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Abstract: Within the mental speed approach to intelligence, the worst performance rule (WPR) states
that the slower trials of a reaction time (RT) task reveal more about intelligence than do faster trials.
There is some evidence that the validity of the WPR may depend on high g saturation of both the RT
task and the intelligence test applied. To directly assess the concomitant influence of task complexity,
as an indicator of task-related g load, and g saturation of the psychometric measure of intelligence
on the WPR, data from 245 younger adults were analyzed. To obtain a highly g-loaded measure of
intelligence, psychometric g was derived from 12 intelligence scales. This g factor was contrasted with
the mental ability scale that showed the smallest factor loading on g. For experimental manipulation
of g saturation of the mental speed task, three versions of a Hick RT task with increasing levels of
task complexity were applied. While there was no indication for a general WPR effect when a low
g-saturated measure of intelligence was used, the WPR could be confirmed for the highly g-loaded
measure of intelligence. In this latter condition, the correlation between worst performance and
psychometric g was also significantly higher for the more complex 1-bit and 2-bit conditions than for
the 0-bit condition of the Hick task. Our findings clearly indicate that the WPR depends primarily on
the g factor and, thus, only holds for the highly g-loaded measure of psychometric intelligence.
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1. Introduction

Over the last four decades, the mental speed approach to human intelligence has provided
accumulating evidence for a positive relationship between an individual’s general intelligence, also
referred to as psychometric g [1,2], and his/her speed of information processing as indexed by
reaction time (RT) measures (for reviews see [3,4]). Within this conceptual framework, intra-individual
variability in RT has also become of major interest, as it appeared that a person’s level of psychometric
g is, usually, slightly more strongly related to the standard deviation of his/her RTs over n trials
(RTSD) than to his/her mean RT (e.g., [5]). These findings indicate faster and less variable RTs for
individuals with high compared to individuals with low general intelligence. Moreover, an almost
perfect positive correlation between mean RT and RTSD, in combination with the finding that both
these variables are related to psychometric g, supports the notion of a common process, the g factor,
exercising a controlling influence on RT, RTSD, and psychometric g [3,5].

Although the very nature of this fundamental process or its biological substrate is still unknown,
there were several attempts to conceptualize such a process. Biological accounts refer to the rate
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of neural oscillations [3,5–7], transmission errors [8–10], or temporal resolution power of the brain [11–15],
while cognitive accounts emphasize lapses of attention (e.g., [16,17]), lapses in the chaining of working
memory processes [18], or the speed at which information is accumulated [19]. According to these
various accounts, prolonged RT, increased RTSD, and poor psychometric intelligence were assumed
a consequence of a lower rate of neural oscillations, lower temporal resolution power or more
transmission errors in the brain, a larger number of lapses of attention or in chaining of working
memory processes, or slower speed of information accumulation, respectively.

As a general rule, RT distributions are always positively skewed and, at the same time, RTs
generated by less intelligent people are more spread out than those for high-intelligent people.
The reason underlying these empirical findings is twofold: First, there is a physiological limit to
the speed of reaction at around 100 ms at the low end of the RT scale [20]. At the high end of the RT
scale, on the other hand, there is no natural limit on the slowness of reaction. Second, in low-intelligent
individuals, trials of a given RT task are more frequently and more strongly negatively affected
due to the assumed neurocognitive deficit compared to high-intelligent individuals (cf. [6,16,21]).
These two factors combined not only cause a right-skewed RT distribution but also contribute to
the observation that differences in RT between low- and high-intelligent individuals become more
evident for longer than for short individual RTs. This phenomenon has been referred to as the Worst
Performance Rule (WPR) by Larson and Alderton [18]. More precisely, the WPR states that “the worst
RT trials reveal more about intelligence than do other portions of the RT distribution” [18] (p. 310).

The WPR proved to be consistent with older data sets on the RT–IQ relationship in low- and
high-intelligent participants (e.g., [6,7,16]). Also several subsequent studies, using quite different RT
tasks, provided empirical evidence for the validity of the WPR (e.g., [17,22–25]).

Despite these findings in favor of the WPR, there are also reports challenging the validity of
the WPR. In a sample of adults ranging from 18 to 83 years, Salthouse [21] found a very similar
pattern across a set of various RT tasks: fast and slow RTs correlated with intelligence to about the
same extent and, thus, did not support the WPR. More recently, a study by Ratcliff, Thapar, and
McKoon [26], comprising RTs for numerosity discrimination, recognition memory, and lexical decision,
failed to support the WPR as its basic premise, namely that IQ should be more strongly correlated
with slow than fast responses, was not consistently met by the data. Eventually, Madison, Forsman,
Blom, Karabanov, and Ullén [27] showed that variability in isochronous interval production—a simple,
automatic timing task—was negatively correlated with intelligence. There was, however, no indication
that trials with high variability (i.e., worst performance trials) were better predictors of intelligence
than the trials where the participant performed optimally (i.e., best performance trials). These latter
findings suggest that the validity of the WPR is less universal than might be deduced from the rather
large number of positive results.

Proceeding from the common assumption that g reflects some fundamental biological, yet still
unknown, property of the brain that manifests itself to some degree in all mental activities, performance
on various cognitive tasks can be understood to reflect g, though to different degrees [1]. Typically,
g saturation of a given task is assumed to be positively related to task complexity. More precisely,
within the framework of the mental speed approach, the task complexity hypothesis states that RTs
obtained with more complex versions of an information processing task correlate more highly with
psychometric g than less complex versions of the same task (e.g., [28–31]).

Based on an examination of “virtually the entire literature” (p. 183) on task complexity and the
RT-IQ relationship, Jensen [3] arrived at the First Law of Individual Differences stating that “individual
differences in learning and performance increase monotonically as a function of increasing task
complexity” (p. 205). Within the framework of the WPR, this rule implies that enhancing task
complexity should result in a much more pronounced increase of the slowest RTs than of the fastest
RTs. As a further consequence, enhanced task complexity should also magnify the RT differences
between groups that differ in general intelligence. In other words, differences in RT between low- and
high-IQ individuals should become more pronounced with increasing RT task complexity as more
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complex RT tasks have higher g saturation than less complex RT tasks and, thus, account for a larger
portion of variance in psychometric g [1,6].

Nevertheless, empirical studies directly comparing the influence of task complexity on the WPR
are extremely scant. First evidence for an effect of task complexity was reported by Jensen [6].
A trial-by-trial comparison of 46 mildly retarded and 50 bright, normal young adults revealed larger
RT differences between the two groups for the slowest than for the fastest trials on a simple RT task.
These RT differences, particularly for the slowest RT trials, were substantially magnified when the
participants performed a more complex eight-choice RT task. Kranzler [24] administered his subjects
a simple RT task, an eight-choice RT task, and an odd-man-out RT task. Results indicated that the
correlations between RT bands (rank-ordered from the trial with the fastest to the trial with the slowest
RT for each individual) and psychometric g varied with task complexity. Although for the least
complex simple RT task, no linear increase in correlations with g across RT bands could be observed,
the correlation increased linearly from the fastest to the slowest RT bands for the two more complex
tasks. Therefore, Kranzler concluded that the WPR only holds for relatively complex and, thus, highly
g-loaded RT tasks.

More recently, Fernandez et al. [23] investigated the influence of task complexity on the WPR in
children, young adults, and older adults. For this purpose, a simple RT task, a two-choice RT task, and
a color-naming Stroop task were used to experimentally vary the level of task complexity. While in
all age groups, and for all tasks, the WPR could be confirmed, an effect of task complexity on WPR
was limited to children and older adults. In both these latter groups, worst performance trials of the
choice RT task explained more variance in intelligence than worst performance trials of the simple RT
task. Similarly, worst performance trials of the incongruent condition of the Stroop task accounted for
a larger portion of variance in intelligence than worst performance trials of the choice RT task and the
congruent condition of the Stroop task. No such mediating influence of task complexity on WPR could
be established for young adults—maybe due to restricted variance of psychometric intelligence in this
latter group of participants [23] (p. 38).

In addition, no effect of task complexity on WPR was found in a study by Diascro and Brody [22].
These authors endorsed the validity of the WPR for RTs obtained from the detection of straight and
slanted lines in the presence of slanted and straight distractor lines. With regard to task complexity, the
most intriguing aspect of this study was that detection of a slanted line is based on parallel processing,
whereas detection of straight lines requires serial processing [32]. Hence, detection of a straight line can
be considered a more complex task than detection of a slanted line. This prediction was corroborated
by faster RTs for the detection of slanted lines than for the detection of straight lines. This difference in
task complexity, however, did not affect the RT–IQ correlation; correlations between IQ and worst RTs,
for detection of both straight and slanted lines, were virtually identical.

At least two reasons may account for these rather mixed and inconclusive results. First, the RT
tasks for indexing mental speed differed considerably across studies. The only exceptions may be the
simple and eight-choice RT tasks applied by Jensen [6] and Kranzler [24]. Second, in all four studies,
different psychometric tests for the assessment of the individual levels of psychometric g were used.
While Kranzler [24] derived individual g scores from the Multidimensional Aptitude Battery [33],
Diascro and Brody [22] and Fernandez et al. [23] applied the Culture-Fair IQ Test Scale 3 [34] and the
Raven Standard Progressive Matrices [35], respectively, as a measure of psychometric g. No detailed
information on the psychometric assessment of g was provided by Jensen [6]. The different RT tasks
as well as the various psychometric measures of g, applied in all these studies, were highly likely to
differ in g load. Thus, if a high g loading is essential for the WPR to become effective, differences
in g saturation, in both the RT tasks and the obtained measures of psychometric g, may represent
a decisive factor contributing to the inconsistent results. Converging evidence for this conclusion can
be derived from Larson and Alderton’s [18] study where the WPR was found to particularly hold
for presumably highly g-loaded psychometric measures of intelligence, such as a composite index
of fluid and crystallized intelligence, rather than for an intelligence measure assumed to be low in g
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saturation referred to as a clerical speed composite. Unfortunately, Larson and Alderton did not derive
their measures of intelligence with different levels of g saturation from factor analysis of a correlation
matrix. Instead, they obtained their composite measures of psychometric intelligence by combining
standardized and averaged scores from different scales that may reflect g to some extent but also reflect
first- and second-order factors and specificity [1,3]. Thus, the real differences in g saturation of their
various composite measures remained rather unclear and arguable. To the best of our knowledge, there
are no other studies that directly addressed the effect of differences in g saturation of psychometric
measure of intelligence on the validity of the WPR. At this point it appears that, based on the available
data, the validity of the WPR may depend on high g saturation of both the cognitive (RT) tasks as well
as the psychometric intelligence tests applied. The present study, therefore, was designed to directly
assess the influence of task complexity and g saturation of the psychometric measure of intelligence
on the WPR. For this purpose, two levels of psychometric g and three levels of task complexity of the
same type of RT task were utilized. To arrive at a highly g-loaded psychometric measure of intelligence,
psychometric g was derived from 12 intelligence scales corresponding to Thurstone’s [36,37] primary
mental abilities. This measure was contrasted with the mental ability with the least g saturation, i.e.,
the aspect of intelligence that showed the smallest factor loading on psychometric g. For experimental
manipulation of task complexity, three different conditions of a Hick RT task were applied.

Thus, based on the above considerations, we aimed at evaluating the following predictions:
(1) If the WPR is universally valid, the (negative) correlation between the slowest RTs (i.e., worst
performance) and psychometric intelligence should be higher than the correlation between the fastest
RTs (i.e., best performance) and psychometric intelligence irrespective of RT task complexity and g
saturation of the psychometric measure of intelligence; (2) If, however, the validity of the WPR depends
on high g saturation, then a stronger correlational relationship between worst RT performance and
psychometric intelligence is expected with increasing complexity of the Hick RT task as well as with
higher g saturation of the applied measure of intelligence.

2. Method

2.1. Participants

In order to achieve a sample size that provided reliable data for WPR analyses, we fell back
on a pooled sample reported by Helmbold, Troche, and Rammsayer [38]. This sample comprised
260 participants (130 male and 130 female). For our WPR analyses, we excluded those participants
with invalid trials in one or more conditions of the Hick task. Incorrect responses and RTs shorter
than 100 ms (see [20]) or longer than 1000 ms (see [39]) were considered invalid trials. This resulted
in a final sample of 122 male and 123 female younger adults ranging in age from 18 to 39 years
(mean ˘ standard deviation: 24.7 ˘ 5.57 years). Education levels spanned a broad range, including
85 university students, 74 vocational school pupils and apprentices, as well as 12 persons who
were unemployed. The 74 remaining participants were working persons of different professions.
All participants reported normal hearing and normal or corrected-to-normal sight. Before being
enrolled in the study, each participant was informed about the study protocol and gave his/her written
informed consent.

2.2. Intelligence Tests

In order to cover a large range of different cognitive abilities and, thus, define a psychometric
measure highly saturated in psychometric g, a comprehensive test battery was employed (cf. [1,40]).
The battery included 12 intelligence scales assessing various aspects of intelligence corresponding to
eight primary mental abilities suggested by Thurstone [36,37]. As a measure of reasoning abilities, the
short version of the German adaptation of Cattell’s Culture Fair Intelligence Test, Scale 3 (CFT) [41] by
Weiß [42] was employed. Verbal comprehension, word fluency, space, and flexibility of closure were
assessed by subtests of the Leistungsprüfsystem (LPS) [43]. In addition, scales measuring numerical
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intelligence and verbal, numerical, and spatial memory, respectively, were taken from the Berlin
Intelligence Structure Test (BIS) [44]. A brief description of the components of the entire battery is
presented in Table 1.

Table 1. Description of psychometric tests applied for measuring primary mental abilities.

Intelligence Scale Ability Task Characteristics

LPS 1 Verbal comprehension Detection of typographical errors in nouns

LPS 5 Word fluency Anagrams

LPS 7 Space 1 Mental rotation

LPS 9 Space 2 Three-dimensional interpretation of two-dimensionally
presented objects

LPS 10 Flexibility of Closure Detection of single elements in complex objects

LPS 14 Perceptual speed Comparison of two columns of letters and digits

CFT Reasoning Evaluation of figural arrangements based on inductive
and deductive thinking

BIS XG Number 1 Detection of numbers exceeding the proceeding number
by “three”

BIS SC Number 2 Solving of complex mathematical problems by means of
simple mathematical principles

BIS OG Memory (figural) Recognition of buildings on a city map

BIS ZZ Memory (numerical) Reproduction of two-digit numbers

BIS WM Memory (verbal) Reproduction of previously memorized nouns

Note: “Ability” refers to primary mental abilities according to Thurstone [36,37].

2.3. Hick Reaction Time Task

As a measure of speed of information processing a typical elementary cognitive task, the so-called
Hick reaction time (RT) paradigm, was used. The Hick paradigm is a visual simple and choice
RT task in which participants have to react as quickly as possible to an upcoming visual stimulus.
This task is based on Hick’s [45] discovery of a linear relationship between an individual’s RT and
the binary logarithm of the number of stimulus-response alternatives among which a decision has
to be made. In the case of simple RT, no decision between response alternatives is involved (i.e.,
zero bits of information have to be processed; 0-bit condition). Analogously, deciding between
two response alternatives (two-choice RT) requires one binary decision (1-bit condition), while, when
four response alternatives are present (four-choice RT), two binary decisions are necessary (2-bit
condition). The current version of the Hick paradigm was similar to the one proposed by Neubauer [46],
who was concerned with creating a version of this paradigm that is free of potential confounds such as
response strategies or changes in visual attention [46,47].

2.3.1. Apparatus and Stimuli

Stimuli were rectangles (2 cm ˆ 1 cm) and plus signs (0.8 cm) presented on a monitor screen.
For registration of the participant's responses, an external response panel with four buttons
corresponding to the locations of the four rectangles presented under the 2-bit condition was connected
to the computer. Responses were recorded with an accuracy of ˘1 ms.

2.3.2. Procedure

In the 0-bit condition (no-choice or simple RT), one rectangle was presented in the center of
the monitor screen. After a foreperiod varying randomly between 700 and 2000 ms, the imperative
stimulus, a plus sign, was presented in the center of the rectangle. The rectangle and the plus sign
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remained on screen until the participant pressed the designated response button. The 1-bit condition
(two-choice RT) was almost identical to the 0-bit condition, except that two rectangles were presented
arranged in a row. After a variable foreperiod, the imperative stimulus was presented in one of the
two rectangles. Presentation of the imperative stimulus was randomized and balanced. Thus, the
imperative stimulus appeared in each of the two rectangles in 50% of the trials. Similarly, in the
2-bit condition (four-choice RT), four rectangles arranged in two rows were displayed on the monitor
screen. Again, the imperative stimulus was presented randomly in one of the four rectangles after
a variable foreperiod.

The instruction to the participants emphasized to respond as quickly as possible to the imperative
stimulus by pressing the response button corresponding to the rectangle with the imperative stimulus.
After each correct response, a 200-ms tone was presented immediately after pressing the response
button followed by an intertrial interval of 1500 ms. To avoid order effects, the order of conditions was
randomized across participants. Each condition consisted of 32 trials preceded by 10 practice trials.

As suggested by Larson and Alderton [18], for each participant and each condition, the fastest
and the slowest trial were discarded from further analyses in order to avoid outliers. The remaining
30 trials per condition were ranked from the fastest to the slowest trial. Then, the ranked RTs were
divided into six consecutive RT bands with five RTs per band. As dependent variables, mean RT was
computed for each band.

3. Results

Mean and standard deviation of unstandardized scores on the twelve intelligence scales are
reported in Table 2. The full correlation matrix for the intelligence battery can be downloaded from
“Supplementary Files”. In order to obtain an estimate of psychometric g, all psychometric test scores
were subjected to a principal components analysis (PCA). Based on a scree test [48,49], PCA yielded
only one strong component with an eigenvalue of 4.21 that accounted for more than 35% of total
variance. This first unrotated component is commonly considered an estimate of psychometric g [1].
As can be seen from Table 2, all mental tests had substantial positive loadings greater than 0.30 on this
component. Apart from the three memory scales, all loadings were greater than 0.59.

Table 2. Mean and standard deviation (SD) of the unstandardized scores on the six subtests of the
Leistungsprüfsystem (LPS), the five subtests of the Berlin Intelligence Structure Test (BIS), and Cattell’s
Culture Fair Test (CFT) as well as g loadings of each test.

Intelligence Scale Mean SD g Loading

LPS 9 (Space 2) 28.95 6.05 0.691
LPS 10 (Flexibility of Closure) 32.04 6.17 0.670

LPS 5 (Word fluency) 29.35 8.05 0.669
CFT (Reasoning) 26.10 5.23 0.660

BIS XG (Number 1) 22.56 7.29 0.653
LPS 14 (Perceptual speed) 25.16 4.82 0.649

BIS SC (Number 2) 3.96 2.11 0.633
LPS 1 (Verbal comprehension) 23.37 6.59 0.633

LPS 7 (Space 1) 22.26 7.23 0.591
BIS OG (Memory, figural) 15.53 4.54 0.428

BIS ZZ (Memory, numerical) 7.35 2.20 0.345
BIS WM (Memory, verbal) 8.13 2.47 0.317

Mean and standard deviation of RTs within and across the six RT bands of the three conditions
of the Hick RT task are presented in Table 3. The full correlation matrix for all RT measures can be
downloaded from “Supplementary Files”. As indicated by a one-way analysis of variance with
task conditions as three levels of a repeated-measures factor, mean RT across all six bands increased
significantly from the 0-bit to the 2-bit condition, F(2, 488) = 1532.45; p < 0.001; ηp

2 = 0.86. All pairwise
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comparisons were statistically significant (all p < 0.001 after Bonferroni adjustment) confirming that
the complexity of the Hick RT task increased monotonically from the 0-bit to the 2-bit condition.
Furthermore, the polynomial linear contrast yielded statistical significance, F(1,244) = 2110.09; p < 0.001,
corroborating the linear increase of RT from the 0-bit to the 2-bit condition as postulated by Hick’s law [45].

Table 3. Mean RT and standard deviation in ms for the six RT bands of each condition of the Hick
RT task.

RT Band
0-Bit Condition 1-Bit Condition 2-Bit Condition

M SD M SD M SD

Band 1 207 23.2 257 31.5 316 44.4
Band 2 223 25.5 280 34.8 351 50.7
Band 3 236 29.5 299 38.0 377 56.1
Band 4 254 35.0 319 41.7 404 61.1
Band 5 281 43.8 344 47.8 438 68.6
Band 6 345 67.7 392 63.1 499 84.2

Across bands 258 34.1 315 40.7 398 58.8

Subsequently, for each condition of the Hick RT task, a one-way analysis of variance with the RT
bands as six levels of a repeated-measures factor was computed. In all three RT task conditions, there
was a statistically significant main effect of band number; 0-bit condition: F(5, 1220) = 1072.37; p < 0.001;
ηp

2 = 0.82; 1-bit condition: F(5, 1220) = 1668.49; p < 0.001; ηp
2 = 0.87; 2-bit condition: F(5, 1220) = 2078.91;

p < 0.001; ηp
2 = 0.90. Additional pairwise comparisons revealed that in all three conditions, mean

RTs increased significantly with increasing band number (all p < 0.001 after Bonferroni adjustment).
The polynomial linear contrasts were significant for all three bands; 0-bit condition: F(1, 244) = 1290.83;
p < 0.001; ηp

2 = 0.84; 1-bit condition: F(1, 244) = 2035.73; p < 0.001; ηp
2 = 0.89; 2-bit condition:

F(1, 244) = 2564.45; p < 0.001; ηp
2 = 0.91.

For the assessment of the relationship between RT measures and psychometric g, a correlational
approach was applied. In a first step, Pearson correlations were computed between mean RT of each
band and the first unrotated principal component derived from the twelve intelligence scales as the
most comprehensive measure of psychometric g (see Table 4). As can be seen from the filled circles in
Figure 1, the (negative) correlation coefficients monotonically increased with the rank of the band in
all three Hick RT task conditions.

In order to investigate whether the correlation between the worst performance (RT Band 6) and
psychometric g was indeed significantly higher than the correlation between the best performance (RT
Band 1) and psychometric g, we compared these two correlations for each Hick RT task condition as
suggested by Steiger [50] using the statistical software provided by Lee and Preacher [51]. To avoid
alpha inflation, level of statistical significance was adjusted to p = 0.017.
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Table 4. Pearson correlations (rxy) between mean RT of each band and across all six bands and the g
factor and the memory composite as a high and low g-saturated measure of intelligence, respectively.

RT Band
g Factor Memory Composite

rxy p Value rxy p Value

0-bit condition
Band 1 ´0.005 0.94 0.010 0.88
Band 2 ´0.027 0.68 ´0.007 0.91
Band 3 ´0.049 0.45 ´0.023 0.72
Band 4 ´0.078 0.23 ´0.020 0.76
Band 5 ´0.147 0.03 ´0.039 0.54
Band 6 ´0.230 <0.001 ´0.095 0.14

Across bands ´0.132 0.04 ´0.046 0.47

1-bit condition
Band 1 ´0.138 0.04 ´0.036 0.57
Band 2 ´0.181 0.005 ´0.069 0.28
Band 3 ´0.250 <0.001 ´0.107 0.09
Band 4 ´0.286 <0.001 ´0.122 0.06
Band 5 ´0.317 <0.001 ´0.147 0.02
Band 6 ´0.366 <0.001 ´0.170 0.01

Across bands ´0.288 <0.001 ´0.125 0.05

2-bit condition
Band 1 ´0.233 <0.001 ´0.062 0.34
Band 2 ´0.278 <0.001 ´0.101 0.12
Band 3 ´0.313 <0.001 ´0.128 0.05
Band 4 ´0.331 <0.001 ´0.133 0.04
Band 5 ´0.332 <0.001 ´0.122 0.06
Band 6 ´0.355 <0.001 ´0.112 0.08

Across bands ´0.326 <0.001 ´0.116 0.07

In all three task conditions, the correlation between psychometric g and the worst performance
was significantly higher than between psychometric g and the best performance (0-bit condition:
z = 3.54; p < 0.001; 1-bit condition: z = 4.58; p < 0.001; 2-bit condition: z = 3.00; p < 0.01). Furthermore,
the correlation between psychometric g and worst performance significantly increased from the 0-bit
condition to the 1-bit (z = 2.63; p < 0.01) and to the 2-bit condition (z = 2.17; p < 0.017) but not from the
1-bit to the 2-bit condition (z = ´0.23; p = 0.82). The correlation between psychometric g and the best
performance increased from the 0-bit to the 1-bit (z = 2.32; p < 0.017) and to the 2-bit condition (z = 3.76;
p < 0.001) but not from the 1-bit to the 2-bit condition after Bonferroni correction (z = 1.99; p = 0.02).

To compare this pattern of results with the corresponding pattern for a low g-saturated measure of
intelligence, we extracted the first unrotated principal component from the three memory tests, which
had the lowest loadings on the g factor (see Table 2). The reason for building a composite score instead
of taking the test with the lowest factor loading was to increase the reliability of the low g-saturated
measure, which should be higher for the composite of the three tests than for each test alone. To make
sure that the principal component extracted from the three memory tests still had a low g saturation,
a further PCA was computed identical to the initial one, but scores of the three memory tests (BIS
OG, BIS ZZ, and BIS WM) were replaced by the factor scores of the principal component extracted
from the three memory tests. This composite score loaded on the g factor with 0.45, while the next
higher loading was 0.60 for LPS 7 (Space 1). Thus, it can be safely assumed that the g saturation of the
three memory tests was still considerably lower compared to all the other intelligence scales. Given a g
loading of 0.45, the g factor and the memory composite score shared only 20.3% of common variance.

Then, in a next step, the composite score of the three memory tests was correlated with the mean
RTs of the six RT bands within each condition of the Hick RT task. The resulting correlation coefficients
are given in Table 4. As can be seen in Figure 1, the correlation between RT Band 6 (worst performance)
and the memory composite was significantly lower than the correlation between the same band and
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psychometric g in all three task conditions (0-bit condition: z = 2.16; p < 0.017; 1-bit condition: z = 3.25;
p < 0.01; 2-bit condition: z = 4.00; p < 0.001). On the other hand, the correlation between the best
performance (RT Band 1) and psychometric g did not differ from the correlation between the best
performance and the memory composite for the 0-bit (z = 0.24; p = 0.81) and the 1-bit condition (z = 1.61;
p = 0.11). In the most complex condition though, best performance was more strongly correlated
with psychometric g than with the memory composite (z = 2.74; p < 0.01). Only in the 1-bit condition,
a strong monotonic increase of the correlation between RT and the memory composite from RT Bands
1 to 6 could be observed resulting in a higher correlation between the memory composite and the
worst compared to the best performance (z = 2.58; p < 0.01). For the 0-bit condition (z = 1.63; p = 0.10)
as well as for the 2-bit condition (z = 1.17; p = 0.24), the respective correlation coefficients did not differ
significantly from each other.

Most importantly, however, task complexity had no influence on the correlation between the
memory composite and the worst performance (RT Band 6). A statistically significant difference was
obtained neither between the 0-bit and the 1-bit condition (z = 1.38; p = 0.17), the 0-bit and the 2-bit
condition (z = 0.28; p = 0.78), nor between the 1-bit and the 2-bit condition (z = ´1.14; p = 0.26).

To further address the question of whether the correlational relationship between worst
performance trials and the two measures of intelligence increases as a function of task complexity,
stepwise multiple regression analyses were performed for the prediction of psychometric g and the
memory composite by successively entering worst performance RTs obtained in the 0-, 1-, and 2-bit
condition, respectively (see Table 5). These analyses showed that worst performance (RT Band 6) in the
0-bit condition accounted for 5.3% of total variance of psychometric g (R2 in Table 5). When combining
worst performance of the 0- and 1-bit condition, 13.4% of total variance in psychometric g could be explained.

Table 5. Results of stepwise regression analyses for the prediction of psychometric g and the memory
composite score.

Predictor Variable (s) R R2 F Value p Value ∆R2 ∆F Value p Value

Psychometric g

0 bit 0.230 0.053 13.52 0.001 – – –
0 + 1 bit 0.366 0.134 18.73 0.001 0.081 22.73 0.001

0 + 1 + 2 bit 0.396 0.157 14.92 0.001 0.023 6.45 0.05

Memory composite score

0 bit 0.095 0.009 2.20 0.14 – – –
0 + 1 bit 0.171 0.029 3.66 0.03 0.020 5.08 0.03

0 + 1 + 2 bit 0.171 0.029 2.43 0.07 0.000 0.00 0.99

This combined effect yielded a statistically significant increase of 8.1% (∆R2) in explained variance
as compared to the portion of 5.3% accounted for by the 0-bit condition alone. Adding the 2-bit
condition to the latter two predictor variables resulted in an additional reliable increase in explained
variance of 2.3%. Thus, all three levels of task complexity combined accounted for 15.7% of overall
variability in psychometric g. In a final step, the unique contributions of the worst performance of the
three RT task conditions to the explanation of the variance of psychometric g, were computed. While
the unique contribution of worst performance to the prediction of psychometric g in the 0-bit condition
was only 0.1%, there were statistically significant unique contributions of 3.3% (p < 0.01) and 2.6%
(p < 0.05) for the 1- and 2-bit conditions, respectively.

Unlike in the case of psychometric g, only worst performance of the 0-bit and the 1-bit conditions
combined accounted for a statistically significant, although rather small, portion of 2.9% of overall
variability in the memory composite score.
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4. Discussion

Proceeding from the mental speed approach to intelligence, the present study was designed
to systematically assess the influence of g saturation on the validity of the WPR. For this purpose,
g saturation of both the speed-of-information-processing task and the measure of psychometric
intelligence were experimentally varied. As g saturation of a given RT task is assumed to be positively
related to task complexity (e.g., [28–31]), a Hick RT task with three levels of task complexity was
employed in the present study. In order to obtain a highly g-loaded psychometric measure of
intelligence, a g factor was derived from 12 intelligence scales. This g factor was contrasted with
a memory composite score that showed the smallest factor loading on g and shared only a portion of
20.3% of variance with the g factor.

As predicted by the WPR, the (negative) correlation between worst performance and psychometric
g was significantly higher than the correlation between the best performance and psychometric g
for all levels of task complexity when the highly g-loaded measure of psychometric intelligence was
used. Furthermore, and also consistent with WPR, there was a monotonic increase of the correlations
between RT and psychometric g from the slowest to the fastest RT band for all levels of task complexity.
In addition, the correlation between worst performance and psychometric g was significantly higher
for the more complex 1-bit and 2-bit conditions than for the 0-bit condition of the Hick RT task.

Unlike psychometric g, there was no indication for a general WPR effect when the low g-saturated
measure of intelligence was applied. Except for the 1-bit condition, no significant monotonic increase
of the correlations between RT and the memory composite score from the slowest to the fastest RT
band could be observed. Only in the 1-bit condition, the correlation between worst performance
and the memory composite score reached statistical significance and did differ significantly from the
correlation between the best performance and the memory composite score. Thus, task complexity had
no systematic influence on the correlation between worst performance and psychometric intelligence
in the case of a low g-saturated measure of intelligence.

When comparing the relationship between worst performance and intelligence across the two
levels of psychometric g saturation, it became evident that, in all three RT task conditions, the
correlation between worst performance and the memory composite was significantly lower than
the correlation between worst performance and psychometric g. On the other hand, the correlation
between best performance and psychometric g did not differ from the correlation between best
performance and the memory composite score for the 0-bit and the 1-bit condition. In the most
complex condition, however, best performance was more strongly correlated with psychometric g than
with the memory composite.

To further evaluate the predictive power of worst performance trials as a function of g saturation
of the psychometric measure of intelligence, multiple regression analyses were performed. In addition,
these analyses clearly confirmed the crucial role of a highly g-saturated measure of intelligence for
the validity of the WPR. When using all three levels of task complexity as predictor variables, worst
performance trials explained 15.7% of overall variability in intelligence indexed by the g factor, but
accounted for only 3.0% of variance when the low g-saturated memory composite score was used.

Overall, this pattern of results indicates that for the WPR to become effective, a highly g-saturated
measure of psychometric intelligence is a necessary condition. The only previous study that also
directly investigated the effect of g-saturation of the psychometric measure of intelligence on WPR was
performed by Larson and Alderton [18]. These authors also arrived at the conclusion that the validity
of the WPR seems to depend on the level of g-saturation of the intelligence measure applied. It should
be noted, however, that Larson and Alderton did not extract a g factor but compared a composite
index of fluid and crystallized intelligence, a working memory composite score, and performance on
a clerical speed test that were subjectively rated as high (index of fluid and crystallized intelligence
and working memory composite) or low (clerical speed test) g-saturated measures of intelligence.

Additional converging evidence for the notion that the WPR only applies to highly g-saturated
measures of psychometric intelligence can be derived from the fact that almost all studies confirming
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the WPR used rather highly g-loaded measures of intelligence. For example, Baumeister and Kellas [16]
used mean full-scale IQs obtained by the Wechsler Adult Intelligence Scale [52] and the Wechsler
Intelligence Scale for Children [53], Kranzler [24] used the Multidimensional Aptitude Battery [33],
Diascro and Brody [22] used the Culture-Fair IQ Test Scale 3 [34], while Fernandez et al. [23] and
Unsworth et al. [17] used Raven’s Progressive Matrices [35].While a highly g-saturated measure of
psychometric intelligence appears to be a conditio sine qua non for the validity of the WPR, the effect of
g saturation of the RT task, as indexed by task complexity, provided a less conclusive pattern of results.
Jensen’s [3] First Law of Individual Differences implies a much more pronounced increase of the slowest
RTs than of the fastest RTs with increasing task complexity. In the present study, however, the observed
increase from the 0-bit to the 1-bit condition for the fastest and slowest RTs was virtually identical.
Only the transition from the 1-bit to the 2-bit condition showed the predicted much more pronounced
increase in RT for the slowest compared to the fastest RT band. Consistent with the prediction derived
from the WPR, the (negative) correlation between psychometric g and the worst performance was
significantly higher than between psychometric g and the best performance for each level of task
complexity. At the same time, the correlation between psychometric g and both best as well as worst
performance significantly increased from the 0-bit to the 1-bit condition but remained practically
unchanged from the 1-bit to the 2-bit condition. This represents a rather unexpected finding in light of
the WPR which suggests a more pronounced correlational relationship between psychometric g and
worst performance with increasing task complexity.

As a possible explanation for this break down of the WPR for rather complex RT tasks, Jensen [39]
introduced the idea of a U-shaped relation between the RT-g correlation and the level of task complexity
(see also [3,54]). According to this account, beyond some optimal level, any further increase in task
complexity will induce the use of additional auxiliary cognitive strategies. Furthermore, when task
complexity exceeds a certain level, response errors are likely to occur (e.g., [3,55]). Both these factors
may hamper a further increase of the correlation between slowest RT and psychometric g from the
1-bit to the 2-bit condition.

Supporting evidence for this notion could be derived from some studies that failed to confirm
the validity of the WPR for more complex tasks. For example, Salthouse [21] investigated a sample of
adults ranging in age from 18 through 83 years with a set of rather complex RT tasks, such as digit-digit
and digit-symbol RT tasks. Fast and slow RTs correlated with intelligence to about the same extent
and, thus, did not support the WPR. More recently, Fernandez et al. [23] investigated the influence of
task complexity on the WPR in children, young adults, and older adults by means of a simple RT task,
a two-choice RT task, and a color-naming Stroop task. While for all three age groups and for all tasks,
the WPR could be confirmed, no general effect of task complexity on WPR could be revealed. In fact,
an effect of task complexity was shown for children and older adults but not for young adults.

To gain some deeper insight and a better understanding of the influence of task complexity on
the validity of WPR, the results of our stepwise multiple regression analysis for the prediction of
psychometric g may be helpful. The worst performance trials of the least complex Hick RT task (0-bit
condition) accounted for a portion of 5.3% of variance in psychometric g. Adding worst performance
of the more complex 1-bit condition as a second predictor variable resulted in an additional substantial
gain in predicting power of 8.1%. Comparing this substantial gain to the relatively moderate increase
in predicting power of only 2.3% obtained when adding worst performance on the most complex 2-bit
condition as a third predictor variable suggested that the relative contribution of task complexity to
the explanation of variance in psychometric g cannot be considered a simple linear function.

The comparatively large increase in explained variance by entering the 1-bit condition as a second
predictor variable in addition to the 0-bit condition into the regression model indicates that the 1-bit
condition and psychometric g share common processes not inherent in the less complex 0-bit condition.
Compared to the gain in explained variance by adding the 1-bit condition, the contribution of the
more complex 2-bit condition as a third predictor variable to account for variability in psychometric g
was substantially smaller. These different gains in predictive power obtained by stepwise multiple
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regression analysis point to the particular importance of the transition from the simple-RT version to
the two-response alternative version of the Hick RT task. More precisely, it was this transition from
the 0-bit to the 1-bit condition of the Hick RT task where the influence of increasing task complexity
became most clearly evident. This means that already a rather moderate increase in task complexity
from a simple to a two-choice RT task caused a marked increase in g saturation with the result that
a much larger portion of the still unknown brain processes underlying mental speed and psychometric
g were captured by the Hick task.

Another highly intriguing finding, also related to Hick RT task complexity, arose when considering
the relationship between total and unique variance explained by each task condition. In the least
complex 0-bit condition, worst performance RT accounted for a portion of 5.3% of total variance in
psychometric g. Only 2.6% of this portion were uniquely explained by worst performance in simple RT.
In contrast, the corresponding portions of unique variance amounted to 24.5% and 20.6% for the 1-bit
and 2-bit conditions, respectively. This pattern of results clearly indicates that virtually all processes
shared by the simple RT task and psychometric g are also covered by the more complex RT tasks with
two (1-bit condition) and four (2-bit condition) response alternatives. In addition, however, each of the
two more complex RT tasks also shared more than 20% of unique variance with psychometric g.

This outcome is consistent with the idea of a two-process model of mental speed put forward
by Schweizer [56]. In his approach, Schweizer proposed that measures of speed of information
processing are composed of both rather basic, sensory-perceptual aspects of speed (such as speed
of signal detection) as well as attention-paced aspects. While the basic aspects are considered to be
independent of the level of mental activity required to perform the cognitive task, the attention-paced
aspects are assumed to vary as a function of the task demands on attentional resources. Both aspects
of speed are related to psychometric intelligence but the basic aspects only weakly compared to the
attention-paced aspects of speed of information processing [56]. This notion may provide a tentative
theoretical framework to account for our results. Simple RT in the 0-bit condition of the Hick task
may be mainly controlled by sensory-perceptual aspects of speed but involves only a low level of
attention-based aspects of speed of information processing. Thus, RT in the 0-bit condition was related
to psychometric intelligence primarily due to the basic, sensory-perceptual aspects of mental speed.
The same sensory-perceptual aspects also become effective in the 1-bit and 2-bit conditions of the Hick
RT task. Therefore, there was no significant portion of variance in psychometric intelligence uniquely
explained by the 0-bit condition. Most importantly, however, the increasing complexity of the Hick
RT task enhanced the required attentional demands so that more unique variance in psychometric
intelligence was explained by the more complex task conditions.

Although the biological or even psychological basis of the g factor has not been identified
yet [57,58], the g factor derived from psychometric tests of intelligence can be considered the outcome
of a physical brain feature which enhances neural network efficiency (e.g., [3,59,60]). Against this
background, the present finding that predictive power of the WPR increases with increasing g
saturation of the psychometric measures of intelligence applied, is consistent with the observed
relevance of the g loading for connecting cognitive performance differences and biological data
(e.g., [61–63]).

In the present study, we applied a traditional approach based on a RT-binning procedure, as
proposed by Larson and Alderton [18], to investigate the WPR. This procedure enabled us to easily
implement various levels of task complexity and, at the same time, to keep the number of trials
rather small. It should be noted though that more sophisticated mathematical models, describing RT
distributions comprehensively, as well as multidimensional measurement models provide feasible
tools to better control for measurement error and to more systematically connect characteristics of
RT distributions to theoretical models. In particular, ex-Gaussian distributions (e.g., [25]), diffusion
model approaches (e.g., [19,25,64]), and latent growth curve analysis (e.g., [65]) open up promising
avenues for future research on the WPR. Taken together, the findings of the present study provided first
direct evidence that the validity of the WPR depends on the level of g saturation of the psychometric
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measure of intelligence applied. While there was no indication for a general WPR effect when a low
g-saturated measure of intelligence was used, the WPR could be confirmed for the highly g-loaded
measure of psychometric intelligence. This outcome clearly supports Jensen’s [3] notion that the “WPR
phenomenon depends mainly on the g factor rather than on a mixture of abilities including their non-g
components” (p. 180). Likewise consistent with the WPR, the correlation between worst performance
and psychometric g was significantly higher for the more complex 1-bit and 2-bit conditions than for
the 0-bit condition of the Hick RT task. As more complex RT tasks have higher g saturation than less
complex versions of the same task and, thus, account for a larger portion of variance in psychometric
g, this finding also endorsed the crucial role of g saturation for the validity of the WPR in particular
and for the mental speed approach to intelligence in general.
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