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Abstract: Problem-solving is a critical aspect of intelligence that has become increasingly important
in modern society. Mapping out the determinants of success in problem-solving helps understand
the underlying cognitive processes involved. This article focuses on two key cognitive processes
in problem-solving: non-targeted exploration and planning. We generalize previously defined
indicators of planning and non-targeted exploration across tasks in the 2012 Programme for the
International Assessment of Adult Competencies and examine the internal construct validity of the
indicators using confirmatory factor analysis. We also investigate the relationships between problem-
solving competency, planning, and non-targeted exploration, along with the specific dependence
between indicators from the same task. The results suggest that (a) the planning indicator across tasks
provides evidence of internal construct validity; (b) the non-targeted exploration indicator provides
weaker evidence of internal construct validity; (c) overall, non-targeted exploration is strongly
related to problem-solving competency, whereas planning and problem-solving competencies are
weakly negatively related; and (d) such relationships vary substantially across tasks, emphasizing
the importance of accounting for the dependency of measures from the same task. Our findings
deepen our understanding of problem-solving processes and can support the use of digital tools in
educational practice and validate task design by comparing the task-specific relationships with the
desired design.

Keywords: log-file data; large-scale assessment; PIAAC; problem-solving; planning; non-targeted
exploration

1. Introduction

In modern societies, solving problems is a major task in our life (OECD 2014), in-
volving multiple higher-order cognitive skills such as devising plans, testing hypotheses,
remedying mistakes, and self-monitoring (Greiff et al. 2015). Thus, a high level of problem-
solving competency lays a sound foundation for future learning and prepares students to
handle novel challenges (Csapó and Funke 2017; OECD 2014). To make students better
problem-solvers, it has been suggested to explicitly embed problem-solving skills into
national curricula (Greiff et al. 2014) and use computer-based problem-solving simulations
called “microworlds” where students can explore and discover underlying rules and reg-
ulations (Ridgway and McCusker 2003). Besides acquiring problem-solving competency
in formal education, it is also important to develop such a skill over the entire lifetime
and engage in lifelong learning (Greiff et al. 2013). For example, teachers might need to
learn how to employ digital tools for long-distance education, and office workers might
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need to adapt to a different computer system. It has been documented that proficiency in
applying information and communication technology (ICT) skills to solve problems has a
positive influence on participation in the labor force (Chung and Elliott 2015). That is, the
competency of problem-solving is both a key objective of educational programs (OECD
2014) and valued in the workplace.

Hence, many educational large-scale assessments for students and adults have fo-
cused on the domain of problem-solving. For example, the Programme for the International
Student Assessment (PISA) evaluated 15-year-old students’ problem-solving in 2003, 2012,
and 2015. Another example is the 2012 Programme for the International Assessment of
Adult Competencies (PIAAC), which covers problem-solving in technology-rich environ-
ments when using ICT. Many of these assessments have been implemented on computers
where the complete human–computer interactions are recorded in log files. Just as the task
performance provides information on what respondents can achieve, the log files open a
window into how respondents approach the task. Log files offer valuable information for
researchers to understand respondents’ cognitive processes when solving problems, and
this study intends to explore the log files of problem-solving tasks to infer the cognitive
processes when solving problems.

A better understanding of the problem-solving processes has potential implications
for integrated assessments and learning experiences (Greiff et al. 2014). For example, the
analysis results from log files can provide teachers with materials on the weaknesses and
strengths of students in solving a problem, and further, teachers can tailor their instruction
for students. In this study, we aim to improve the understanding of the cognitive problem-
solving processes in the context of information processing. This can potentially benefit
educational practices related to improving problem-solving skills. For example, the analysis
of log files can inform teachers whether a student is engaged in solving a problem or applies
an efficient strategy to approach the problem (Greiff et al. 2014) and whether additional
instructional scaffolding is needed when a student is stuck.

The data availability of international large-scale assessments has stimulated studies
that explore the information from the log files. Both theory-based methods (e.g., Yuan et al.
2019) and data-driven methods based on machine learning or natural language processing
(e.g., He and von Davier 2016) have been applied to extract information called process
indicators from log files, and the relationships between these process indicators and task
performance have then been inferred. However, the majority of research has focused on
single tasks, and the generalizability of the conclusions remains unclear. In this study,
we used process indicators to analyze multiple tasks involving two cognitive aspects of
problem-solving: planning and non-targeted exploration. Specifically, we examine the
internal construct validity of the measures of planning and non-targeted exploration using
tasks from PIAAC 2012 and infer their relationships with problem-solving competency.
Next, we review the literature on problem-solving, planning, and non-targeted exploration
and describe the current study in more detail.

1.1. Problem-Solving

A problem is considered to have two attributes: (a) the difference between a given state
and the desired goal state and (b) the social, cultural, or intellectual worth embedded in
achieving the goal (Jonassen 2000). Problems can be categorized into different types accord-
ing to their characteristics. Here, we introduce three problem categories based on dynamics,
structuredness, and domain (Jonassen 2000). First, problems can be categorized as static or
dynamic problems based on the dynamics of a problem situation. In static problems, all
the information relevant to the problem is known at the outset (Berbeglia et al. 2007). In
contrast, dynamic problems (also called complex problems) do not present all the necessary
information at the outset; instead, problem-solvers must interact with the problem situation
to collect relevant information (Stadler et al. 2019). Thus, exploring the problem situation
plays a more important role in dynamic problems compared with static problems. In
addition, according to the structuredness (i.e., the clarity of a problem), a problem can be



J. Intell. 2023, 11, 156 3 of 19

mapped into a curriculum with two poles representing well-structured and ill-structured
problems (Arlin 1989). Problems in textbooks tend to be well-structured problems with
a clearly defined initial and goal state and operator rules, whereas problems such as de-
signing a building are ill-structured problems. The tasks in PISA 2012 and PIAAC 2012 are
relatively well-structured problems, and the optimal solutions are predefined. Moreover,
based on the specific domain knowledge required to solve a problem, problems can be cate-
gorized as domain-specific and domain-general (Jonassen 2000). For example, physics and
biology exams typically present domain-specific problems. In contrast, finding a quickest
route between two places and figuring out why a lamp is not working are examples of
domain-general problems in everyday contexts.

The cognitive process of transferring a given state into a goal state when the solution
is not immediately accessible is called problem-solving (Mayer and Wittrock 2006). Mayer
and Wittrock (2006) argued that problem-solving involves several component processes:
representing, planning/monitoring, executing, and self-regulating. We take a problem-
solving task released from the PIAAC 2012 (see Figure 1) as an illustrative example. The
task requires participants to bookmark job-seeking websites that do not need registration or
fees. When confronted with this problem, respondents must convert the given information
into a mental representation, which includes the initial state (e.g., five website links in
this example), goal state (e.g., bookmarked websites satisfying the requirements), and the
possible intermediate states (Bruning et al. 2004). Such a process is called representing.
Planning occurs when respondents devise a way to solve the problem (Mayer and Wittrock
2006), such as decomposing it by checking the links from the first to the last to see which
require registration or a fee. Monitoring refers to the process of evaluating whether the
solution is valid and effective (Mayer and Wittrock 2006). Implementing the planned oper-
ations is called executing (Mayer and Wittrock 2006). Self-regulating involves modifying
and maintaining activities that allow respondents to move toward the goal (Schunk 2003).
While these processes are all assumed to be active in problem-solving, the importance of
each cognitive process differs across problems.
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In a technology-rich society, problems often appear because new technology is in-
troduced (OECD 2012). On the other hand, tools and technologies are widely applied
to facilitate problem-solving. Capturing the intersection of problem-solving competency
and the skills needed in ICT, the 2012 PIAAC specifically covers a domain called problem-
solving in technology-rich environments (PS-TRE), where problem-solving competency is
defined as the capacity of “using digital technology, communication tools and networks to
acquire and evaluate information, communicate with others and perform practical tasks”
(OECD 2012, p. 47). The 2012 PIAAC PS-TRE domain developed fourteen problems
that are dynamic, relatively well-structured, and domain-general information problems.
The problems are assumed to assess a single dimension—problem-solving competency
(OECD 2012). In addition to problem-solving competency, PIAAC 2012 also emphasizes
the cognitive dimensions of problem-solving. The PS-TRE domain shares similar cognitive
problem-solving processes with Mayer and Wittrock (2006) but with a particular focus on
acquiring and dealing with information in computer-based artifacts.

To acquire the relevant information, it is necessary to interact with the problem en-
vironment and explore the features or potential resources that are closely related to the
representing process. After collecting useful information, respondents may devise a plan
(e.g., to break down the problem and set sub-goals for achieving the desired state). These
two processes, exploration and planning, play vital roles in problem-solving and are
thus the focus of this study. We next introduce the definitions and measures of planning
and exploration (particularly non-targeted exploration) and their relationships with task
performance.

1.2. Planning and Problem-Solving

Planning is defined as mental simulations of future operations and associated out-
comes with the aim of achieving certain goals or guiding problem-solving (Mumford et al.
2001). An early conception of planning referred to certain predefined, fixed sequences
of operations. More recently, however, researchers have argued that adaptable cognitive
responses are at the core of planning (Mumford et al. 2001). In addition, it is assumed that
planning consists of multiple and distinguishable processes (Hayes-Roth and Hayes-Roth
1979). For example, Mumford et al. (2001) proposed a planning process model: prior to
developing an initial and general plan, environment analyses including the identification
of resources and contingencies are necessary. Then, an initial plan needs to be elaborated
into a more detailed plan, which requires searching information about potentially useful
operations and resources needed to execute these operations (Xiao et al. 1997). Based on the
forecasting of outcomes from these operations, one may refine the plan and then execute it.

Planning is a generative activity that is hard to observe directly. Early qualita-
tive studies applied think-aloud protocols and content analyses to investigate planning
(e.g., Xiao et al. 1997). Recently, quantitative measures have been used to facilitate re-
search on planning, such as evidence from functional neuroimaging (Unterrainer and
Owen 2006) and time-related measures (Albert and Steinberg 2011; Eichmann et al. 2019;
Unterrainer et al. 2003). In this study, we consider the process measure of response times as
an indicator of planning. Because planning is resource-intensive (Mumford et al. 2001), the
time spent making a plan should be much longer than the time spent actually executing the
plan. The time-related measures capture the quantity of planning. If a respondent rushes
into a problem and randomly tries different operations until a correct solution is found (i.e.,
a trial-and-error strategy), the value of the time-related measures would be relatively small,
indicating a small quantity of planning.

In the context of problem-solving, the time-related measures of planning differ be-
tween static problems and complex problems. A commonly used measure of planning
in static problems, such as the Tower of London, is the first-move latency (Albert and
Steinberg 2011; Unterrainer et al. 2003). This measure, also known as preplanning time,
is defined as the time interval between the beginning of the problem and the first action
a respondent takes. However, in complex problems, respondents need to explore the
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simulated environment to generate information before they are able to make a plan that
takes into account all relevant aspects of the problem situation at hand. In line with this
thinking, Eichmann et al. (2019) expanded the measure of planning in complex problems
from the first-move latency to the longest duration between moves. Namely, the authors
argued that planning can appear at any time during the course of complex problem-solving.
They also acknowledged that the longest duration cannot cover the entire planning process
but that the main planning activity is captured by this indicator. Research on planning in
complex problems is quite limited, and Eichmann et al.’s (2019) work seems to be the first
on this topic, thus, yielding important implications for the current study.

Planning is of interest not only because it is a cognitive process in problem-solving
but also because it influences task success or task performance (Albert and Steinberg 2011;
Eichmann et al. 2019). Theoretically, planning provides a mental model of the problem by
identifying critical issues and relevant strategies and promotes optimized and effective
solutions by organizing the chunks of operations (Mumford et al. 2001). However, previous
empirical research showed diverse results regarding the relationship between task success
and planning due to different types of problems and different indicators of planning. For
instance, and as mentioned above, Albert and Steinberg (2011) found a positive relationship
between first-move latency and task success in static problems, whereas Eichmann et al.
(2019) did not find such an effect for the longest duration indicator in dynamic problems.
Additionally, Eichmann et al. (2019) derived two other indicators of planning to describe
the time taken before the longest duration appears (the delay indicator) and the variability
in time intervals between two successive operations (the variance indicator). They found
that planning in the early stages benefited task performance (i.e., a negative relationship
between the delay indicator and task scores) and that a longer duration indicator in a later
stage or continued planning activities could compensate for a lack of early planning. Their
models implicitly indicate that each indicator from different tasks implies similar meanings
(Assumption I) and that the relationships between the planning indicators and task success
are consistent across tasks (Assumption II). However, we argue that these assumptions
(i.e., Assumptions I and II) require explicit examination. In addition, although the random
effects in their models captured the variances at the task level, the specific relationships
between the indicators and task performance at the task level remained unaccounted for.

1.3. Non-Targeted Exploration and Problem-Solving

To better understand the nature of the problem, test-takers need to explore the problem
environment (e.g., navigate through different computer interfaces or pages) to uncover
new information. Exploration refers to behaviors that investigate and seek information
that is beyond the instructions of the task (Dormann and Frese 1994). Some exploratory
behaviors are goal-oriented (goal-directed behaviors), leading to achieving a desired goal
state. On the other hand, some exploratory behaviors can be irrelevant to solving the
problem (non-targeted behaviors), such as clicking on some buttons on the interface to
check their functions and exploring some pages that do not contain useful information for
the problem (Eichmann et al. 2020a, 2020b). Note that both goal-directed and non-targeted
behaviors help test-takers understand the problem but in different ways. Goal-directed
behaviors capture the relevant points and convey similar information as task success
because the problem cannot be successfully solved without these goal-directed behaviors,
whereas non-targeted behaviors provide additional information compared to task success.

One research field related to non-targeted exploration is error management, where
errors are defined as unintended deviations from goals (Frese et al. 1991). It is found that
compared to participants who received step-by-step guidance on programming (i.e., error
avoidance or goal-directed exploration), participants who were encouraged to explore
the system, make mistakes, and learn from them (i.e., non-targeted exploration) during
the training stage performed better during the testing stage (Frese and Keith 2015). One
explanation is that non-targeted exploration plays a role in representing the problem
(Eichmann et al. 2020b; Kapur 2008). Test-takers who were encouraged to explore the



J. Intell. 2023, 11, 156 6 of 19

environment, in spite of making more errors, gained a better understanding of the problem
setting, the potential features, and resources of the interfaces. In addition, participants
who received more training on exploratory error management showed a higher level of
metacognitive activity such as hypothesis-testing and monitoring (Keith and Frese 2005).

In computer-based problems, exploration is operationalized as human–computer
interactions that refer to all the operations that respondents conduct in the computer
system and are recorded in log files, such as mouse clicks and keyboard input. For each
item, test developers and content experts have predefined one or more optimal solutions
consisting of a minimum number of operations that can successfully solve the problem
and thus represent the most efficient strategies (He et al. 2021). We can broadly categorize
individual operations into goal-directed or non-targeted operations, depending on whether
the operation is required to solve the problem or not (Eichmann et al. 2020a, 2020b). Goal-
directed operations refer to operations that must be performed to solve the problem, which
are operationalized as the operations that occur in any of the optimal solutions. In contrast,
non-targeted operations are operations that are unnecessary to solve the problem, which are
operationalized as the operations that do not occur in any optimal solutions. For example,
in the task of Figure 1, clicking on and bookmarking the websites that satisfy the task
requirements are goal-directed operations. However, clicking on the Help button in the
menu is non-targeted because it is not included in the optimal solution.

Although non-targeted operations do not directly contribute to successful task com-
pletion (i.e., not occurring in any optimal solutions) and can appear erroneous, they have
been found to benefit task performance (Dormann and Frese 1994), learning (Frese and
Keith 2015), transfer performance (Bell and Kozlowski 2008), and meta-cognition (Bell and
Kozlowski 2008). Eichmann et al. (2020a) also found that the number of non-targeted explo-
rations is positively related to problem-solving competency, and the effects are consistent
across 42 countries using the PISA 2012 problem-solving domain. The authors argued that
non-targeted explorations facilitate goal-directed behaviors. Consider the Help button as
an example. Although the Help button is not considered as a necessary operation to solve
the problem, it provides test-takers with information about the functions of the menu, such
as the function of the bookmark button, which can help test-takers better understand the
potential resources in the computer system. When test-takers find the websites that meet
the task requirements, they would know how to bookmark the websites.

A further aspect of defining an operation is whether it is performed for the first time
or repeated. Implementing an operation for the first time is associated with information
generation, whereas performing the same operation again indicates information integration
(Wüstenberg et al. 2012). As a result, Eichmann et al. (2020b) distinguished between
initial and repeated operations. Once a respondent performed a specific operation, such
as clicking on the Help button in the task in Figure 1, the individual was assumed to gain
information related to the Help button. If the respondent performed the same operation
again, there would be little new information added to the problem space. Since exploration
greatly concerns generating new information (Dormann and Frese 1994), we propose the
number of initial non-targeted operations as a measure of the latent variable: non-targeted
exploration. This differentiates our study from Eichmann et al. (2020b), who focused on
both initial and repeated non-targeted operations.

1.4. The Current Study

Previous studies by Eichmann and coauthors have deepened the understanding of
planning and non-targeted exploration based on the PISA 2012 tasks (Eichmann et al.
2019, 2020a). However, the extent to which we can apply their definitions of planning
and non-targeted exploration to the PIAAC 2012 information problems and the extent
to which the indicators measure the same constructs require further research. If there
is insufficient evidence of internal construct validity, it would be problematic to apply
this measure to different items or different samples. Therefore, validating the internal
construct of planning and non-targeted exploration across items is a crucial component
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of this study. We concurrently utilize information from multiple tasks and validate the
approach of Eichmann and coauthors by looking at a more diverse set of tasks (i.e., PS-TRE)
with a different population, namely, adults.

Furthermore, most studies analyzing process data of problem-solving tasks have only
used log data from a single item (e.g., Ulitzsch et al. 2021; Chen et al. 2019), meaning the
generalizability of the findings to other tasks is lacking. For example, it is an open question
whether or not respondents apply similar strategies (e.g., trial-and-error) across tasks.
Similarly, are the relationships between planning and problem-solving competency stable
across tasks or are the relationships task-dependent? If the relationships are generalizable,
then researchers and practitioners can use the findings across similar tasks. In this study,
we examine the general and task-specific relationships between planning, non-targeted
exploration, and problem-solving competency.

Our first set of research questions concerns the internal construct validity of the
indicators for planning, non-targeted exploration, and problem-solving competency. If
we find evidence that the same operationalization (see detailed definitions in Section 2.3)
of the indicators is applicable across different items within different contextual settings,
this implies that the indicators measure the same construct, thus providing support for
internal construct validity for the indicators. Specific to the current study, we examine the
construct validity of planning (Q1a), non-targeted exploration (Q1b), and problem-solving
competency (Q1c) using a set of tasks from the PIAAC 2012 PS-TRE domain. For each
item, we extract the indicators for planning, non-targeted exploration, and problem-solving
competency along the same rationale. To examine evidence of construct validity, we applied
confirmatory factor analysis (CFA; Jöreskog 1969) to each type of indicator. In CFA models,
multivariate data are analyzed with the hypothesis that a latent variable underlies the
observed variables (Bartholomew et al. 2011, p. 2). For example, the item response score is
considered to be the observed indicator of the latent variable problem-solving competency.
If the variations of the indicators across items can be adequately attributed to a latent
variable, we can claim that the internal construct validity is established (AERA 2014).

The second set of questions that we are interested in points to the problem-solving
competency’s relationship with planning (Q2a) and non-targeted exploration (Q2b). Al-
though previous studies have investigated such questions (e.g., Albert and Steinberg 2011;
Unterrainer et al. 2003), only limited studies have examined the findings in dynamic prob-
lems (Eichmann et al. 2019, 2020b). Given that dynamic problems are becoming more
popular in educational assessments and that the planning and exploration processes might
differ between static and dynamic problems, examining their relationships with problem-
solving competency is relevant and needed. In the research of Eichmann et al. (2019), the
overall relationship between planning and task performance across tasks was examined,
whereas if such a relationship might differ between tasks was uncounted for. Tasks differ
in complexity, the interface, and the amount of information (OECD 2013), implying that
the importance of planning and non-targeted exploration varies among the tasks. Hence,
besides the overall relationships between the latent variables (i.e., planning, non-targeted
exploration, and problem-solving competency), we also consider their task-specific rela-
tionships by adding residual correlations of observed indicators for planning, non-targeted
exploration, and problem-solving competency from the same task. The variance of the
errors can be attributed to individual differences among participants, task characteristics,
and measurement error. The residual correlations that we added account for the additional
dependence between indicators based on the same task, beyond the dependence induced
by the correlations between the main factors of planning, non-targeted exploration, and
problem-solving competency. Hence, by answering Q2a and Q2b from the levels of both
latent variables and observed variables, we can gain a more fine-grained understanding of
the research questions than Eichmann et al. (2019, 2020a). For Q2a, we hypothesized that
the overall relationship between planning and problem-solving competency is negligible
but that the relationship at the observed variable levels can be task-dependent, based on
the results from Eichmann et al. (2019) and the diversity of tasks. For Q2b, because non-
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targeted exploration helps represent the problem and acquire information from available
resources, we hypothesized a positive relationship between problem-solving competency
and non-targeted exploration. Similarly, task-dependent relationships are also expected for
Q2b because tasks differ in the extent to which respondents are allowed to interact with
the interfaces. To achieve answers for Q2a and Q2b, we included all three indicators in a
single model and considered the dependencies among the latent variables (i.e., the overall
relationships) and the pairwise residual correlations of the three indicators from the same
task (i.e., task-dependent relationships).

2. Materials and Methods
2.1. Participants and Tasks

This study uses the performance data and associated log files from the 2012 PIAAC
assessment. PIAAC is a program for assessing and analyzing adult skills and competencies
that are essential to personal and societal success (OECD 2013). The stimuli materials were
developed based on everyday life activities, and the target population was noninstitution-
alized residents between 16 and 65 years of age in the country regardless of citizenship or
language (OECD 2013). The PIAAC assessment was implemented by 25 countries (OECD
2012). All participating countries produced their sample design under the guidance of
the PIAAC Technical Standards and Guidelines. In general, probability-based sampling
methods were adopted to select an unbiased, randomized, and representative sample of the
target population (OECD 2013). Countries developed their own sampling frames according
to national situations. For example, Singapore had a full list of residents in the population
registry that was used as a qualified sampling frame, and the sample was randomly selected
based on the population registry. However, many countries like the United States adopted
a multi-stage sampling method since such population registries did not exist there. In short,
geographic domains such as provinces or states and dwelling units were randomly selected
in primary stages, and persons in the domains had an equal probability to be sampled
at the last stage of selection. After obtaining a sample, checks were conducted to ensure
that the sample met the sampling plan. For example, the noncoverage rate of the target
population was computed to indicate the portion of the target population not covered
by the sample frames. In the United States, people who live in large, gated communities
are not covered, and the noncoverage rate is 0.1%, which is the lowest in all participating
countries (OECD 2013). For a more detailed description of the sampling design, readers
are directed to the PIAAC technical report (OECD 2013). To avoid cultural heterogeneity
and render the analyses of the vast log-file data manageable, we used only data from the
United States. We chose the sample from the United States because of the low noncoverage
rate, high response rates, and the large proportion of participants in the PS-TRE domain.

The 2012 PIAAC PS-TRE domain covers dynamic information problems that include
one or more digital scenarios (e.g., email, web, word processor, and spreadsheet). Each
PS-TRE task includes two panels (see Figure 1): The left panel shows the instructions that
describe the scenario and the goal state (i.e., bookmarked websites fulfilling some require-
ments), and the right one represents the initial problem environment that corresponds to
the given state. Respondents may need to first explore the system by, for example, clicking
on the menu or a link to get to know the problem environment and then spend a relatively
long time devising a plan to solve the problem. There are two booklets in PS-TRE, and each
consists of seven fixed-order tasks. Based on the assessment design, test-takers randomly
received zero, one booklet, or two booklets. We used the second booklet (PS-TRE2). Only
participants with sufficient ICT skills in the background questionnaire had access to the
PS-TRE tasks. Sufficient ICT skills include knowing how to manipulate the mouse and
keyboard, understanding concepts like files and folders, and having experience with basic
computer operations like save, open, and close files (OECD 2013).



J. Intell. 2023, 11, 156 9 of 19

2.2. Data Preparation

The log files of the 2012 PIAAC domains can be downloaded from the GESIS Data
Catalogue (OECD 2017). There were 1355 American participants in PS-TRE2, but 30
of them directly skipped all seven tasks and were excluded from the current analysis.
The raw log files were preprocessed via the PIAAC LogDataAnalyzer (LDA) tool. The
reformatted log data consisted of the following variables: respondent ID, item information,
event_name, event_type (e.g., START, TOOLBAR, TEXTLINK), timestamp in milliseconds,
and event_description, which describes the specific event (e.g., “id=toolbar_back_btn”
means clicking on the back button in the toolbar). We recoded the data by filtering the
system logs and aggregating the keyboard input and clicks in pop-up windows. A detailed
explanation of this procedure is provided in Appendix A.

2.3. Measures

For each student on each item, we extracted three indicators: task scores, longest
duration, and the number of initial non-targeted operations, from performance data and
the log files. In this subsection, we describe the three measures in detail.

Problem-solving competency. The indicators for problem-solving competency were
response scores that can be extracted from the OECD website. In PS-TRE2, three items were
scored dichotomously, and four were scored polychotomously by PIAAC. If a participant
spent less than five seconds on a task, the response was scored as missing (OECD 2012). In
the current data set, only five response scores were denoted as missing values by PIAAC. We
directly used their scoring as the measures for the construct problem-solving competency.

Planning. We used the time intervals between consecutive events from log files to
compute the longest duration, excluding the time interval for the last two events. The last
two events are always NEXT_INQUIRY (request the next task) and END (end the task)
based on the task design, and the intervals for the last two operations indicate reflection on
the executed actions rather than planning. A simulated operation sequence and associated
time intervals for the job-seeking task are presented in Table 1. Excluding the time intervals
for the last two operations, we identified the longest one—10 s—as the longest duration
indicator. For those who directly skipped a task, the longest duration was coded as missing.
In a previous study, Eichmann et al. (2019) specified three indicators of planning: the
longest duration, the variance indicator, and the delay indicator. However, we found the
Pearson correlations between the indicators were around 0.80 for the PS-TRE tasks, and the
longest duration typically occurred just after the task began, which meant that the delay
indicator was often identical to the duration indicator. That is, the three aspects of planning
from Eichmann et al. (2019) largely overlapped in our data, and we therefore used only a
single planning indicator per item for the construct planning in this study.

Table 1. A simulated example of operation sequence and response times.

Operation Notes Time
Interval

Planning
Indicator

Exploration
Indicator

START Enter the problem system - - System-defined
textlink_page1 Click on the first link 10 s Yes IniNT

toolbar_back_btn Click on the back button in the toolbar 3 s No IniNT
web_menu_help Click on the Help button in the menu 5 s No IniNT
textlink_page5 Click on the fifth link 8 s No GD

toolbar_bookmark_btn Click on the bookmark button in the toolbar 7 s No GD
bookmark_add_page5 Confirm adding the fifth page to bookmark 4 s No GD

web_menu_help Click on the Help button in the menu 3 s No RepNT
NEXT_INQUIRY Request the next task 12 s - System-defined

END End the task 4 s - System-defined

Note: IniNT = initial non-targeted. RepNT = repeated non-targeted. GD = goal-directed. We shortened the names
of the operations in the raw log files.
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Non-targeted exploration. To define the non-targeted exploration indicators, we first
identified the unique operations for each task based on the log files of the participants.
There were on average 200 unique operations (range = [57, 446]) in each of the PS-TRE2
tasks. Operations that occurred in any of the optimal solutions were considered goal-
directed operations and the others non-targeted operations. Thereafter, we defined the
indicator of non-targeted exploration as the number of initial non-targeted operations for
each item. For the Figure 1 example, we supposed that the correct solution was {START,
textlink_page5, toolbar_bookmark_btn, bookmark_add_page5, NEXT_INQUIRY, END}. By
subsequently checking whether a given operation in Table 1 was included in the optimal
solution, we identified goal-directed or non-targeted operations. The number of initial
non-targeted operations, which was three in this example, served as the indicator of non-
targeted exploration. For those who directly skipped a task, the indicator was coded
as missing.

Data transformation. Latent variable modeling like factor analysis for continuous data
(Jöreskog 1969) normally has the assumption of multivariate normality, but both process
indicators (i.e., longest duration and the number of initial non-targeted operations) deviated
from normal distributions according to large skewness and kurtosis (see Appendix B),
requiring data transformation. One approach is the Box–Cox transformation (Box and Cox
1964). However, such one-to-one transformations do not work well when the data have
many identical values (Peterson and Cavanaugh 2019). In addition, there are some extreme
outliers in the longest duration and the number of initial non-targeted operations. Instead
of transforming the indicators into normally distributed variables, we used quantiles to
recode the process indicators into equal-sized categorical variables, which can reduce the
impact of the outliers. Specifically, if the raw value was zero, we kept the value as it was;
for the remaining values, we recoded the values as 1, 2, 3, and 4 with the 25%, 50%, and
75% quantiles as the cutoff values. Higher categories indicate that more initial non-targeted
operations were applied, or a respondent spent more time planning than other respondents.
In the following analysis, we treat the three types of indicators (response scores, longest
duration, and the number of initial non-targeted operations) as ordered categorical data.

2.4. Analysis Procedures

In this study, we apply latent variable models to analyze the process indicators and task
performance. Latent variable models are widely used in social sciences when researchers
intend to measure a conceptual construct (Bartholomew et al. 2011) such as problem-solving
competency. However, since it is difficult to measure the construct directly, researchers
instead develop instruments based on theory to infer the construct indirectly. In PIAAC
2012, a battery of items was developed to measure problem-solving competency, and
respondents’ responses to the test are collected and considered as observed indicators of
the unobserved construct (i.e., problem-solving competency). In analyzing the observed
responses, the researchers extract what is common in the indicators. The latent variable
that explains the common variability of the observed indicators is then interpreted as
the problem-solving competency afterward. A similar approach is used to measure the
latent variables of planning and non-targeted exploration, where the longest duration and
the number of initial non-targeted operations from multiple items are used as observed
indicators, respectively.

To answer the research questions related to the internal construct validity (i.e.,
Q1a/Q1b/Q1c), we applied confirmatory factor analysis (CFA; Jöreskog 1969) to each
type of indicator. CFA is widely used to examine the latent construct by specifying the
relationships between the observed indicators and latent variables on the basis of specific
hypotheses (Brown 2015). We hypothesized that latent planning would underlie the longest
duration (Model 1a), latent non-targeted exploration would underlie the number of initial
non-targeted operations (Model 1b), and latent problem-solving competency would under-
lie the observed task scores (Model 1c). That is, the latent variables govern the associated
observed indicators and thus explain the common variability of the indicators. To test these
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hypotheses, we examine if the hypothetical models fit well with the real data by check-
ing the goodness-of-fit of the models and factor loadings that inform on the relationship
between the observed indicators and the latent variable.

Regarding Q2a and Q2b, we inferred the relationships between planning, non-targeted
exploration, and problem-solving competency via multidimensional latent variable analysis
(Model 2; see Figure 2). That is, we placed the three latent variables together with their
correlations at the latent variable level (see the solid arrows between the latent variables
in Figure 2) and pairwise residual correlations at the observed variable level (see the
dashed arrows between the observed indicators in Figure 2). The covariances between
problem-solving competency and planning and between problem-solving competency and
non-targeted exploration address Q2a and Q2b at the latent variable level, respectively. A
positive covariance would imply that, generally speaking, planning more or conducting
more non-targeted operations is positively related to problem-solving competency. Given
the diversity of tasks (e.g., interfaces and complexity), the answers to Q2a and Q2b might
differ between tasks. Hence, we added pairwise residual correlations between the three
indicators if they were derived from the same task. For example, for Task 1, we included
the residual correlations between P1, E1, and PS1. These residual correlations help explain
task-specific relationships among the indicators not captured by the covariances between
the latent variables. For example, it could be possible that the overall relationship between
non-targeted exploration and problem-solving competency is positive, but for certain tasks
exploring more impairs task performance, namely negative task-specific relationships. The
specified model is similar to De De Boeck and Scalise’s (2019) model, which used time-on-
task, the number of actions, and responses as indicators of latent speed, latent action, and
latent performance, respectively, in the domain of PISA 2015 collaborative problem-solving.
They also considered specific hypotheses about relationships between the residuals of the
indicators that were based on the same tasks.
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Figure 2. An illustration of Model 2. Note. P = planning indicator (i.e., longest duration); PS = task
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To estimate the models, we used the lavaan package (Rosseel 2012) in R 4.1.0 (R Core
Team 2013) with the diagonally weighted least squares (DWLS) estimator and treated the
observed data as ordered categorical variables. Missing values were handled by pairwise
deletion. By convention, the means and variances of the latent variables were constrained
as zeros and ones for the purpose of model identification, respectively. We evaluated the
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model fit with a robust chi-square test of fit and used the criteria the root mean square
error of approximation (RMSEA) and the standardized root mean square residual (SRMR).
RMSEA assesses how far a specified model is away from an ideal model, and SRMR
evaluates the difference between the residuals of the model-implied covariance matrix
and the observed covariance matrix. Hence, the lower RMSEA and SRMR are, the better
the model fit with the data. The cutoff values are 0.06 and 0.08 for RMSEA and SRMR,
respectively (Hu and Bentler 1998).

3. Results

We begin this section with a description of the sample characteristics. Among the 1325
participants, the average age was 39 years old (SD = 14), and 53% were female. Around
9%, 40%, and 51% of the participants’ highest level of schooling was less than high school,
high school, or above high school, respectively. For the employment status, 66% of the
participants were employed or self-employed, 3% retired, 8% not working and looking
for work, 11% students, 6% doing unpaid household work, and 6% other jobs. PIAAC
categorized respondents’ performance on the PS-TRE domain in four levels: less than level
1 (19% in the US dataset), level 1 (42% in the US dataset), level 2 (36% in the US dataset),
and level 3 (3% in the US dataset). Higher levels indicate better proficiency.

With respect to the responses on the PS-TRE tasks, some omission behaviors were
observed for the tasks. There were on average 127 participants (range = [53, 197]) who
did not interact with single tasks and requested the next task directly. Figure 3 plots the
frequency of the derived indicators after the recoding procedure. The distributions of the
planning indicator were almost evenly distributed across the four categories. However,
the distributions of the other indicators were somewhat diverse depending on the items.
For example, only a small proportion (2.4%) of participants did not try any non-targeted
operations in Task 3, but more than one fourth (29%) did not explore Task 7.
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Figure 3. The frequency plot of planning (P), non-targeted exploration (E), and problem-solving
competency (PS) indicators. The longest duration could not be zero, so the categories of the planning
indicator consisted of only four values.

Next, we present the results relevant to Q1a, Q1b, and Q1c based on the single-factor
CFA models for planning (Model 1a), non-targeted exploration (Model 1b), and problem-
solving competency (Model 1c). Table 2 presents the model fit indices and the standardized
results for factor models. For the planning measurement model, although the robust chi-
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square test was significant (p = .013), the model fit indices (RMSEA = 0.021 (se = 0.006);
SRMR = 0.042 (se = 0.003)) were lower than the cutoff values 0.06 and 0.08 (Hu and Bentler
1998), thus indicating good approximate model fit. All the factor loadings in Model 1a
were significant, ranging from 0.491 to 0.691. The higher factor loading indicates a stronger
relationship between the indicator and the latent variable, and thus the latent variable
can account for more of the variability of the indicator. The results for the model fit and
factor loadings provided evidence of validity for the construct planning. This conclu-
sion also applied to the measurement model (Model 1c) for problem-solving competency
(RMSEA < 0.001 (se = 0.003); SRMR = 0.020 (se = 0.003); nonsignificant chi-square test,
p = .901). The factor loadings ranged from 0.636 to 0.813. For the non-targeted explo-
ration measurement model (Model 1b), the model fit indices (RMSEA = 0.014 (se = 0.007);
SRMR = 0.044 (se = 0.004)) were satisfactory, and the robust chi-square test was nonsignifi-
cant (p = .134). However, the factor loadings varied a lot (see Table 2). Tasks 3 and 4 had the
highest factor loadings, whereas the last two tasks had the lowest with values less than 0.2.
That is, although the non-targeted exploration indicators in PS-TRE2 generally measure the
same construct, the impact of the latent non-targeted exploration on the observed indicators
differed across tasks.

Table 2. Standardized results for the single-factor models.

Variable Estimate SE p

Model 1a: Robust χ2 (35) = 56.179 (p = .013), RMSEA = 0.021 (se = 0.006), SRMR = .042 (se = 0.003)
P1 0.531 0.028 <.001
P2 0.648 0.025 <.001
P3 0.691 0.022 <.001
P4 0.662 0.025 <.001
P5 0.491 0.029 <.001
P6 0.639 0.027 <.001
P7 0.663 0.023 <.001

Model 1b: Robust χ2 (42) = 52.208 (p = .134), RMSEA = 0.014 (se = 0.007), SRMR = .045 (se = 0.004)
E1 0.328 0.043 <.001
E2 0.264 0.045 <.001
E3 0.414 0.048 <.001
E4 0.611 0.056 <.001
E5 0.298 0.043 <.001
E6 0.179 0.046 <.001
E7 0.125 0.043 .003

Model 1c: Robust χ2 (28) = 18.892 (p = .901), RMSEA < 0.001 (se = 0.003), SRMR = 0.020 (se = 0.003)
PS1 0.778 0.025 <.001
PS2 0.786 0.020 <.001
PS3 0.684 0.026 <.001
PS4 0.813 0.019 <.001
PS5 0.758 0.024 <.001
PS6 0.636 0.025 <.001
PS7 0.723 0.022 <.001

Note: P = the planning indicator; E = the non-targeted exploration indicator; PS = the problem-solving indicator.

Subsequently, we present the results of Model 2. If we ignored the residual correlations
of the indicators (i.e., the task-dependent effect), the model fit indices exceeded the cutoff
values (RMSEA = 0.071 > 0.06, se = 0.002; SRMR = 0.096 > 0.08, se = 0.002). This suggests
that only considering the overall relationships between the latent variables and excluding
the task-dependent relationships did not fit well with the data. In Model 2, the residual
correlations were included, and the model fit indices (RMSEA = 0.055 < 0.06, se = 0.002;
SRMR = 0.077 < 0.08, se = 0.002) improved and implied an acceptable goodness-of-fit (Hu
and Bentler 1998). Hence, considering the task-specific effects fit the data substantially
better. One obvious difference between single measurement models and the full model
occurred in the factor loadings of the non-targeted exploration indicators. In the full model,
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the latent non-targeted exploration could capture only the common features underlying
Tasks 3 and 4, whose factor loadings exceeded 0.4.

Regarding the relationship between planning and problem-solving competency (i.e.,
Q2a), we begin by addressing the latent variable levels, namely their overall relationship.
The correlation between latent planning and problem-solving competency was −0.093
(p = .007, se = 0.035). That is, the overall effect of planning on problem-solving was negative,
but the magnitude of the effect was rather small. This result was similar to Eichmann et al.’s
(2019) study, where the longest duration was not related to task success on average. For
Q2a on the observed data level, namely the task-dependent relationships, Table 3 presents
the relevant results that suggested the residual correlations were not negligible. Specifically,
half of the residual correlations were positive, and the other half were negative. For Tasks
3, 4, and 5, after controlling for the latent variables in the model, spending more time on
planning contributed to task performance, whereas spending more time on planning in
Tasks 1, 6, and 7 impaired task performance. That is, the relationships between the longest
duration indicator and task scores varied a lot across the tasks.

Table 3. Standardized results of the residual correlations in Model 2.

Variable Estimate SE p

PS1 with P1 −0.374 0.037 <.001
PS2 with P2 −0.068 0.034 .365
PS3 with P3 0.249 0.035 <.001
PS4 with P4 0.569 0.033 <.001
PS5 with P5 0.609 0.034 <.001
PS6 with P6 −0.181 0.035 .002
PS7 with P7 −0.155 0.033 .013
PS1 with E1 0.127 0.033 .014
PS2 with E2 0.234 0.032 <.001
PS3 with E3 0.179 0.024 <.001
PS4 with E4 0.066 0.030 .299
PS5 with E5 0.044 0.034 .428
PS6 with E6 −0.796 0.025 <.001
PS7 with E7 −0.038 0.032 .408
P1 with E1 −0.076 0.033 .057
P2 with E2 −0.002 0.033 .973
P3 with E3 0.059 0.028 .233
P4 with E4 0.240 0.031 <.001
P5 with E5 0.220 0.031 <.001
P6 with E6 0.120 0.034 .007
P7 with E7 0.208 0.032 <.001

Note: P = the planning indicator; E = the non-targeted exploration indicator; PS = the problem-solving indicator.

Regarding Q2b, as hypothesized, non-targeted exploration showed a strong positive
relationship with problem-solving competency with a factor correlation equal to 0.887
(p < .001, se = 0.034). However, the answer to Q2b on the observed data level differed across
tasks. The residual correlations between the responses and the non-targeted exploration
indicators were significant and positive in the first three tasks but negative in Task 6
(see Table 3). That is, after considering the positive relationship between non-targeted
exploration and problem-solving competency, different tasks showed distinct impacts
on task performance. In addition, the residual correlations between the indicators of
planning and non-targeted exploration by and large increased with the positions of the
tasks. Engagement might be one explanation for this result. Specifically, participants
who kept engaging in the assessment tended to invest more time in planning and more
exploratory behaviors than those who gradually lost patience.



J. Intell. 2023, 11, 156 15 of 19

4. Discussion

In this article, we focused on planning, non-targeted exploration, and problem-solving
competency using process measures and task performance in the 2012 PIAAC PS-TRE do-
main. We assessed the internal construct validity of the derived indicators and investigated
their relationships using multidimensional latent variable analysis.

4.1. Summary of the Study

Our results provide additional evidence for the internal construct validity of the
indicators of planning and problem-solving competency. It suggested that the latent
planning greatly captured the common variance of the longest duration indicators and
was relatively stable across tasks. However, the CFA results indicated that latent non-
targeted exploration exerted varied influences on different tasks. The task interfaces can
provide a potential explanation for the result. If the interfaces such as spreadsheets or emails
contained features that are commonly used by respondents, it would likely be less necessary
to explore these buttons to acquire new information. In contrast, novel information was
embedded in a web environment in Tasks 3, 4, and 7, requiring potentially more non-
targeted exploration, while Task 7 provided extra hints for non-necessary operations and
thus prevented some non-targeted behaviors. In short, the familiarity of the presented
environments and hints might weaken the influence of the latent non-targeted exploration.

After interpreting the internal construct validity of the process indicators, we then
interpret the task-dependent relationships between planning and problem-solving com-
petency. Task difficulty was not critical in explaining the diverse relationships after we
inspected the task difficulty for each item provided by PIAAC (OECD 2013), a finding
that was in line with Eichmann et al. (2019) who used the PISA 2012 problem-solving
tasks. Instead, more specific task features can provide some insights. If some tasks (e.g.,
Task 4) require respondents to integrate complex information, investing more time in
planning helps problem-solving (Mumford et al. 2001). Moreover, the relevance of informa-
tion also mattered. Being stuck with irrelevant information can lead to biased planning
(Mumford et al. 2001). For instance, we found that unsuccessful respondents tended to
spend the longest duration on irrelevant emails compared with successful respondents in
Task 6.

The other research interest of the study is the relationships between problem-solving
competency and non-targeted exploration. The positive overall relationship between non-
targeted exploration and problem-solving competency on the latent trait level indicated
that non-targeted exploration facilitated representing and further contributed to successful
task completion (Dormann and Frese 1994; Kapur 2008). However, the negative residual
correlation for Task 6 implied that exploring too much was detrimental to solving the
task. Paying too much attention to irrelevant information might complicate the problem
and result in cognitive overload (Frese and Keith 2015). A common pattern for successful
problem-solving involved actively trying some non-targeted operations or goal-directed
behaviors to expand the problem space, distinguishing the features of these operations,
and focusing on goal-directed behaviors to reach the desired state.

4.2. Contributions and Limitations

This article offers several contributions. From a theoretical perspective, we examined
the internal construct validity of process indicators across multiple tasks, whereas many
relevant studies have been limited to single items (e.g., Ulitzsch et al. 2021). Combining
data from multiple tasks utilizes the information from the assessment to a greater extent
and potentially provides more evidence for the stability of the conclusions. We found that
the process indicators differed in the extent of internal construct validity, which suggested
that researchers should carefully consider applying the measures from one task to another
task even though both tasks are designed to measure the same concept. For practitioners,
the longest duration can be employed as a good indicator for planning in other information-
processing problems similar to the PS-TRE tasks, whereas non-targeted exploration would



J. Intell. 2023, 11, 156 16 of 19

be less suitable to apply to routine problems with little novel information. On the contrary,
if the task is rich in new information that respondents can explore to acquire, the amount
of non-targeted exploration would be able to capture the common pattern of exploratory
behaviors.

Regarding the research topics, our results provide evidence for the functions of plan-
ning and non-targeted exploration in problem-solving based on human–computer inter-
actions, deepening the understanding of their relationships in dynamic problems. The
insight into the processes of complex problem-solving is crucial for educational systems
since one important mission of education is to prepare students to become better problem-
solvers (OECD 2014). Our results can potentially facilitate educational practice aiming at
improving problem-solving skills. For example, it would be promising to implement a
computer-simulated agent to help problem-solvers in terms of planning and non-targeted
exploration. Specifically, if an individual has spent a long time planning in a dynamic
problem without interacting with the task environment, the agent can offer a hint to en-
courage exploratory behaviors if the individual is not familiar with the task environment.
In another circumstance, if an individual engaged in too much non-targeted exploration
rapidly, the agent can advise spending more time on planning a strategy when the task re-
quires respondents to incorporate complex information. Besides the development of digital
tools, test developers can also compare the relationships between planning, non-targeted
exploration, and task performance with the desired design to reflect on the task design. For
example, if a task is designed to benefit from planning, the relationship between the longest
duration and task performance should be positive; otherwise, test developers would need
to reconsider their design.

Some limitations of this study should also be noted. First, the indicator of non-targeted
exploration requires researchers to define goal-directed and non-targeted operations that
can be difficult for some types of problems. Second, the longest duration indicator reflects
only the quantity of the planning, which does not necessarily imply the quality of the
planning. Future studies can assess the quality of plans in dynamic problems and examine
their relationship with task performance. In addition, similar to Eichmann et al. (2019),
our definition of planning is broad in nature. Although we excluded the durations at the
end of the tasks (e.g., reflecting process) in identifying the planning process, the longest
duration can actually refer to the monitoring process. Third, although our indicators
were based on previous studies, the underlying meaning of the latent variables must be
interpreted carefully. Fourth, the current data are from the 2012 PIAAC PS-TRE domain,
the core of which is information-processing skills (Greiff et al. 2017). However, other
international assessments have various focuses, which may show different relationships
between planning, non-targeted exploration, and problem-solving competency.

5. Conclusions

This study derived process indicators of planning and non-targeted exploration from
the existing literature (Eichmann et al. 2019, 2020a, 2020b). Our results provide evidence for
the internal construct validity of the planning indicator and response scores across multiple
PS-TRE items, whereas the non-targeted exploration indicator was more challenging to be
analyzed simultaneously across tasks when considering the dependency of the indicators
from the same item. In addition, non-targeted exploration had a strong positive relationship
with problem-solving competency. The results of residual correlations provided more
detailed and diverse relationships between task performance, planning, and non-targeted
exploration on the task level.
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Appendix A

The recoding rules for log-events:
The log-events were recoded using the following rules:

• We kept only the events implemented by the respondent and deleted the system events
triggered by the respondent’s interaction event. For instance, when a respondent
clicked on the “Add page” button in the bookmark pop-up window, three events were
logged with the same timestamps: BOOKMARK_ADD, BUTTON, and DOACTION.
In this case, we kept only BOOKMARK_ADD because it was sufficient for describing
the operation implemented by the respondent.

• We aggregated the event type KEYPRESS. When a key is pressed, a KEYPRESS event
with an ASCII value is logged. Because typing a string (e.g., a name) is regarded as a
single operation, we aggregated consecutive KEYPRESS events as a single KEYPRESS
event.

• All events from a combo-box (e.g., a SORT pop-up window) with several sorting rules
were aggregated according to the final state of the SORT window.

Appendix B

Table A1. Descriptive statistics for the raw process indicators without transformations.

Raw Indicator Mean SD Min Max Skewness Kurtosis

P1 66.75 59.85 1.09 1149 7.15 101.14
P2 55.63 56.10 4.46 1317 11.51 227.32
P3 41.04 29.33 1.91 432 4.67 42.70
P4 43.32 78.19 6.12 2421 24.79 739.48
P5 48.58 33.65 1.85 313 2.41 9.84
P6 34.99 322.84 4.25 10847 33.30 1112.34
P7 27.88 65.25 3.66 2157 28.70 921.94
E1 1.94 2.28 0 38 4.61 52.76
E2 8.50 18.90 0 204 5.82 44.57
E3 7.44 3.98 0 17 .07 −1.11
E4 6.48 5.15 0 35 1.08 1.49
E5 3.81 3.56 0 30 1.91 6.51
E6 8.37 10.68 0 65 1.27 .63
E7 3.6 5.56 0 46 3.21 13.26

Note: P = the planning indicator. E = the non-targeted exploration indicator.

References
AERA. 2014. Standards for Educational and Psychological Testing. Washington, DC: American Educational Research Association.
Albert, Dustin, and Laurence Steinberg. 2011. Age differences in strategic planning as indexed by the Tower of London. Child

Development 82: 1501–17. [CrossRef]
Arlin, Patricia Kennedy. 1989. The problem of the problem. In Everyday Problem Solving: Theory and Applications. Edited by Jan D.

Sinnott. New York: Wittenborn, pp. 229–37.

https://search.gesis.org/research_data/ZA6712?doi=10.4232/1.12955
https://doi.org/10.1111/j.1467-8624.2011.01613.x


J. Intell. 2023, 11, 156 18 of 19

Bartholomew, David J., Martin Knott, and Irini Moustaki. 2011. Latent Variable Models and Factor Analysis: A Unified Approach. Hoboken:
John Wiley & Sons.

Bell, Bradford S., and Steve W. J. Kozlowski. 2008. Active learning: Effects of core training design elements on self-regulatory processes,
learning, and adaptability. Journal of Applied Psychology 93: 296–316. [CrossRef]

Berbeglia, Gerardo, Jean-François Cordeau, Irina Gribkovskaia, and Gilbert Laporte. 2007. Static pickup and delivery problems: A
classification scheme and survey. TOP 15: 1–31. [CrossRef]

Box, George E., and David R. Cox. 1964. An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological)
26: 211–43. [CrossRef]

Brown, Timothy A. 2015. Confirmatory Factor Analysis for Applied Research. New York: Guilford publications.
Bruning, Roger H., Gregory J. Schraw, Monica M. Norby, and Royce R. Ronning. 2004. Cognitive Psychology and Instruction, 4th ed.

Upper Saddle River: Merrill Prentice Hall.
Chen, Yunxiao, Xiaoou Li, Jingchen Liu, and Zhiliang Ying. 2019. Statistical analysis of complex problem-solving process data: An

event history analysis approach. Frontiers in Psychology 10: 486. [CrossRef] [PubMed]
Chung, Ji Eun, and Stuart Elliott. 2015. Adults, Computers and Problem Solving: “What’s the Problem?” OECD Skills Studies. Paris: OECD

Publishing.
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