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Abstract: There is a host of research on the structure of working memory (WM) and its relationship
with intelligence in adults, but only a few studies have involved children. In this paper, several differ‑
ent WMmodels were tested on 170 Japanese school children (from 7 years and 5 months to 11 years
and 6 months). Results showed that a model distinguishing between modalities (i.e., verbal and spa‑
tial WM) fitted the data well and was therefore selected. Notably, a bi‑factor model distinguishing
between modalities, but also including a common WM factor, presented with a very good fit, but
was less parsimonious. Subsequently, we tested the predictive power of the verbal and spatial WM
factors on fluid and crystallized intelligence. Results indicated that the shared contribution of WM
explained the largest portion of variance of fluid intelligence, with verbal and spatial WM indepen‑
dently explaining a residual portion of the variance. Concerning crystallized intelligence, however,
verbal WM explained the largest portion of the variance, with the joint contribution of verbal and
spatial WM explaining the residual part. The distinction between verbal and spatial WM could be
important in clinical settings (e.g., children with atypical development might struggle selectively
on some WM components) and in school settings (e.g., verbal and spatial WM might be differently
implicated in mathematical achievement).

Keywords: working memory; children; intelligence; short‑term memory

1. Introduction
Working memory (WM) can be broadly defined as the capacity to actively maintain

information for a short period of time (Baddeley 1986). The importance ofWMrelies on the
fact that it can predict important outcomes, such as intelligence and academic achievement
in children with both typical and atypical development (see Cornoldi and Giofrè 2014 for
a review). Different models of WM have been proposed over the years (see Carretti et al.
2022 for a recent review). At the same time, the relationship betweenWM and intelligence
has been extensively examined in adults, yet has scarcely been investigated in children
(Gray et al. 2017). The aim of the current report was therefore to investigate the structure
of WM and its relationship with intelligence.

1.1. The Structure of WM
Very early models, which were linked to memory processes in general rather than be‑

ing focused on WM, introduced the concept of a single mechanism (i.e., short‑term mem‑
ory), which was distinguished from long‑term memory, and was initially conceived as a
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single memory storage mechanism for maintaining information for a short period of time
(Atkinson and Shiffrin 1968). This early formulation, also called the “modal” model (i.e.,
the model most frequently used), received enormous interest from the scientific commu‑
nity. At the same time, however, this model presented some limitations. For example,
the model did not distinguish between modalities (e.g., verbal and spatial), and over the
course of the years, it was replaced by other more detailed models.

Baddeley and Hitch (1974) introduced the concept of WM as a multi‑storage mecha‑
nism. This model of WM proposed the existence of two slave systems (i.e., the phonologi‑
cal loop and the visuospatial sketchpad) and a central mechanism for actively maintaining
and controlling the information (i.e., the central executive). Having three components, this
model is generally known as the tripartite model. This model has been very influential
and it can also predict several double dissociations in different disorders (e.g., lesions in
the temporal parietal lobe provided evidence to support the existence of the phonologi‑
cal loop; patients with neglect presented patterns of performance that confirmed the pres‑
ence of the visuospatial sketchpad; the patterns of performance of patients with frontal
lobe damage and with Alzheimer’s disease confirmed the presence of the central execu‑
tive component) (for an extensive discussion, see Baddeley 1992, 2003). Despite being very
popular, this model also presented some problems, which led to subsequent refinements
(Baddeley 2012).

One potential issuewith the classical tripartitemodel is that the central executive com‑
ponent, which is a crucial part of the model, remains very elusive and difficult to objec‑
tively evaluate; for example, this component can only be measured indirectly, and this
poses a series of methodological shortcomings (e.g., the existence of the central executive
can be demonstrated using bi‑factor models, but these models pose a series of statistical
and methodological challenges) (for an extensive discussion, see Carretti et al. 2022). On
the one hand, this led to the introduction of models (also known as modality‑dependent
models) distinguishing only betweenmodalities (i.e., verbal and spatial) and not including
the central executive component (Friedman and Miyake 2000). Conversely, other models
posit that only tasks requiring a dual task, and in turn requiring higher degrees of atten‑
tional control, can be consideredWM tasks. Thesemodels state that other taskswith only a
single element that requires lower levels of attentional control can generally be considered
short‑term memory tasks (e.g., Engle et al. 1999). Since they do not present a distinction
between modalities, they are usually known as modality independent. At the same time,
other WMmodels have been proposed.

One alternative formulation of WM was proposed by Cornoldi and Vecchi (2003).
This model encompasses a horizontal continuum distinguishing betweenmodalities and a
vertical continuum distinguishing between different levels of attentional control required.
Since this model presents two dimensions (continuum), it is generally known as the “con‑
tinua”model. Thismodel shows somedifferences compared to othermodels. For example,
this model assumes a differentiation between modalities in the horizontal continuum (e.g.,
distinguishing between simultaneous vs. sequential processes). At the same time, in this
model, a clear distinction between STM and WM tasks on the vertical continuum is not
present; tasks can simply require higher or lower levels of attentional control (Cornoldi
and Vecchi 2000, 2003). Despite being less recognised, this model has been successfully
tested with both typically and atypically developing children, showing that some children
are specifically impaired in sequential vs. simultaneous tasks, and that it is often very hard
to distinguish between STM and WM tasks since some tasks often require higher levels of
attentional control (Carretti et al. 2022; Lanfranchi et al. 2004; Mammarella and Cornoldi
2005; Mammarella et al. 2006; Mammarella et al. 2018). The presence of several alternative
WM models makes it necessary to statistically compare these models to determine which
one is the most suitable.

Several authors comparing alternative models of WM favour the classical tripartite
model (Alloway et al. 2006; Bayliss et al. 2003; Campos et al. 2013; Giofrè et al. 2013; Michal‑
czyk et al. 2013). Gray and co‑authors (Gray et al. 2017) found both evidence in favour of
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the tripartite model, but also for a model including a focus of attention factor (i.e., both
models fitted the data well, making it very hard to compare them from a statistical point
of view). Hornung et al. (2011) demonstrated that a bi‑factor model provided a superior
fit for the data. The bi‑factor model is a model in which tasks load simultaneously on two
factors, for example, a verbal task can load simultaneously on a verbal factor and on a
common WM factor. It is worth mentioning, however, that this particular model, despite
being widely used, also presents some limitations: (i) if only two indicators per factor are
included, the loading of these indicators needs to be constrained to equality; (ii) factors
are considered to be orthogonal (i.e., not correlated with each other), however, in several
instances this is not the case; and (iii) this model allows us to precisely measure a common
factor (e.g., a commonWM factor), but at the same time other factors are considered to be
residuals and it is difficult to understand the exact meaning and function of these residual
factors (Gignac and Kretzschmar 2017). Recently, Carretti and co‑authors (Carretti et al.
2022) found that the continua model presented several advantages and fitted the data well
compared to several competingmodels. This latter study also used a bi‑factor model, how‑
ever, evidence in favour of the bi‑factor model was not particularly strong.

1.2. Cross‑Cultural Difference in WM
Evaluating the structure ofWM in children fromdifferent countries is important since

some differencesmight emerge between cultures. Roos et al. (2017) reviewed six papers on
differences inWM in different countries. In their review the authors found that in three re‑
ports therewere no differences inWMbetweenAfricanAmerican vs. CaucasianAmerican,
bilingual Hispanic vs. Caucasian, and Chinese vs. American children (Buckhalt et al. 2007;
Carlson and Meltzoff 2008; Lan et al. 2011). However, two studies did report some dif‑
ferences between Western and Asian cultures (Demetriou et al. 2005; Oh and Lewis 2008).
In a study comparing Greek and Chinese children (age 7.5–15.1 years), Chinese children
exhibited higher spatial and verbal WM with a particular advantage in spatial WM, even
after accounting for processing speed differences. Similarly, a study comparing young
British and Korean children found that Korean children exhibited higher spatial WM per‑
formances but similar performances in verbal WM tasks (Oh and Lewis 2008). Some ev‑
idence also indicates that Chinese preschoolers, as compared to American preschoolers,
show comparable levels of storage capacity but have higher levels of attentional control
and inhibition (Lan et al. 2011).

Advantages in WM in some countries might be related to the complexity of the Chi‑
nese writing system, which requires individuals to learn symbols through memorization.
This emphasis on memorization is very common to many schools in East Asian cultures.
Chinese children are, for example, required to master a logographic reading and writing
system, which is considerably more complex as compared to any of the alphabetical sys‑
tems used in Western countries. Children in China must learn 2570 characters during
6 years of primary school (Shu et al. 2003). This extensive training with complex characters
may affect mental functioning all the way through from basic processing mechanisms to
memory strategies and reasoning processes. The intensive charactermemorization empha‑
sis is stressed in Japan as well where very young children are required to learn thousands
of characters early in primary school (Muroya et al. 2017; Inoue et al. 2017). As mentioned
above, while there is a host of researchwith adults, only a few studies have been performed
with children. Japanese children, during the school years, receive intense training with
complex characters that could potentially result in some differences in their WM capac‑
ity. However, the WM capacity of these children has rarely been evaluated, which makes
research on this topic particularly timely.

1.3. The Relationship between WM and Intelligence
Intelligence can be broadly defined as the ability to reason, plan, solve problems, think

abstractly, understand complex ideas, learn quickly, and learn from experience (Gottfred‑
son 1997). Similarly to WM, several different models have been proposed for intelligence,
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however a distinction between fluid vs. crystallised intelligence has gathered a broader
consensus (Horn and Cattell 1966). Some authors claim that intelligence and WM are
hardly distinguishable (Colom et al. 2003; Kyllonen 2002). However, recent findings seem
to confirm that intelligence and WM, despite being highly related and sharing about the
50%of the variance, are separable constructs, where about 50%of the variance is not shared
(Conway et al. 2003; Engle et al. 1999; Giofrè et al. 2013). From a scientific perspective,
however, it is important to understand which WM component is more closely related to
intelligence.

There are several pieces of evidence indicating that WM and intelligence are closely
related in children. Giofrè and co‑authors (Giofrè et al. 2013), using the classical tripartite
model, found that only WM and visuospatial‑short term memory were related to intelli‑
gence. In a similar vein, Hornung and co‑authors (Hornung et al. 2011), using a bi‑factor
model, found that the common factor explained a greater portion of variance in fluid intel‑
ligence, while other factors explained lower portions of the variance. Gray and colleagues
(Gray et al. 2017) distinguished between fluid and visual intelligence and found that fo‑
cus of attention explained a larger portion of the variance of both factors. These authors
also presented a refined and reformulated WM model including a visuospatial WM fac‑
tor, which was found to have a strong relationship with both visual and fluid intelligence.
There is a lack of research with children, therefore, more research is needed to shed light
on the structure of WM and its relationship with intelligence.

1.4. Aims and Rationale
The first aim of the current report was to test several alternative models for WM con‑

sidering Japanese children. In particular, we tested: (i) a “modal” model only including
a single WM factor (Atkinson and Shiffrin 1968); (ii) a modality‑dependent model distin‑
guishing between two factors (verbal vs. visuospatial) (Friedman and Miyake 2000); (iii) a
modality‑independent model, only presenting a distinction between a short‑termmemory
(STM) and aWM factor (Engle et al. 1999); (iv) the classical tripartite model, distinguishing
between two slave factors (i.e., visual and verbal STM) and a central executive factor (Bad‑
deley and Hitch 1974); and (v) a bi‑factor model, including a commonWM factor, loading
on all tasks, as well as a verbal and a visuospatial WM factor (Hornung et al. 2011). Once
we established the structure of WM, we also aimed to evaluate the relationship between
various WM factors, if more than one, and fluid and crystallized intelligence.

To sumup, themain aim of the current report was to test several competingmodels of
WM to establish the most suitable model in Japanese children. Once we have established
the best fitting model, we also aimed to investigate the relationship between various WM
components and fluid and crystallized intelligence.

2. Materials and Methods
2.1. Participants

The sample initially included 173 children. Some children (n = 3) were absent during
one of the administrations and were excluded from the final sample. The final sample
included a total of 170 children (104 male and 66 female, 96 second and 74 fifth graders;
Mage = 112.84 months, SD = 18.04). Children were recruited through local mainstream
primary school programs in Japan. A criterion for inclusion was the use of Japanese as a
first language.

2.2. Measures
2.2.1. Working Memory

WM tasks were selected from a battery of tasks used in several other studies with
good psychometric properties (Allen and Giofrè 2021; Allen et al. 2020; Donolato et al.
2019; Giofrè et al. 2014; Giofrè et al. 2018). Verbal tasks required an adaptation to Japanese
language which was done by a bilingual speaker. The partial credit score (the number of
correct objects identified in the right order) was used (Giofrè and Mammarella 2014). This
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method allows us to obtain information from partially recalled series, for example, using
a traditional span procedure, if the subject is able to identify seven objects from a list of
eight objects, the corresponding performance is zero, while the partial credit score allows
us to obtain some information from partially recalled lists (i.e., seven out of eight items
are correctly recalled). This method was adopted with adults, showing that the reliabil‑
ity increased substantially using this procedure (Unsworth and Engle 2006, 2007). This
procedure, which stresses the importance of information obtained with the most difficult
(longest) lists of items to recall, also emphasises the role of STM tasks in explaining intelli‑
gence (Unsworth and Engle 2006, 2007). For example, Giofrè andMammarella (Giofrè and
Mammarella 2014) found that this procedure provided higher reliability estimates, while
at the same time also increased the predictive power of STM andWM tasks for intelligence.

Verbal
Three measures of verbal WM were administered: the number span task (NST), the

word span task (WST), and the listening span task (LST).
The number and word span tasks required children to repeat lists of auditorily presented

numbers (Cronbach’s α = .89) or words (α = .88) that they had heard in forward order. Two
trials for each span length, starting froma length of two to a length of eightwords/numbers,
were presented. The reliability, calculated on the current sample, was relatively high for
both numbers (α = .89) and words (α = .88).

In the listening span task (LST) (Daneman and Carpenter 1980), children listened to
sets of sentences from two to five sentences. The first set contained two sentences, and the
number of sentences increased gradually in subsequent sets. After hearing each sentence,
children were asked to evaluate whether the sentence was true or false. After each set of
sentences, childrenwere asked to recall the first word of each sentence in the same order as
they were presented. Two trials per span length were presented. The reliability, calculated
on the current sample, was relatively high (α = .90).

The Japanese version of the word span and listening span tasks were designed with
nouns that meet three criteria: two characters, two syllables, and two morae (a phono‑
logical unit of a language), which were selected from the Textbook Vocabulary Corpus
(Tanaka et al. 2011). These nouns are commonly used in approved textbooks for lower
primary school children. In designing these tasks, we took care to ensure that the vowel
combinations of the words within the same trial sequence did not overlap. For example,
the Japanese words ‘uma’ (うま) and ‘kusa’ (くさ) have the same vowel combination (‘u’
and ‘a’), while ‘neko’ (ねこ) has a different vowel combination (‘e’ and ‘o’). To avoid rep‑
etition and the phonological similarity effect, we ensured that words with identical vowel
combinations were not presented in the same trial sequence. Furthermore, each to‑be‑
remembered item (word) appeared only once in theWMtask. Additionally, in the listening
span task, we employed three‑word sentences adhering to the Subject‑Object‑Verb (SOV)
structure as stimuli. Examples of these sentences include “Ears eat rice” (みみでごはんを
たべる), which is an incorrect version of “Mouth eats rice” (くちでごはんをたべる), and
“Bears live in the mountains” (くまはやまにすんでいる). Upon hearing the sentence read
aloud, participants were required to evaluate whether the content of the sentence was se‑
mantically coherent while simultaneously recalling andmemorizing the first word of each
sentence, i.e., ‘mimi’ (みみ) and ‘kuma’ (くま).

Spatial
Three measures of spatial WM were administered: the matrices span task (MST), the

Corsi block task (CBT), and the dot matrix task (DMT).
The matrices span and Corsi block tasks required participants to memorize and recall the

positions of cells that appeared briefly (for 1 s) in different positions on the screen (on a
5 × 5 grid in the matrices span task, α = .91, and on 9 blocks displayed on the screen in the
Corsi block task, α = .90). After a series of cells had been presented, the children used a
mouse to click on the locations where they had seen a cell appear in the order in which the
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cells were presented. Two trials for each span length, from two to eight blocks/matrices
were presented. The reliability, calculated on the current sample, was relatively high for
both matrices (α = .91) and Corsi block (α = .90) tasks.

In the dot matrix task (Miyake et al. 2001), children were presented with sets of matrix
equations (i.e., addition with lines in a grid of dots). After each equation, a dot appeared
in a 5× 5 grid, and children were asked to remember its position, so they had to verify the
matrix equationwhile simultaneously remembering the dot’s location. The sets ofmatrices
were presented in four series of increasing length from two to five dots. Participants then
had to recall the locations of the dots in the correct order. Two trials for each span length,
from two to five dots, were presented. The reliability, calculated on the current sample,
was relatively high (α = .90).

2.2.2. Intelligence
Fluid Intelligence

The Japanese version of the Cattell Culture Fair Intelligence Test Scale 2 (Cattell and Cattell
1960): The test consists of two forms, A and B. Each form includes four timed subtests
of nonverbal fluid reasoning (series, classifications, matrices, and topology) with items of
increasing difficulty within each subtest. We calculated two scores from the sum of correct
answers for the form A and form B separately (reliability test–retest, r = .84).

Crystallized Intelligence
Two tasks from the Japanese adaptation of theWISC‑IV (Wechsler and JapaneseWISC‑

IV Publication Committee 2010) were presented. Vocabulary typically requires providing
definition of words presented auditorily (reliability test–retest, r = .80).

Similarity typically requires evaluating two words and explaining why they are sim‑
ilar to each other (e.g., a poet and a painter are both artists) (reliability test–retest, r = .85).
Both tasks present progressively difficult items and tasks are discontinued if a particular
child fails to respond to more difficult items and receives 5 consecutive scores of 0 points.

2.3. Design & Procedure
The six WM measures were administered in a randomized order. For the WM tasks,

all stimuli were presented on a 15.6‑inch monitor with a viewing distance of 50 cm; all
children were individually tested in quiet rooms at their schools. Stimulus presentation
was controlled by E‑PRIME software (version 2.0, Psychology Software Tools, Sharpsburg,
PA, USA). Cattell intelligence tests were collectively administered in the classroom, while
tasks from the WISC‑IV were individually administered.

2.4. Data Analytic Approach
The R program (R Core Team 2022) with the “lavaan” library (Rosseel 2012) was used.

Model fit was assessed using indices and criteria suggested by Hu and Bentler (1998):
the chi‑square (χ2), the comparative fit index (CFI), the non‑normed fit index (NNFI), the
standardized root mean square residual (SRMR), and the root mean square error of ap‑
proximation (RMSEA). The Akaike information criterion, AIC, was used for the model
comparison of non‑nested models, while the chi‑square difference test (∆χ2) was used for
nested models.

Variance partitioning analyses were performed using the latent correlation matrix.
The correlation matrix was used for calculating the R2 using the “mat.regress” function
available in the “psych” package (see Allen and Giofrè 2021 for a similar procedure).

3. Results
3.1. Preliminary Analyses

Grade was partialled out of all analyses to remove its influence on the data (for a
similar procedure, see Giofrè et al. 2018; Donolato et al. 2019). Partialling out for grade
was necessary to increase the statistical power of our analyses. However, additional anal‑
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yses were performed to check the appropriateness of this procedure (see additional anal‑
yses). Correlations, both raw and covaried, as well as descriptive statistics, are presented
in Table 1.

Table 1. Correlations among WM and intelligence measures.

1 2 3 4 5 6 7 8 9 10

1. NST ― 0.61 0.55 0.40 0.39 0.33 0.35 0.35 0.41 0.40
2. WST 0.53 ― 0.66 0.51 0.43 0.38 0.37 0.38 0.42 0.43
3. LST 0.41 0.56 ― 0.56 0.54 0.56 0.53 0.52 0.57 0.59
4. MST 0.25 0.38 0.38 ― 0.62 0.63 0.45 0.45 0.41 0.44
5. CST 0.25 0.29 0.37 0.51 ― 0.51 0.46 0.43 0.40 0.40
6. DMT 0.15 0.20 0.36 0.50 0.36 ― 0.41 0.38 0.37 0.44
7. Cattel A 0.23 0.25 0.41 0.33 0.34 0.27 ― 0.76 0.41 0.49
8. Cattell B 0.26 0.29 0.44 0.36 0.34 0.27 0.74 ― 0.31 0.39
9. Vocabulary 0.21 0.22 0.31 0.14 0.15 0.06 0.24 0.16 ― 0.70
10. Similarities 0.19 0.21 0.33 0.16 0.14 0.14 0.35 0.26 0.48 ―

M 32.15 26.39 12.36 43.92 40.79 14.56 26.79 27.16 20.41 15.82
SD 5.74 8.09 6.09 14.25 10.5 6.07 6.22 6.61 7.43 5.55
Skew −0.42 0.62 0.15 −0.06 −0.32 −0.04 −0.27 −0.59 0.90 0.34

Kurtosis −0.55 0.82 −0.73 −0.16 −0.15 −0.96 −0.18 −0.14 0.49 −0.73
Note. Correlations covaring for age below the diagonal and raw correlations above the diagonal. NST = number
span task, WST = word span task, LST = listening span task, MST = matrix span task, CST = Corsi span task, DMT
= dot matrix task. Correlations higher than 0.15 are statistically significant at p < .05.

3.2. Confirmatory Factor Analysis (CFA)
3.2.1. Working Memory

Several alternative WM models were tested to ascertain the structure of WM in
Japanese children: inModel 1we tested a single factormodel; inModel 2we tested amodel
distinguishing between a verbal and a spatial factor (modality dependent); in Model 3 we
tested a model distinguishing between WM and STM factors (modality independent); in
model 4we tested amodel distinguishing between short termmemory verbal (STM‑V) and
visuospatial (STM‑VS) factors and a WM factor (tripartite model); in model 5 we tested a
model presenting twoWM factors (verbal and visuospatial), but also a commonWM factor
loading on all tasks (bi‑factor model). The fit of each model is presented in Table 2.

Table 2. Model fit statistics.

χ2 df p RMSEA SRMR CFI NNFI AIC

CFA
WM
Model 1 56.84 9 0.000 0.177 0.086 0.819 0.699 6643
Model 2 13.41 8 0.099 0.063 0.043 0.980 0.962 6601
Model 3 56.84 8 0.000 0.190 0.086 0.815 0.654 6645
Model 4 28.87 6 0.000 0.150 0.063 0.914 0.784 6621
Model 5 6.51 4 0.164 0.061 0.023 0.991 0.964 6603
WM & g
Model 6 33.16 29 0.271 0.029 0.039 0.992 0.987 10,592
MG‑CFAs
Model 1 24.27 16 0.084 0.078 0.050 0.969 0.942 6633
Model 2 29.95 20 0.071 0.077 0.071 0.963 0.944 6631
Model 3 36.58 26 0.081 0.069 0.089 0.961 0.954 6625

Note. The first five models only include WM tasks. Model 6 also includes intelligence measures. Multigroup
models were performed between grades. CFA = confirmatory factor analyses; MG‑CFA = multigroup CFA.

As a “modal”model (CFA,Model 1; Figure 1), we tested a singleWM factor (Atkinson
and Shiffrin 1968). However, the fit of the model was not satisfactory (Table 2), so we
decided to test alternative models.
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In this modality‑dependent model (CFA, Model 2; Figure 2), WM was considered to
have two factors, namely, verbal and spatial (Friedman and Miyake 2000). The fit of the
model was considerably better (Table 2), however, we decided to test other alternative
models to see whether they provided a better fit to the data.
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In a subsequent model, a modality‑independent model (distinguishing between STM
and WM) was fitted (Engle et al. 1999). In this model, the correlation between the two
factors was extremely high, making them empirically undistinguishable (Figure 3). In ad‑
dition, the fit of the model was poor (CFA, Model 3; Table 2). For these reasons, this model
was not retained.
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We also tested the classical tripartite WM model (CFA, Model 4) considering short
termmemory verbal (STM‑V), short‑termmemory spatial (STM‑S), and aWM factor (Bad‑
deley and Hitch 1974). In this model, correlations between the short term memory verbal
and spatial factors with the WM factor were very high (Figure 4), making these factors
hardly separable. Also, this model as compared to previous models (Table 2) did not pro‑
vide a better fit and so was not retained.
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In a bi‑factor model, we tested three orthogonal factors: verbal and spatial WM, load‑
ing on verbal and spatial tasks respectively, and a commonWM factor loading on all vari‑
ables (CFA, Model 5; Figure 5). The initial model did not converge due to a problem with
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negative variance, so for this reason the variance of the matrix span test (MST) was set to
zero. This model provided a good fit to the data (Table 2), showing lower RMSEA and
SRMR and higher CFI and NNFI. However, it also presented with a higher AIC as com‑
pared to model 2. The AIC generally penalizes more complex models over models with
fewer parameters to be estimated, therefore, despite the model having a very good fit, we
decided to retain model 2 for further analyses.
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3.2.2. Working Memory and Intelligence
In a subsequent model, intelligence (both fluid and crystallized) was incorporated

alongside WM (CFA, Model 6). This measurement model, which should not be compared
with previous CFAmodels (as it also includes intelligence measures), was needed to (i) un‑
derstand the relationship between verbal and spatial WM factors with fluid and crystal‑
lized intelligence and (ii) provide the correlation matrix needed for subsequent analyses.
The model provided a good fit with the data (Table 2) and results are presented in Figure 6.
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3.3. Variance Partitioning
The correlationmatrix from the last CFAmodel (i.e., Model 6) was used in subsequent

analyses to understand the role of each individual WM factor as well as their joint effect
on both fluid and crystallized intelligence. Concerning fluid intelligence, the joint contri‑
bution of verbal and spatial WM explained the largest portion of the variance. In addition,
both verbal and spatialWM explained a unique portion of the variance of fluid intelligence
(Figure 7).

As for the crystallized intelligence factor, the unique contribution of verbal WM ex‑
plained the largest portion of the variance, while the shared contribution of both verbal
and spatial WM explained a smaller portion. Interestingly, the unique variance accounted
for by the spatial WM factor was a very small portion, which was close to zero (Figure 8).
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3.4. Additional Analyses
To maximize the statistical power in the analyses above, we used the entire sample

partialling out the effect of grade. However, in a subsequent set of analyses, we wanted
to test whether the same factorial structure was tenable in the two age groups: younger
children (from 7 years and 5 months to 8 years and 9 months) and older children (from
9 years and 9 months to 11 years and 6 months). For this reason, we decided to perform
some exploratory multigroup confirmatory factor analyses (MG‑CFA). In the first model,
the factorial structure (CFA, Model 6) was tested in the two groups. Results demonstrated
a good fit of the data (Table 2), showing that the same structure was tenable between the
two groups (MG‑CFA, Model 1). We then tested the loading invariance in the two groups
(MG‑CFA, Model 2). The chi‑square difference test was not statistically significant, mean‑
ing that loadings could be constrained in the two groups, ∆χ2(6) = 7.28, p = .296. We then
constrained the residual variance (MG‑CFA, Model 3), which was also not statistically sig‑
nificant in this case, ∆χ2(10) = 18.08, p = .054. Results indicate that the two age groups pre‑
sented a similar pattern of relationships, meaning that they could be considered together
in the analyses.

4. Discussion
In the current report, we aimed to compare several alternativeWMmodels in a sample

of Japanese children. We found that a model distinguishing between modalities presented
a very good fit and was superior in terms of AIC compared to the others. It is worth men‑
tioning, however, that we found some evidence for the presence of a common WM factor
using the bi‑factor model. This bi‑factor model also had a very good fit but was somewhat
less parsimonious (i.e., had a higherAIC and fewer degrees of freedom). This reflects a gen‑
eral problem with the bi‑factor model, which needs a number of additional parameters to
be estimated. Also, this model has strong assumptions, for example, the common (general)
factor is extracted first while the other factors are somewhat residual (but see Gignac 2008
for a discussion). The results are therefore also compatible with a higher‑order model in‑
cluding a commonWM factor at the top of the hierarchy. However, estimating this model
imposes an equality constraint, making it statistically equivalent to the two factor models,
meaning that is impossible to test the difference between the two (Gignac 2016; Zinbarg
et al. 2007). For all these reasons, despite themodel with a commonWM factor (bi‑factor or
hierarchical) being statistically plausible, we decided to select a more parsimonious model
only distinguishing between two factors (verbal and visuospatialWM) for further scrutiny.
Since we were also interested in evaluating the shared contribution of these factors, we de‑
cided to use variance partitioning. This allowed us to estimate the variance explained by
the joint contribution of these twoWM factors as well as portions of unique variance inde‑
pendently explained by each factor.

Variance partitioning analyses revealed that the joint contribution of verbal and spa‑
tial WM explained the largest portion of the variance in fluid intelligence, with some resid‑
ual variance explained by the unique variance of both verbal and spatialWM. Such a result
is compatible with previous research indicating that WM, independent of the modality,
explains a very large portion of the variance of fluid intelligence (Giofrè et al. 2013, 2017;
Hornung et al. 2011). Concerning crystallized intelligence, we found that the verbal WM
factor explained the largest portion of the variance, with the shared contribution between
verbal and spatial WM factors explaining a residual portion of the variance. This result is
very important since it seems to indicate that verbal and spatial WM factors are linked to
different intelligence components. It is reasonable to conclude that verbal WM is particu‑
larly involved in tasks in which a phonological elaboration of the stimulus is needed (e.g.,
Haavisto and Lehto 2005). In a similar vein, fluid intelligence requires attentional control
to a larger extent, therefore, it is not surprising that the shared variance between the ver‑
bal and spatial WM factor explains the largest portion of the variance (e.g., Engle et al.
1999). It is also worth mentioning that to solve fluid intelligence tasks, children need to
be adaptable and to draw on several different resources rather than mainly recalling facts.



J. Intell. 2023, 11, 167 14 of 17

Also, fluid intelligence tasks are generally based around visual elements, which also heav‑
ily involve visual processing, while at the same time reasoning abilities are highly taxing
on verbal processing. Finally, this pattern of results is very similar to results by Kane and
colleagues in a sample of adults, confirming that verbal tasks are somewhat more related
to crystallized intelligence while spatial tasks are more related to fluid intelligence (Kane
et al. 2004).

From a theoretical perspective, we can conclude that a distinction betweenmodalities
is very robust and tenable. This result is in line with the recent report by Carretti and co‑
authors (Carretti et al. 2022) finding that modalities are distinguishable withinWM. As for
the presence of a commonWM factor, we did not find conclusive evidence for the bi‑factor
model, which fitted the results well, but it was somewhat more difficult to estimate, for
example, we were forced to fix some residual variance, which is not ideal. As for a hierar‑
chical model (i.e., a model with a superordinate factor at the top), this is also plausible but
statistically indistinguishable from a modality dependent (verbal vs. spatial) two‑factor
model and requires equality constraints to be fitted, which is also not ideal (see Gignac
2016 on this point). For all these reasons, our results seem to be compatible with those of
Carretti and co‑authors (Carretti et al. 2022). We cannot disprove the presence of a com‑
monWM factor, but this factor is elusive and very hard to estimate from a statistical point
of view.

It is worth noting that the procedure we used (i.e., the partial credit score) can partly
explain this pattern of results. When using the partial credit score, tasks that typically
tap STM also tap central executive resources. This is possible because the partial credit
score extracts information that would not be extracted using a traditional scoring proce‑
dure (e.g., the simple span). Unsworth and Engle (2006, 2007), for example, demonstrated
that STM and WM tasks perform similarly and present similar predictive power on intel‑
ligence when using the partial credit score. Other research also found that spatial tasks
are somewhat special, as their relationship with fluid intelligence seems to be higher as
compared to verbal STM tasks, which might indicate that, in general, spatial WM tasks
require higher levels of attentional control as compared to verbal tasks (Giofrè et al. 2013;
Kane et al. 2004).

The current report also has some important practical and clinical implications. Firstly,
the results show a distinction between modalities in WM, which could be leveraged in an
educational setting. For example, Giofrè and co‑authors (Giofrè et al. 2018) found that ver‑
bal and spatial WM are probably separable and contribute differently to the prediction of
mathematical achievement. In a similar vein, Allen and Giofrè (2021) found that different
mathematical achievement tasks might require spatial and verbal WM to different extents,
with tasks such as geometry requiring spatial WM to a larger extent and other tasks such
as algebra being largely influenced by verbal WM. It is also likely that verbal and spatial
WM abilities are differentially involved in mathematical achievement during the course of
development, with spatial WM being more important in very early stages and verbal WM
becoming more important later on (Allen et al. 2021). It is also worth mentioning that re‑
search has shown that the WM–mathematics relationship changes dependent on age and
mathematical sub‑component (Zhang et al. 2022; Gordon et al. 2022). A modality distinc‑
tion can also be important in clinical settings, with childrenwith different disabilities being
selectively impaired on tasks depending on which modality is affected (Mammarella et al.
2018). In addition, Japanese data seem to be similar to those obtained in other countries
(e.g., Italy or the UK). For all these reasons, it seems reasonable to maintain a modality
distinction within WM because it is useful from a clinical and practical perspective.

The results of the present study need to be replicated in future studies. One of the
limitations of the present report is that we only had six WM tasks, making it hard to test
more articulated models (e.g., models distinguishing between spatial simultaneous and
spatial sequential processes (Cornoldi and Vecchi 2003)). It would also have been very in‑
teresting to include other measures, such as updating and binding tasks (see, for example,
Gray et al. 2017) or processing speed tasks, which can predict a portion of variance in in‑
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telligence over and above the variance predicted byWM (Gordon et al. 2020). Regrettably,
our agreement with the schools only allowed us to test children for a limited amount of
time, thus a largerWMassessment would have been unfeasible under these circumstances.
It would also be important to test younger and older children as well—or even better—to
take a longitudinal approach, which would allow us to generalize the results even further.
Here again this was not possible due to practical reasons (e.g., longitudinal projects tend
to be very demanding in terms of resources).

5. Conclusions
Despite the aforementioned limitations, we believe that the current report testing a

large number of Japanese children has important implications in several areas (theoretical,
practical, and clinical), since the research on this topic is scarce and needs a much closer
investigation in future literature.
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