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Abstract: Despite the high heritability of intelligence in the normal range, molecular genetic 

studies have so far yielded many null findings. However, large samples and  

self-imposed stringent standards have prevented false positives and gradually narrowed 

down where effects can still be expected. Rare variants and mutations of large effect do not 

appear to play a main role beyond intellectual disability. Common variants can account for 

about half the heritability of intelligence and show promise that collaborative efforts will 

identify more causal genetic variants. Gene–gene interactions may explain some of the 

remainder, but are only starting to be tapped. Evolutionarily, stabilizing selection and 

selective (near)-neutrality are consistent with the facts known so far. 
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Observers of the literature on the genetics of intelligence may be forgiven for thinking that progress 

is slow. In fact, after decades of research, molecular geneticists have delivered few replicable genetic 

variants associated with intelligence. 

Although we know that intelligence is substantially heritable (40%–80% in adulthood in developed 

societies), Chabris and colleagues [1] rightly concluded that few, if any, reported associations with 

genetic markers are replicable. Initial reports from candidate gene studies were not replicated in 
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increasingly well-powered genome-wide association studies (GWAS). The most powerful GWAS  

meta-analysis so far only reported 13 results with miniscule effects and a polygenic prediction explaining 

1.3% of the IQ variance [2]. 

A promising explanation for this shortfall seemed to be that newly occurring mutations and rare 

genetic variants, both not tagged well in GWAS, introduce variation to intelligence. Sure enough, 

research on intellectual disability (ID) identified new mutations as a main cause. Experience with other 

complex human traits seemed to hold promise that variants in genes known through Mendelian 

(monogenic) disorders would also predict normal variation. Yet, genetic variation in known ID genes 

did not live up to this promise at present sample sizes [3,4]. Studies on parental age, a well-validated 

proxy variable for new mutations not shared with the parents [5], showed associations with ID and 

autism. However, any such association for intelligence in the normal range disappeared after controlling 

for parental confounds [6], even in sibling comparisons of half a million men [7]. Contemporary genome 

sequencing studies corroborated paternal age associations for ID and autism by comparing the genomes 

of affected children and their parents and linking cases to new mutations [8]. However, a small initial 

study purporting to link IQ to rare genetic copy number variant (CNV) load was not replicated [9,10]. A 

recent exome (the parts of the genome that code for proteins) genotyping study did not find links of 

accumulated loads of rare variants to intelligence [11]. 

Still these negative results are far from uninformative. Thanks to the stringent statistical standards 

adopted in genetics nowadays, many false positives were rooted out or prevented. Collaborative efforts, 

yielding very large sample sizes, provide a ceiling on possible effect sizes, and confidence that reported 

null findings are true negatives. We are slowly learning where the genetic basis of intelligence is not, 

and thus also where it can still be. 

One promising approach seems to be based on correlating estimates of the very low genetic similarity 

between individuals in broad population samples (GCTA) with their similarity in intelligence. Using 

GCTA several groups [1,12,13] showed that a bit more than half of the IQ heritability found in twin 

studies can be explained based on common genetic variants alone. This implies that some of the heritable 

variability is explained by very large numbers of genetic variants, each individually accounting for very 

little variance. Sample sizes on the order of hundreds of thousand may be needed to actually explain 

substantial variance by causal common genetic markers in exploratory analyses [12], although new 

approaches are starting to supersede both ill-fated candidate gene analyses and purely exploratory 

GWAS, through e.g., pre-selecting certain genetic variants via their association with education [14] or 

hypothesis-driven gene set enrichment [15]. 

What about the rest though? Extended twin-family studies have given us estimates of non-additive genetic 

variation (27%, 19%) for intelligence that are about 60% of additive variation (44%, 32%) [16,17]. 

Dominance and epistasis (interactions between genetic variants at the same and different loci) may thus 

well make up a sizable amount of the heritability of intelligence. Pinpointing such interactions between 

genes at a molecular level is daunting due to the explosion of parameters. As a first step, molecular 

geneticists can examine homozygosity [18]. Not much can be said so far about  

gene-environment interactions, but they remain a plausible explanatory factor. 

What does all this imply for the evolutionary forces maintaining genetic differences in  

intelligence [19,20]? New mutations of strong effect play a lead role in the genesis of intellectual 

disability, but these tend to not stay in the population for long. In contrast, recent results suggest that in 
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the normal range of intelligence new mutations play a minor role. However, gaps in the data remain and 

researchers have yet to tap into burdens of accumulated rare genetic variants in the introns (affecting 

gene regulation) or into non-SNP mutations (e.g., structural variation) [3]. Selective  

(near)-neutrality seems consistent with the existing evidence for the large fraction of heritability 

explained by common variants [13], since the jury is still out for the question if phenotypic links between 

intelligence and fitness components (fertility, longevity, sexual attractiveness, mating success) really 

make, or historically made, intelligence differences in the normal range visible to evolutionary selection 

at all. Alternatively, if genetic interactions play the role that we ascribe to them here, we also need to 

consider stabilizing selection, where selective pressures have worked to make intelligence robust to 

genetic and environmental perturbations in either direction [21], not to increase it as much as possible. 

Because of that possibility, researchers should not build the assumption that very high IQ is continuous 

with normal intelligence into their studies by default [3,4,21]. Once enough data is in, complex models 

and simulations will allot roles to these mechanisms. For now, we know that the result will not be simple. 
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