. Interim Discussion: Further Investigating the RSJT Scores

The lack of a relationship between RSJT different-version scores and figural analogies
accuracy on trained items, as well as the fact that RSJT same-version scores appeared to
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better correlate with figural analogy accuracy, prompted a deeper inspection of the RSJT
scores and what they may actually measure. The original intention with the RSJT was
to use the different version comparison scores only, because it was assumed that most
participants would rate the same-version comparisons as very close to 1 and the different-
rule comparisons as very close to −1, reducing those measures to be at the ceiling or at
the floor. Although same-version comparisons were rated the highest on average and the
different-rule comparisons were rated the lowest on average, there were no ceiling or floor
effects, thus making these other RSJT scores potentially meaningful.

It is also possible that different processes are beneficial when solving an item that has
two very similar rules included in a single item. The two types of figural analogy items,
distinct-rule items (items comprised of all unique rules) and paired-rule items (items where
two versions of the same rule appear in the same item), were originally developed to help
control for difficulty across the two sets and to allow for a larger set of items by repeating
rules. This requires the solver to be open to different variations of a rule and to not be
overly fixated on a single element of the rule. Yet, it also requires that the solver does not
over-generalize such that they cannot distinguish between the two highly similar rules. As
such, the following analyses explore both the other two RSJT measures and their impact on
different types of items.

7.3.2. Further Investigating the RSJT Scores Post Hoc Analyses

The first analysis sought to determine if each of the three RSJT scores measure different
constructs. The three measures were used as simultaneous predictors in a GLMM predicting
figural analogies accuracy. The results are shown in Table 6. The RSJT same-version and
RSJT different-rule measures did uniquely predict accuracy, but the RSJT different-version
did not predict accuracy, congruent with prior analyses.

Table 6. Predicting figural analogy accuracy with all three RSJT measures.

Predictors β SE Odds Ratio z p

Intercept −0.58 0.14 0.56 −4.19 <.001
RSJT DV 0.04 0.07 1.05 0.69 0.492
RSJT SV 0.20 0.06 1.22 3.11 0.002
RSJT DR −0.12 0.05 0.89 −2.16 0.031

Note. SV refers to same version, DV refers to different version, and DR refers to different rule.

The next analysis explored whether the type of figural analogy item being solved
contributed to the predictiveness of the RSJT measures. To test if the type of problem
mattered, three mixed-effects models were run, each with a different RSJT measure. The
models tested for a three-way interaction between the RSJT measure, training, and the
type of figural analogy item (distinct or paired) with random intercepts for subject and
item, and random slopes for training for both subject and item. The final models are
shown in Table 7. The type of figural analogies item only interacted with the RSJT different-
version measurements. Figure 8 shows the three-way interaction between RSJT different
version, training, and type of figural analogy item. Post hoc comparisons specified that the
significant differences in slopes were between the novel paired-rule items and the trained
paired-rule items, as well as the novel paired-rule items and the novel distinct items. All the
models for the post hoc comparisons can be found in Appendix A. The results indicate that
how an individual rates different versions of the same rule does predict accuracy on the
figural analogies task, but only for novel paired-rule items. Furthermore, this interaction
was not significant with the RSJT same-version or different-rule measures, suggesting that
this is particular to the different version measure. Notably, the results found with the
three-way interaction likely explain the effect found in the first analysis, with RSJT different
version interacting with training. Finally, the lack of a main effect of item type, as well as
a two-way interaction between training (namely in the same version and different rule
models that do not include the three-way interaction term), indicate that the type of item
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did not contribute to overall accuracy and is also not responsible for any of the training
effects.

Table 7. Predicting figural analogy accuracy with RSJT measures, training, and item type.

Predictors β SE Odds Ratio z p

SV Final Model
Intercept −0.58 0.13 0.56 −4.30 <.001
Training 0.06 0.04 1.06 1.48 0.140
Item Type −0.01 0.13 0.99 −0.10 0.919
RSJT SV 0.24 0.05 1.27 4.53 <.001

DV Final Model
Intercept −0.56 0.13 0.57 −4.13 <.001
Training 0.07 0.04 1.07 1.72 0.085
Item Type −0.01 0.13 0.99 −0.11 0.912
RSJT DV 0.09 0.05 1.10 1.76 0.079
Training × Item Type 0.04 0.04 1.04 0.88 0.379
RSJT DV × Training −0.07 0.03 0.93 −2.12 0.034
RSJT DV × Item Type −0.04 0.03 0.96 −1.13 0.260
RSJT DV × Training × Item Type 0.08 0.03 1.08 2.39 0.017

DR Final Model
Intercept −0.55 0.13 0.57 −4.11 <.001
Training 0.06 0.04 1.06 1.52 0.130
Item Type −0.01 0.13 0.99 −0.09 0.929
RSJT DR −0.13 0.05 0.88 −2.63 0.009

Note. Training was coded with −1 for the novel-rules condition and 1 for the trained-rules condition. Item type
was coded with −1 for the paired-rule items and 1 for the distinct-rule items. SV refers to the same-version score,
DV refers to the different-version score, and DR refers to the different-rule score.
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Figure 8. Interaction between RSJT different version scores, training, and item type. Note. The plot
was generated using the predict function in R to generate log odds ratio accuracy data based upon
the different-version model in Table 7. The data points represent item-level data for all participants
and the linear slopes were generated with the geom_smooth function in ggplot. The circles represent
trained-rule items and the squares represent novel-rule items.
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7.3.3. Interim Discussion: Measuring Different Version Relative to Same Version and
Different Rule

The original different-version measure represented an individual’s average score for
the different-version comparisons after rescaling all of their scores from −1 to 1. Although
this method also provides measures for same-version and different rule, it fails to account
for participant and item effects, it does not take into account the spread of an individual’s
ratings (only the average), and it does not provide any information on how an individual
rates different-version comparisons relative to the same version or different rule. For exam-
ple, some participants may rate different-version rule comparisons as similar, but they may
also rate different-rule comparisons as similar, suggesting that they have a general propen-
sity toward calling all rules similar. Alternatively, participants may view same-version
rules as being equally as distinct as different-version rules. Although all participants in-
cluded in the sample needed to have a significant difference between the same-version and
different-rule conditions to be included, the current measures do not provide information
on how large of a difference there exists between the same-version and different-version
comparisons, as well as the different-version and different-rule comparisons.

7.3.4. Relative Rule Post Hoc Analysis

To better address ratings of different-version rules relative to the other two rule
comparison types, new measures were generated using a mixed-effects model. The linear
mixed- effect model predicted raw similarity judgement ratings with type of comparison
(same version, different version, different rule) as a fixed effect. The random effects included
random intercepts for item and participant, with random slopes for type of comparison for
each participant. Type of comparison was dummy-coded as two variables, same version–
different version and different rule–different version, with same version coded as 1 for the
same version–different version measure and different rule coded as 1 for the different rule–
different version measure, and everything else coded as 0. The random slopes for the same
version–different version and different rule–different version measures for each participant
were extracted and used as predictors in a series of analyses. The same version–different
version and different rule–different version measures represented the difference between
the two types of comparisons. Individuals with higher (positive) values for the same
version–different version measure on average rated same-version comparisons as higher
than different-version comparisons, whereas individuals with lower (negative) values
rated different-version comparisons as being closer to same-version comparisons. For the
different rule–different version measure, individuals with larger (positive) values rated
different-version comparisons as closer to different-rule comparisons, whereas individuals
with lower (negative) values rated different-version comparisons as different from different-
rule comparisons. Because the new measures produced some outliers for those measures
(beyond 2.5 standard deviations away from the mean), some participants were removed for
subsequent analyses. This resulted in a final sample of 215 participants. The correlations
between the new RSJT measures, the old RJST measures, figural analogies accuracy, WMC,
and Gf are in included in Table 8.

Table 8. Correlations for new RSJT measures.

1 2 3 4 5 6 7 8

1. FA
Accuracy -
2. RSJT SV 0.30 * -
3. RSJT DV 0.14 * 0.51 * -
4. RSJT DR −0.18 * −0.11 0.30 * -
5. SV-DV 0.04 −0.08 −0.77 * −0.65 * -
6. DR-DV −0.28 * −0.60 * −0.42 * 0.70 * −0.07 -
7. WMC 0.42 * 0.11 0.00 −0.12 0.08 −0.12 -
8. Gf 0.53 * 0.17 * 0.08 −0.10 0.03 −0.16 * 0.38 * -

Note. * p < .05 FA refers to figural analogies, SV refers to same version, DV refers to different version, and DR
refers to different rule. SV-DV refers to the same version–different version score and DR-DV refers to the different
rule–different version score.
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The first analysis used a GLMM to predict figural analogy accuracy as a function
of the two new measures, the training manipulation, WMC, and Gf, with a test for an
interaction between the two new measures and the training manipulation. The random
effects structure was identical to previous analyses, with random intercepts for subject and
item, with random slopes added for training for both subject and item. The same version–
different version and different rule–different version measures were z-transformed prior to
including them in the model. The final model is shown in Table 9. There was a significant
interaction between the same version–different version measure and training, but not for
the different rule–different version measure. The interaction is shown in Figure 9. The
interaction indicated a positive relationship between the same version–different version
measure and figural analogies accuracy for the trained items only. Thus, individuals that
tend to rate different-version comparisons as different from same-version comparisons
show improved accuracy for the trained-rule items. These results are the opposite of
what was found previously when just using the RSJT different version measure. Although
there was no significant interaction with the different rule–different version measure, it
did predict figural analogy accuracy as a main effect, with a larger difference between
different version and different rule scores corresponding with higher accuracy on the figural
analogies test items.

Table 9. Predicting figural analogy accuracy with same version–different version and different
rule–different version measures and training.

Predictors β SE Odds Ratio z p

(Intercept) −0.58 0.13 0.56 −4.47 <.001
Training 0.06 0.04 1.07 1.54 0.123
SV-DV 0.00 0.04 1.00 −0.12 0.907
DR-DV −0.13 0.04 0.88 −3.39 0.001
Gf 0.35 0.05 1.43 6.99 <.001
WMC 0.26 0.06 1.29 4.25 <.001
Training × SV-DV 0.07 0.03 1.07 2.18 0.029

Note. Training was coded with −1 for the novel-rules condition and 1 for the trained-rules condition. SV-DV
refers to same version–different version and DR-DV refers to different rule–different version.

The next analysis tested for interactions between the two new RSJT measures, the
training manipulation, and item type (distinct vs. paired rules). The final models are shown
in Table 10. There was a significant interaction between all three measures when different
rule–different version was included, but not when same version–different version was
included. The results of the interaction are shown in Figure 10. Post hoc comparisons
indicated that the only significant difference in slopes was between the novel paired-rule
items and the trained paired-rule items. The full models for the post hoc comparisons are
located in Appendix A. These results are largely congruent with previous results showing
a significant three-way interaction between different-version scores, training, and item
type. Compared to the previous analyses, the current model specifies that not only is it
higher different-version scores that predict accuracy on novel paired-rule items, but that
higher different-version scores relative to different-rule scores predict accuracy on novel
paired-rule items.
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Figure 9. Interaction between different rule–different version and the training manipulation. Note.
The plot was generated using the predict function in R to generate log odds ratio accuracy data based
upon the model in Table 9. The data points represent item-level data for all participants and the linear
slopes were generated with the geom_smooth function in ggplot. The circles represent trained-rule
items and the squares represent novel-rule items.

Table 10. Predicting figural analogy accuracy with same version–different version and different
rule–different version measures, training, and item type.

Predictors β SE Odds Ratio z p

SV-DV Model
(Intercept) −0.55 0.13 0.58 −4.12 <.001
Training 0.06 0.04 1.06 1.49 0.136
Item Type −0.02 0.13 0.98 −0.13 0.895
SV-DV 0.03 0.05 1.03 0.57 0.571

DR-DV Model
(Intercept) −0.56 0.13 0.57 −4.18 <.001
Training 0.06 0.04 1.07 1.58 0.115
Item Type −0.02 0.13 0.98 −0.16 0.872
DR-DV −0.20 0.05 0.82 −4.34 <.001
Training × Item Type 0.04 0.04 1.04 0.94 0.345
DR-DV × Training 0.02 0.03 1.02 0.69 0.488
DR-DV × Item Type 0.00 0.03 1.00 −0.16 0.873
DR-DV × Training x Item Type −0.06 0.03 0.94 −2.25 0.025

Note. Training was coded with −1 for the novel-rules condition and 1 for the trained-rules condition. Item type was
coded with −1 for the paired-rule items and 1 for the distinct-rule items. SV-DV refers to same version–different
version and DR-DV refers to different rule–different version.
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8. Discussion
8.1. Knowledge Representations and Transfer

The present work examined the unique and interacting impact of processes driven
by WMC and knowledge representations on success during reasoning. The potential for
more thorough knowledge representations to better facilitate transfer is not a novel concept
(Anderson 1987; Gick and Holyoak 1983; Holyoak and Koh 1987; Wharton et al. 1994) and
neither is the contribution of knowledge to performance on Gf tasks (Bors and Vigneau
2003; Harrison et al. 2015; Loesche et al. 2015; Verguts and De Boeck 2002). Similarly, the
role of WMC during reasoning has been explored previously (Carpenter et al. 1990; Verguts
and De Boeck 2002; Wiley et al. 2011). Where the present study breaks new ground is in
looking at these mechanistically, during a Gf task.

Although both knowledge representations and WMC did predict success during the
figural analogies task, the results did not align with a priori predictions. It was assumed that
the presence of general rule representations would better facilitate transfer, as measured
by the RSJT different-version scores. However, although RSJT different-version scores did
interact with the training manipulation, they only predicted accuracy on novel items, not
the trained items. This was opposite of what was expected. The original reasoning was
that generalized rule representations would facilitate retrieval, but it is possible that the
training or even the RSJT itself helped most participants conceptualize the rules in a way
that was useful, thus leaving retrieval of the trained rules to depend on other processes,
such as WMC. That being said, the analyses that included same version–different version
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measure did provide some support for rule representations facilitating retrieval. The same
version–different version measure only predicted accuracy for the trained-rule items, not
the novel-rule items. However, it also showed a positive relationship, suggesting that
individuals who treat different-version comparisons as being less similar than the same-
version comparisons had improved accuracy on the figural-analogy-trained items. This is
also contrary to what was expected. Although these interactions differed from expectations,
they did remain significant once WMC and Gf were introduced into the models. This
indicates that the RSJT can uniquely explain variance on novel and trained figural analogies
items beyond what Gf and WMC can explain.

The interaction between training and RSJT different-version scores also increased when
accounting for the type of figural analogy item (distinct vs. paired rules). It is likely that
the initial two-way interaction between training and RSJT different-version scores is driven
by the three-way interaction with figural analogy items, and that in truth RSJT different-
version scores really only predict novel paired-rule items. However, the relationship was
positive, congruent with the initial hypotheses of the study. Mentally representing two
versions of the same rule as closely similar, as opposed to treating them as distinct rules,
corresponded with higher accuracy on novel problems where two versions of the same rule
were included. Furthermore, the different rule–different version analyses indicated that it
may be more important that individuals treat different-version comparisons as different
from different rules than it is for different-version comparisons to be treated as similar
to same-version comparisons. Notably, the fact that the RSJT different-version scores,
as well the different rule–different version scores, only predicted novel items suggests
that individuals with a propensity to treat different versions of the same rule as more
similar, but still as separate rules, may have an easier time inducing related, but slightly
different rules when they are exposed to them for the first time. It is likely that the training
or the RSJT helped participants induce and develop representations to a point where
individual differences in RSJT different-version scores no longer mattered for solving the
trained-rule problems.

Unlike the RSJT different-version scores, WMC did appear to explain transfer, showing
interactions with the training manipulation when accounting for learning across the task.
Both high- and low-WMC individuals improved on trained rules over time, but high-WMC
individuals were more likely to solve trained items correctly than low-WMC individuals.
Furthermore, high-WMC individuals improved on the novel-rules items as they progressed,
with performance increasing as they solved more items. Low-WMC individuals did not
show this benefit, appearing to struggle on novel items throughout the task. It is possible
that high-WMC individuals improved on the novel items by learning the rules and using
them later in the task (Harrison et al. 2015; Loesche et al. 2015; Verguts and De Boeck 2002),
or they may have simply improved in solving novel problems, learning new strategies
or becoming more comfortable with the task (Klauer et al. 2002; Tomic 1995). The low-
WMC individuals did not improve on the novel problems over time, suggesting that they
struggled to induce the rules at all, or that they may need substantially more practice before
they begin to benefit from learned rules.

These results are congruent with prior work in multiple ways. First, the fact that high-
WMC individuals were able to benefit from trained rules more than low-WMC individuals
indicates that WMC is important for retrieving previously learned information (Loesche
et al. 2015; Unsworth 2016). Second, only the high-WMC individuals improved on novel
items over time, whereas both low- and high-WMC individuals improved on the trained
items over time, indicating that WMC also contributes to learning throughout the task
(Harrison et al. 2015; Unsworth 2016). Finally, because the high-WMC individuals were
generally better at solving novel items and low-Gf individuals did not improve at the novel
items over time, WMC seems important for initially inducing the rules (Carpenter et al.
1990). Although these results support several explanations for the role of WMC in Gf tasks,
it is worth noting that the findings only became apparent after testing for the three-way
interaction with trial number. Furthermore, these results fail to replicate studies showing a
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stronger relationship between WMC and repeated rules (items wherein the combination of
rules has been seen previously) on the RAPM (Loesche et al. 2015; Harrison et al. 2015) or
studies showing the opposite, where WMC better predicts novel (unique combinations)
RAPM items (Wiley et al. 2011). Taking into consideration learning across the task, as
well as accounting for individual rules rather than just unique combinations of rules, may
explain the mixed findings on the role of WMC in Gf tasks.

Finally, it is worth noting that WMC may play a large role in how well the rules are
initially learned. Previous work with analogical transfer has found that Gf may explain the
ability to develop more general representations that are more easily transferred (Kubricht
et al. 2017). However, WMC and Gf are highly correlated and so it is possible that the
high-Gf individuals in Kubricht et al.’s study did not benefit from the training manipulation
because they were also high in WMC, thus learning the source problem better. This would
explain why WMC is shown to explain transfer in the current study and not Gf. Yet,
it is worth noting that Cushen and Wiley (2018) found that WMC only explained the
completeness of an individual’s summary of the source problem when performance on the
Remote Associates Test was not accounted for. Thus, although WMC may be important for
retrieving learned rules, other processes may still be important in helping to generate more
general representations, especially in cases of more complex learned information.

8.2. The Rule-Similarity Judgement Task

The original intention with the RSJT was to only use the different-version scores, but
the same-version and different-rule scores ultimately did provide meaningful information,
as did the difference-score measures, with each predicting figural analogies accuracy
differently and uniquely. As many of these analyses were post hoc considerations, it is thus
worth considering what processes these measures are tapping into. The RSJT same-version
measure was the best predictor of figural analogies accuracy overall, even though it did not
interact with any of the training manipulations. Because it was comparing two identical
rules, it is possible that the measure is tapping into an individual’s propensity to let surface
features of the items factor into their similarity judgements. For example, consider Figure 4,
which utilizes a numeracy rule. In this case, all of the items look slightly different. Some
are just lines, some make a whole shape, and some include both aspects. Thus, even
though they all increase an edge by two or lose an edge by one, some participants may
have been accounting for surface features, with this potentially affecting their ability to
solve figural analogy problems. Given that the same-version measure did predict accuracy
and did also correlate with paperfolding and the Gf composite measure, it may be that
a reliance on surface features is something that generally correlates with accuracy on Gf
tasks. Furthermore, because the same version–different version measure did not correlate
with figural analogy accuracy, Gf, WMC, or even the RSJT same version measure, but did
correlate with the different-version and different-rule scores, it does appear that the RSJT
same-version measure is tapping into something unique that happens when same-version
comparisons are made.

The same version–different version and different rule–different version difference
scores showed complementary as well as distinct findings from the RSJT same-version,
different-version, and different-rule scores. The same version–different version measure
was the only measure to predict trained-rule items and it predicted positively, indicating
that representing different-version comparisons as less similar to same-version was bene-
ficial, rather than what was originally hypothesized. The different rule–different version
measure did support the initial findings with the RSJT different-version scores, but fur-
ther specified that it was beneficial for accuracy on novel paired-rule items to represent
different-version comparisons as more similar than different-rule comparisons. The same
version–different version and different rule–different version measures indicate that gen-
erally treating the three comparisons as different is beneficial for accuracy. Although the
same version–different version measures and the different rule–different version measures
better target the difference between the three types of comparisons, it appears that all five
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measures produced by the RSJT measure slightly different propensities and further work
will need to be conducted to better understand the differences and the similarities between
all of the measures.

Although the RSJT did explain some transfer when using the same version–different
version measure, it is possible that the RSJT did not explain transfer in the expected way
because the measure was designed to look at the abstractness of the rule representations.
Prior work has primarily looked at whether the representations include all the necessary
information that is needed for transfer or mapping (Cushen and Wiley 2018), rather than
looking at the quality of a representation that includes all the necessary information.
Lacking information may produce a more salient effect with transfer, whereas the quality
of a whole representation may matter less. Ultimately, more information is needed on
the three RSJT measures to ascertain what they are actually measuring and why they are
distinct from WMC and Gf, in order to determine the role of rule representations in novel
problem solving and transfer.

8.3. Conclusions

In conclusion, individual differences in knowledge representations and WMC play
independent roles in reasoning performance. WMC appears to be important for both
learning and retrieving rules, as well as contributing to novel problem solving. However,
beyond WMC, individual differences in knowledge representations were able to explain
some aspects of performance via retrieval as well as for novel problems. The results indicate
that there may be a happy medium with knowledge representations, wherein an individual
will want to recognize similarities when present while also understanding distinctions
between rules. Furthermore, the propensity to develop a more general or stimuli-specific
knowledge representation was not explained by WMC and Gf. Thus, understanding what
prompts individuals to build better representations may be key to not only understanding
novel reasoning but problem solving as a whole.
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Appendix A

Table A1. Figural analogy rules.

Rule Version Description Set

Rotation 1 Object rotates 45 degrees clockwise A
Rotation 2 Object rotates 90 degrees clockwise A
Color Change 1 Object fill changes from either dark fill or white fill A
Color Change 2 Object fill changes from one pattern to another pattern A
Shift 1 Object moves diagonally to another location A
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Table A1. Cont.

Rule Version Description Set

Shift 2 Object moves vertically to another location A
Merge 1 Two objects combine, such as a puzzle piece or slice of pie, creating a whole shape A

Merge 2 Two objects combine, such as a puzzle piece or slice of pie, creating a shape where
the added piece juts out A

Pattern 1 The number of notches in the object determines the number of sides A
Pattern 2 The color of the object (e.g., black or white) determines the type of object A
Duplicate 1 The object is duplicated, resulting in 2 of the same object A
Duplicate 2 The object is duplicated, resulting in 3 of the same object A
Count 1 The number of sides increases by 2 A
Count 2 The number of sides decreases by 1 A
Sharpness 1 The corners of the object go from sharp to round B
Sharpness 2 The edges of the object go from straight to curved B
Location 1 Three objects in a straight line move to create a diagonal line B
Location 2 Three objects in a straight line move to make a triangle shape B
Size 1 Object increases in size B
Size 2 Object decreases in size B
Invert 1 Notches in an object change to instead stick out of the object B
Invert 2 Parts of an object that jut out change to become notches B
Reflect 1 Object reflects over an imaginary x axis B
Reflect 2 Object reflects over an imaginary y axis B
Swap 1 Two objects swap locations in within a grid-like design B
Swap 2 Two objects swap locations but one object was inside the other object B
Divide 1 A fourth of an object is removed B
Divide 2 A third of an object is removed B

Table A2. Post hoc comparisons: RSJT different-version × training × item type.

Predictors β SE Odds Ratio z p

Trained Items Only
(Intercept) −0.49 0.14 0.61 −3.48 0.001
RSJT DV 0.04 0.06 1.04 0.59 0.553
Item Type 0.02 0.14 1.02 0.18 0.855
RSJT DV × Item Type 0.05 0.05 1.05 1.01 0.314

Novel Items Only
(Intercept) −0.63 0.14 0.53 −4.44 0.000
RSJT DV 0.18 0.06 1.19 2.79 0.005
Item Type −0.05 0.14 0.95 −0.40 0.690
RSJT DV × Item Type −0.11 0.05 0.90 −2.33 0.020

Distinct-Rule Items Only
(Intercept) −0.57 0.18 0.56 −3.27 0.001
RSJT DV 0.06 0.06 1.06 0.96 0.339
Training 0.11 0.06 1.11 1.72 0.086
RSJT DV × Training 0.01 0.05 1.01 0.14 0.892

Paired-Rule Items Only
(Intercept) −0.54 0.19 0.58 −2.80 0.005
RSJT DV 0.14 0.06 1.14 2.30 0.021
Training 0.03 0.05 1.03 0.63 0.530
RSJT DV × Training −0.14 0.05 0.87 −3.20 0.001

Note. Training was coded with −1 for the novel-rules condition and 1 for the trained-rules condition. Item type
was coded with −1 for the paired-rule items and 1 for the distinct-rule items. DV refers to different version.
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Table A3. Post hoc comparisons: WMC × training × trial.

Predictors β SE Odds Ratio z p

Trained Items Only
(Intercept) −0.52 0.14 0.60 −3.72 <.001
WMC 0.39 0.08 1.47 5.13 <.001
Trial 0.10 0.04 1.11 2.57 0.010
WMC × Trial −0.11 0.06 0.90 −1.81 0.070

Trained Items Only
(Intercept) −0.64 0.14 0.52 −4.60 <.001
WMC 0.38 0.07 1.46 5.10 <.001
Trial 0.09 0.04 1.09 2.33 0.020

Novel Items Only
(Intercept) −0.64 0.14 0.52 −4.60 <.001
WMC 0.49 0.07 1.64 6.58 <.001
Trial 0.08 0.04 1.08 1.91 0.056
WMC × Trial 0.14 0.06 1.15 2.30 0.021

Table A4. Post hoc comparisons: RSJT different-rule × Gf × training.

Predictors β SE Odds Ratio z p

Trained Items Only
(Intercept) −0.51 0.14 0.60 −3.75 <.001
RSJT DR −0.11 0.05 0.90 −2.15 0.031
Gf 0.48 0.06 1.61 8.17 <.001
RSJT DR × Gf −0.06 0.06 0.94 −0.97 0.330

Novel Items Only
(Intercept) −0.62 0.14 0.54 −4.45 <.001
RSJT DR −0.07 0.05 0.93 −1.36 0.175
Gf 0.43 0.06 1.53 6.86 <.001
RSJT DR × Gf 0.10 0.06 1.10 1.55 0.122

High Gf Only
(Intercept) −0.29 0.16 0.75 −1.83 0.067
RSJT DR −0.12 0.07 0.89 −1.81 0.070
Training 0.11 0.05 1.11 2.24 0.025
RSJT DR × Training −0.08 0.04 0.92 −1.96 0.050

Low Gf Only
(Intercept) −0.83 0.12 0.44 −7.14 <.001
RSJT DR −0.12 0.06 0.89 −1.98 0.048
Training 0.00 0.05 1.00 −0.02 0.987
RSJT DR × Training 0.05 0.04 1.05 1.12 0.263

Low Gf Only
(Intercept) −0.83 0.12 0.44 −7.14 <.001
RSJT DR −0.12 0.06 0.89 −2.06 0.040
Training 0.00 0.05 1.00 −0.06 0.952

Note. Training was coded with −1 for the novel-rules condition and 1 for the trained-rules condition. DR refers to
different rule.
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Table A5. Post hoc comparisons: different-rule–different-version × training × item type.

Predictors β SE Odds Ratio z p

Trained Items Only
(Intercept) −0.49 0.14 0.61 −3.56 <.001
DR-DV −0.18 0.05 0.84 −3.30 0.001
Item Type 0.02 0.13 1.02 0.14 0.886
DR-DV × Item Type −0.07 0.04 0.93 −1.71 0.087

Novel Items Only
(Intercept) −0.62 0.14 0.54 −4.45 <.001
DR-DV −0.22 0.05 0.80 −4.07 <.001
Item Type −0.06 0.13 0.94 −0.45 0.653
DR-DV × Item Type 0.06 0.04 1.06 1.46 0.143

Distinct-Rule Items Only
(Intercept) −0.58 0.17 0.56 −3.35 0.001
DR-DV −0.20 0.05 0.82 −3.67 <.001
Training 0.10 0.06 1.11 1.66 0.098
DR-DV × Training −0.04 0.04 0.96 −1.05 0.293

Paired-Rule Items Only
(Intercept) −0.53 0.19 0.59 −2.80 0.005
DR-DV −0.19 0.05 0.83 −3.76 <.001
Training 0.03 0.05 1.03 0.48 0.630
DR-DV × Training 0.08 0.04 1.09 2.20 0.028

Note. Training was coded with −1 for the novel-rules condition and 1 for the trained-rules condition. Item
type was coded with −1 for the paired-rule items and 1 for the distinct-rule items. DR-DV refers to different
rule–different version.

Notes
1 To address concerns that composite variables for WMC and Gf may not be appropriate, several models were checked with each of

the individual indicators for these variables, rather than the composite variables. In the WMC x Novel/Learned x Trial interaction,
using Operation Span instead of the composite moved the p-value to p = .07, rather than being significant, while the interaction
remained significant using only Symmetry Span. In the Representation Scores x Novel/Learning + WMC + Gf analysis, using
the individual Gf tasks moved the main effect of DV representation scores from non-significant to significant. When predicting
SV-DV training, changes from composites to individual measures changed nothing. As these are minor differences, composites
were used throughout the paper for analyses.

2 Only 3 participants failed to use the highest marking on the scale (100) for any of their scores; all 3 instead used 95 as their top
score. A total of 29 participants put their lowest raw score as something other than 0. For 2, the lowest score was 25, for 2 others it
was 20, and for 4 it was 15. All of the rest used 5 or 10 as their lowest number. Because 86% of the sample used the full scale, it is
not anticipated that this caused substantial changes to the analyses.
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