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Abstract: This paper examined the effects of training in creative problem-solving on intelligence.
We revisited Stankov’s report on the outcomes of an experiment carried out by R. Kvashchev in former
Yugoslavia that reported an IQ increase of seven points, on average, across 28 tests of intelligence.
We argue that previous analyses were based on a conservative analytic approach and failed to
take into account the reductions in the IQ test variances at the end of the three-years’ training.
When standard deviations of the initial test and 2nd retest were pooled in the calculation of the effect
sizes, the experimental group’s performance was 10 IQ points higher on average than that of the
control group. Further, with the properly defined measures of fluid and crystallized intelligence,
the experimental group showed a 15 IQ points higher increase than the control group. We concluded
that prolonged intensive training in creative problem-solving can lead to substantial and positive
effects on intelligence during late adolescence (ages 18–19).
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1. Introduction

For several decades, hereditarians have shaped our beliefs about the modifiability of intelligence.
Jensen (1969) argued that the heritability estimate of intelligence is about 80% and that the role of the
environment or schooling has to be small and perhaps negligible. The argument supported the claim
that the effects of compensatory early education on preschool children tend to be low. This led not
only to an increased focus on IQ differences across racial/ethnic groups, but also to the acceptance of
the view that training of cognitive performance is likely to be ineffective. Training effects are, at best,
limited to the practiced tasks (Jensen 1969), while far transfer—i.e., passing of knowledge and skills
from the taught context to the distantly related tasks or the processes captured by a broader g factor—is
unlikely to be achieved.

Until recently, Jensen’s views about heritability and training effects have been influential within
the intelligence research community (see Eysenck 1971; Haier 2014). Nowadays, it is generally
accepted that the heritability of intelligence increases from about 20% in infancy to perhaps 80% in later
adulthood (Plomin et al. 2014; Plomin and Deary 2015). This leaves plenty of room for environmental
effects, especially within the school-aged populations.

2. Theoretical Background

2.1. The Effect of Cognitive Training on Intelligence

There are continuing debates about the effects of training on cognitive abilities. In 2014, two groups
of scientists put forward opposing views (see Simons et al. 2016). One group claimed that there
is no compelling scientific evidence that cognitive training can reduce or reverse cognitive decline.
Of particular interest was the claim that training on working memory can improve fluid intelligence,
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which attracted a lot of criticism (see Novick et al. 2020). The other group was stating that cognitive
training procedures can significantly improve cognitive function.

Harvey et al. (2018) belongs to the positive camp, arguing that computerized cognitive training is
effective for far transfer, i.e., it can improve cognitive performance on untrained skills in both healthy
older people and people suffering from schizophrenia. This is reminiscent of the findings from previous
work that focused on practicing performance with competing/dual cognitive tasks (see Fogarty and
Stankov 1982, 1988). It was found that doing two intelligence tests simultaneously—e.g., one presented
through the earphones and another on the computer screen—for eight practice sessions led to both
overall improvement in all components of the competing tasks and also to an increase in the common
variance captured by tests of fluid intelligence (Stankov 1991). Therefore, depending on the choice
of the cognitive tasks for practice and the training protocol, the practice may lead to transfer effects
beyond the closely related tasks.

On the other hand, Simons et al. (2016) were negative and agreed with Jensen about the poor
effectiveness of the far transfer. They concluded that there is extensive evidence that brain-training
interventions improve performance on the trained/practiced tasks, but less evidence that such
interventions improve performance on closely related tasks, and further, “ . . . little evidence that
training enhances performance on distantly related tasks or that training improves everyday cognitive
performance” (p. 103). Overall, the conclusion was rather pessimistic. They also reported that many
of the published intervention studies had major shortcomings, including small sample size, short
periods of training, lack of random assignment and pre-test baseline, reliance on a single measure of
intelligence, and the absence of a control group. Stankov (1986), however, pointed out that most of the
shortcomings mentioned above do not apply to the experimental conditions of Kvashchev (1980) study
because it had a relatively large sample size (total N close to 300), lasted over three years, relied on
28 measures of intelligence, and it was based on random assignment of school classes to the control
and treatment groups. Given the positive outcomes of Kvashchev’s experiment, it was suggested that
the carefully designed training can be effective if it is long-lasting and intensive.

Recent studies have also challenged Jensen (1969, p. 2) claim about the failure of compensatory
education in boosting intelligence. For example, a meta-analysis reported an increase in intelligence
test scores between one and five (3.4 IQ points on average) for one additional year of schooling
(Ritchie and Tucker-Drob 2018). This finding was replicated in a large-scale study by Hegelund et al.
(2020) in Denmark, who found an average increase in intelligence test scores of 4.3 IQ points per
year of education in young adulthood and 1.3 IQ points in adults in mid-life. They also reported
that when taking the intelligence test performance at age 12 into account, the individuals with low
intelligence in childhood derived the largest benefit, concluding that education constitutes a promising
method for raising intelligence, especially among the individuals from a disadvantaged background.
Although these studies did not examine specific aspects of the compensatory intervention, the evidence
suggests that more years of formal schooling can improve the cognitive functioning of children and
young adults.

The strong hereditarian position has also been challenged in studies that investigate the role of
socioeconomic status (SES) in the development of intelligence. For example, Selita and Kovas (2019)
argued that social inequality and social policies can have a profound effect on the heritability of
educational attainment in the general population. They showed that heritability is higher among
the people living in neighbourhoods with greater equality levels, implying that social inequality
conditions stifle the expression of educationally relevant genetic propensities. This appears to agree
with the findings of Weiss and Saklofske (2020), who focused on environmental rather than hereditary
influences on group differences in intelligence. They reviewed the findings with several standardized
IQ tests and suggested that the pronounced environmental effects on IQ, in addition to those captured
by the SES, can be identified within the socially disadvantaged samples of African Americans.
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A meta-analysis reported by Ma (2009)1 included 111 empirical studies on creativity to examine the
effects of a host of psychological (e.g., personality, motivation, leadership, self-efficacy, and emotional
stability) and environmental (e.g., teacher encouragement, peer competition, satisfaction with class
climate, and pedagogical approaches) variables on four types of creative performance: nonverbal
creativity, verbal creativity, problem-solving creativity, and emotional creativity. Two findings are
particularly pertinent to the present study. First, the mean effect size was far stronger for problem-solving
creativity (Cohen’s d = 0.86) than it was for verbal creativity (0.79), nonverbal creativity (0.45), and emotional
creativity (0.34). Second, when the effect sizes were calculated for five different components of creative
problem-solving process (defining a problem, retrieving relevant knowledge, generating solutions,
evaluating, and selecting solutions), the strongest effect (0.93) was found for the component of defining
a problem, which included the processes of restating the problem in as many different ways as possible
before beginning to solve it. Overall, Ma (2009) reported larger than medium weighted average effect
size of 0.72 for these five components.

2.2. Kvashchev’s Experiment

Jensen’s views were challenged by Stankov (1986). He reported findings from one of a series
of intervention studies carried out by a Yugoslavian educational psychologist Kvashchev (1980).
The intervention was conducted in the mid-1970s in two high schools in a small town in northern Serbia.
One school was treated as control (N = 147, with five classes selected randomly, representing about 50%
of the student population of the school), while the other school was designated as experimental (N = 149,
with five classes, also selected randomly to represent about 50% of the school). The experiment started
with the first-year high school students (on average 15 years old) following eight years of primary
schooling. Students at the experimental school were given special classes in creative problem-solving.
Such classes were offered at least once a week and teachers were trained by Kvashchev himself to
develop creative thinking exercises for their courses in specific school subject areas (e.g., mathematics,
science, Serbian language).

Stankov (1986, pp. 212–19) provided detailed information about the experimental procedure,
training exercises, and descriptions of the 28 tests of intelligence that the students were tested on.
Thus, only a summary version is presented herein. All exercises used in Kvashchev’s experiment were
referred to as training in “creative problem solving”. The principles employed in the construction of
the training exercises included the requirements that: (a) exercises should call for a combination of
elements that are remote rather than close in terms of their associational value; (b) exercises should
call for a radical reorganization and reformulation of the problem situation to achieve a satisfactory
solution; and (c) exercises should call for both convergent and divergent thinking operations, especially
the latter.

Kvashchev collected the exercises involving creative thinking and problem-solving processes
that were available in textbooks or journal articles over the previous decades and presented them
to the experimental group, either in their original form or, if necessary, translated or developed in
collaboration with the teachers to conform to the syllabus of a particular school subject. To illustrate,
consider the following problem:

“I was captured by a band of outlaws—said a famous explorer—and their leader had my hands and
legs tied up so that 1could not move. They did not gag me up though, and I was able to use my mouth
freely. The leader of the gang hung a piece of bread exactly five centimetres away from my mouth.
He then laughed and said: "If you manage to eat this piece of bread, I’II set you free. He knew that I
could get no help. Also, in order to ensure that I cannot roll over or move closer to bread, they tied me
to a tree. Nevertheless, I managed to free myself. How?”

1 We are grateful to an anonymous reviewer who alerted us to the Ma (2009) meta-analysis.
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Students in the experimental group were asked to list as many ways as they could think of to
solve the problem. The most salient features of this type of exercise were students’ active participation
and their attention to the principles deemed important for creative thinking, that is, production of
as many imaginative solutions as one can come up with. The acceptable solutions for the example
above include blowing at the bread to create a pendulum or solutions that assume some particularly
favourable conditions, such as the wind blowing and moving either the rope or the tree (or both) to
which the explorer is attached.

Students in the experimental school were given such creative problem-solving exercises at least
once-a-week over the next three years. Students in the control group, on the other hand, attended the
school in a typical way over the same period. The students in both (experimental and control group)
schools completed a battery of 28 intelligence tests, such as matrices, verbal analogies, and number
series, when they enrolled in the high school (see Appendix A for the complete list of 28 tests).
All cognitive tests were subtests from verbal and nonverbal IQ test batteries and are known to have
acceptable reliabilities, ranging between 0.65 and high 0.80 (Kvashchev 1980). Six nonverbal tests were
parts of Cattell’s culture fair battery and five were part of the Bujas’ test of intelligence. The well-known
nonverbal Dominoes D-48 test was also employed. Two verbal tests consisting of several subtests were
presented in Serbo-Croatian. One verbal test was developed by Zoran Bujas, a student of an eminent
French psychologist Henry Pieron, and the other test was developed by Borislav Stevanovic, a former
student of Charles Spearman.

The first round of test administration was referred to as the “Initial Test”. All participants were
given the same set of 28 intelligence tests again at the end of the experiment, when students were in
their 3rd year of high school (on average aged 18). This was referred to as the “Final Test”. Further,
at the beginning of the next and final high school year, students (on average aged 18.3) in both schools
took the same intelligence tests again (“1st Retest”). No training in creative problem-solving was given
in the last year of high school. However, at the very end of the high school (on average, aged 19),
they were tested again with the same battery (“2nd Retest”).

It is important to keep in mind that creative problem-solving exercises were not designed to
practice or train cognitive processes measured by the set of 28 intelligence tests. As illustrated above,
the principles that guided the construction of these exercises called for a combination of elements
that were remote rather than close in terms of their associational values and required a radical
reorganization and reformulation of the problem situation to achieve a satisfactory solution. In other
words, the expected answers were heavily dependent on divergent thinking processes. Thus, it is
reasonable to assume that the changes in the performance on 28 tests of intelligence, which in fact
relied largely on convergent thinking processes, can be attributed to the presence of far transfer.

Stankov (1986, Table 1) presented the means and standard deviations for each of the 28 tests on
four occasions of testing (Initial, Final, 1st Retest, and 2nd Retest). In Appendix A of this paper, the first
(Initial) and last (2nd Retest) of the same dataset have been reproduced. We calculated the averages
(means) for both experimental and control groups across the 28 tests in the four occasions of testing in
Figure 1 and the last row in Table A1 in the Appendix A. Most test results displayed similar patterns
of the means and standard deviations over the four occasions, and thus only the averages over the
28 tests are plotted in Figure 1 (see also Stankov 1991). Averages (means) over all the 28 tests can be
interpreted as a global performance measure of intelligence because the individual subtests capture
different aspects of general cognitive ability. Most tests can be classified either as measures of fluid (Gf)
or crystallized (Gc) intelligence (see Table A1 in the Appendix A).

In the initial stage of the experiment at age 15, the control group had a higher average score than
the experimental group. There was a crossover in the performance at the end of the training and the
experimental group became superior at age 18 (Final). As can be seen in Figure 1, this superiority
of the experimental group became even stronger in the retest stages at ages 18.3 (1st Retest) and 19
(2nd Retest). Analysis of covariance (ANCOVA) with the individuals’ scores at the initial stage as
the covariate led to statistically significant F-values, with the experimental group showing better
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performance on 26 out of 28 tests in the 2nd Retest session (i.e., the last testing; also reported in
Stankov 1986, Table 2). Thus, the overall conclusion was that the experiment produced statistically
significant and positive results.
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Figure 1. Arithmetic means over 28 cognitive tests from Stankov (1986, Table 1) at the Initial (age 15), Final
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Specifically, the improvement of the experimental group at age 18 was, on average, 5.66 IQ points
higher than the control group. A year later at age 19 (2nd Retest), the improvement of the experimental
group was, on average, 7 to 8 IQ points higher than the control group. In terms of Cohen’s d effect
size criteria, the change represents a ‘medium’ (0.50) effect size (Cohen 1988). This led to the cautious
conclusion that through training in creative problem-solving it is “ . . . possible to achieve small
improvement in performance” (Stankov 1986, p. 209). Given the nature of the experiment and the
wide range of the test batteries, it was believed that far transfer was demonstrated one year after the
end of the treatment (at age 19). However, the overall effect was not seen as sufficiently strong, which
led to the questioning tone in the title of Stankov (1986) paper, “Can we boost intelligence?”

3. Methodology and Results

New Insights and Proposed Reanalysis

While the findings of Stankov (1986) were generally accepted by the intelligence research community,
the questioning tone of the title led to the contribution being seen as inconclusive. However, there were
three aspects of the analyses that appear to have been too conservative. First, two ANCOVA analyses
were carried out on each of the 28 tests in the battery. One was based on individuals and the other was
based on class as the unit of analysis. The latter approach had a small number of degrees of freedom
and, consequently, it did not identify strong effects on several tests that were statistically significant in
the analyses based on individual-level data. Problems related to low degrees of freedom using the class
as the unit of analysis were not sufficiently acknowledged in Stankov (1986). Second, the interpretation
focused on the student performance data at the end of training (i.e., “Final”) and less so on the 2nd
Retest, although the latter showed the longer-lasting and stronger far transfer effects (see Figure 1).
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Third, and most importantly for our purposes here, the standard deviations from the Initial testing
were employed in the calculation of the effect sizes and their IQ equivalent scores. The use of pre-test
information about dispersions was justified by the fact that students’ performance before the start of
the training can be seen as representative of the population. In Kvashchev (1980) experiment, however,
the students’ performance in both experimental and control groups was more heterogeneous at the
beginning of training and the standard deviations were significantly larger at the beginning of training
than at the end of the experiment.

In the discussion section of his book, after rejecting the participants’ attrition as a likely cause for
his finding, Kvashchev (1980) made note of the two aspects of the reduced post-test variance. First,
both experimental and control groups benefitted from the four years of high-school experience, but the
training effects were stronger in the experimental group, especially on participants with low cognitive
abilities at the start of the experiment. Second, the high achieving students might have approached a
ceiling level on some intelligence tests he had employed which, again, was more pronounced in the
experimental group.

Lower heterogeneity of the experimental group at the end of treatment is important for our
re-analysis of the effect sizes. The top part of Table 1 shows calculations that are analogous to those
used in Stankov (1986, p. 228) to arrive at the 7 to 8 IQ points differences between the experimental and
control groups on the Initial and 2nd Retest, as mentioned above. In other words, standard deviations
(4.37 and 4.18) from the Initial testing session were used to arrive at the 7.13 difference in IQ points,
leading to what we now believe to be a conservative result. Using the values of the Initial test alone
in the calculation of the effect size had disregarded smaller variances obtained after four years of
schooling by both control and experimental groups, particularly in the latter. For comparison, the same
statistics were calculated using the 2nd Retest standard deviations (3.19 and 3.79), instead of the values
at the Initial session. These are presented in the middle section of Table 1 and the difference in the effect
sizes expressed in IQ units is now 14.28, about twice as large as what was reported in Stankov (1986).

Table 1. Differences between the Initial (age 15) and 2nd Retest (age 19) over 28 cognitive tests.

Analytic Approach Group

Difference
between the

Means at Initial
& 2nd Retest

Standard
Deviation

Training
Effect Size
in Cohen’s

dav

Group
Difference
in Terms

of Cohen’s
dav

Training
Effect Size
× 15 in IQ

Units

Group
Difference

in IQ
Units

Stankov (1986)
Experim. 7.00

(24.67–17.67) 4.37 1.60
0.47

24.00
7.13

Control 4.71
(23.19–18.48) 4.18 1.13 16.90

Recalculation using 2nd
Retest standard deviations

Experim. 7.00 3.19 2.19
0.95

32.92
14.28Control 4.71 3.79 1.24 18.64

Experim. 7.00 3.78
(4.37 + 3.19)/2 1.85

0.67
27.78

10.08
Recalculation using the

average of pretest–post-test
standard deviations

(Cumming 2012; Lakens 2013)
Control 4.71 3.99

(4.18 + 3.79)/2 1.18 17.70

Note. “Training effect sizes” are equivalent to different versions of Cohen’s dav (see Lakens 2013). They were
calculated as ratios between “mean difference between 2nd Retest and Initial” (column 1) and corresponding
“standard deviation” (column 2).

The use of Cohen’s d for the calculation of the effect size has become common because of the
proliferation of meta-analyses and a need to have comparable statistics across different empirical
studies. Consequently, the practice of using pre-test standard deviations alone for the calculation
of the effect sizes, in the within-groups design, is much less frequently seen today. Cohen himself
recommended a formula that was analogous to the t-test calculation in the within-subjects design.
Thus, the standard deviation that was used in the calculation of what is labelled as Cohen’s dz was
based on the pooled variance—i.e., the sum of the pre-test and post-test variances, as well as on the
correlation between the two occasions of testing. In fact, the effect size can be calculated directly from
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the repeated measures t-test (see Lakens 2013, p. 4). However, since meta-analyses may consider both
between- and within-subjects designs Cohen’s dz is also infrequently used today.

Cumming (2012) suggested that the calculation of the effect size in the within-subjects designs can
be based on the average of the standard deviations from both occasions—i.e., neglecting correlations
between the occasions of testing. He referred to this value as Cohen’s dav (see Lakens 2013, p. 5).
This procedure and results with Kvashchev’s battery of 28 tests are illustrated in the bottom row of
Table 1 (see also the “AVERAGE” row in Table A1 in the Appendix A). The experimental group showed
about 10 IQ points stronger effect size (Cohen’s dav = 0.67) than the control group. In intelligence
research where an IQ score of 15 points is equal to one standard deviation, a 10-point difference cannot
be classified as small improvement.

When considering the results for each of the 28 tests (see the Appendix A), the experimental
group did show superior performance compared to the control group on all but one test, specifically,
the arithmetic test where the difference was virtually zero (−0.27 in IQ points). The IQ difference
between the experimental and control groups was the largest (19.49 IQ points) for the word classification
test, while six tests showed a difference of 15 IQ points or higher (see the last column in the Appendix A).
We believe that in the within-subjects studies with pronounced differences between the pre-test and
post-test variances, the effect sizes expressed in terms of Cohen’s dav may be more appropriate than
those based on the pre-test variances only.

It is necessary to point out that even though the tests employed in Kvashchev’s studies were part
of intelligence test batteries, the scores that were used in the analyses in this paper are raw scores and
not the normed IQ scores. Instead, the difference between the experimental and control groups are
analogous to Cohen’s dav values that were rescaled to correspond to the typical IQ metric.

4. Changes in Fluid (Gf) and Crystallized (Gc) Intelligence

As can be seen in the last column of the Appendix A, some tests showed stronger effect sizes than
the others. It may be reasonable to ask whether the difference across all 28 tests can be attributed to
fluid (Gf) or crystallized (Gc) intelligence, and, if so, whether the training was more effective for Gf
or Gc. Two papers by Stankov and Chen (1988a, 1988b) used the data from Kvashchev’s experiment
and employed structural equation modelling (SEM) to assess factorial invariance. Due to the limited
computational power in the 1980s, the studies were based on different selections of tests (11 tests in
[1988a] and eight tests in [1988b]) from the list of 28. The choice of tests for each SEM study was based
on the putative cognitive processes captured by the test. For example, in Stankov and Chen (1988a),
six tests from the Cattell’s culture fair battery (see tests 23–28 in the Appendix A, Table A1) were
chosen as measures of Gf, while proverbs, verbal analogies, word classification, essential features,
and disarranged sentences were chosen as potential measures of Gc. Stankov and Chen (1988b) was
based on a different selection of tests and there was no overlap between the two studies. Since a priori
classification of the remaining nine tests was less clear-cut in terms of Gf–Gc structure, they were not
used in the SEM analyses. In both studies, separate Gf and Gc factors were fitted and it was shown
that the factor structure was invariant across the experimental and control groups.

Using the information on factor score means in Stankov and Chen (1988a, 1988b) and the
procedures analogous to those presented in the bottom part of Table 1, the training effects can be
summarized in the following way. The calculations based on Stankov and Chen (1988a) report indicate
that the training led to an increase of about 10 IQ points on the Gc factor and about 27 IQ points on the
Gf factor. On the other hand, the calculations based on Stankov and Chen (1988b) analyses show that
the training led to the increase of about 21 IQ points on the Gc factor and only five IQ points on the Gf
factor. Overall, across the two studies, the change was about equal on the two factors (10 + 21)/2 =
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15.5 IQ points on Gc, and (27 + 5)/2 = 16 IQ points on Gf. In both cases, the improvement was above
15 IQ points2.

Nevertheless, as can be seen from the last column in the Appendix A, the selection of tests may
make quite a difference to the results. A closer look at the tests themselves may provide useful clues.
For example, as mentioned above there was a pronounced difference in the Gf factor in two Stankov
and Chen (1988a, 1988b) studies (27 IQ points in the 1986a study and five points in the 1986b study).
The five Gf tests in the Stankov and Chen (1988a) study were all from the Cattell’s culture fair battery,
a well-known test of fluid intelligence. On the other hand, only one of the Gf tests in Stankov and
Chen (1988b) study (Dominoes-48 test) was an established Gf marker. The other three—perceptual
reasoning test, multiple solutions tests, and pictorial poly-profile test—appear to contain pronounced
visual perception content in addition to the Gf component. It is plausible that the perceptual processing
component may have led to a less pronounced Gf effect in Stankov and Chen (1988b).

5. Conclusions and Discussion

It can be concluded that Stankov (1986) account of the effects of Kvashchev’s training in creative
problem-solving on the general factor of intelligence may have been too conservative. The reanalyses
presented in this paper indicate that the experimental group gained at least 10 IQ points more than the
control group at the end of the four years. Further, on some cognitive tests (see Appendix A) and on
the properly defined measures of fluid and crystallized intelligence (Stankov and Chen 1988a, 1988b),
the advantage of the experimental group was more than 15 IQ points. The effects can be classified
as ‘upper medium’ or ‘large’, following Cohen’s effect size guideline (Cohen 1988). There were two
additional training studies—one devoted to the development of creativity and the other on critical
thinking—carried out by Kvashchev over a 27-year period that produced similar outcomes, but at the
time of his death in 1983 the actual data were available only for the study reported herein.

Several implications can be drawn in the context of the current views about intelligence and the
nature of cognitive training and schooling. First, an important observation was the reduction of the
test variances that took place under the influence of training. This may be particularly pronounced in
long-lasting interventions during the school years of childhood and adolescence. Kvashchev (1980)
suggested that the reduced variances may be partly due to the increase in performance (especially
among the initially lower-scoring participants) and partly due to reaching the ceiling levels of the
tests employed (especially by the highly able participants). This reduction in dispersion, perhaps due
to the ceiling effect, was evident at all successive retesting sessions, but especially at the later stages
of retesting (see standard deviations in Figure 1). An important lesson from this work points to the
need to employ tests of a sufficient range of difficulty levels in similar studies in the future. A realistic
assessment of the changes in the cognitive abilities of young students would also need to consider the
role of maturation in the reduced variances in both experimental and control groups.

Aside from reduced variances, there is clear evidence of an increase in the mean levels of
performance across the occasions of testing. Further, that increase was statistically significant in both
experimental and control groups (see Stankov 1986). Compared to the control group, the effect in
the experimental group was larger—a difference of 10 to 15 IQ points—indicating that training in
creative problem-solving can improve performance on tests of intelligence. Of particular interest to
educationists may be the observation that there was a larger increase in the experimental group’s
performance a year after the end of the training. Longitudinal studies will be needed to examine
longer-lasting effects of training.

2 We also calculated effect sizes using standard deviations from the initial testing session, reported in the Stankov and Chen
(1988a, 1988b) studies, i.e., in the way it was done on the first row of Table 1. This showed the overall 10 IQ points superiority
of the experimental group on the Gc factor and 16 points superiority on the Gf factor.
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Second, Sauce and Matzel (2018) views about the gene–environment interplay may be relevant to
this discussion. They postulated that the malleability of intelligence exists and conclude that “ . . . one
can say that IQ has high heritability and a high malleability”. Their evidence was mostly observational
and included IQ gains consequent to adoption/immigration, changes in heritability across the lifespan
and socio-economic status, the Flynn effect, the slowdown of age-related cognitive decline, and IQ
gains via early compensatory education. Kvashchev’s work on the effects of training in creative
problem-solving provides experimental evidence for the important role of the environment.

Third, the present study adds valuable information to an ongoing debate within medicine,
information technology, and education, as well as the theoretical cognitive psychology, about the
effects of training (see Simons et al. 2016; Harvey et al. 2018). Kvashchev’s work shows that with the
prolonged and intensive training in the school environment, far transfer is possible in the cognitive
domains that have not been deliberately included in the training protocol.

Critics of Kvashchev’s work may argue that the experiment was not carried out in a laboratory
setting and that Kvashchev’s school-based experiment is inferior to more conventional laboratory
interventions because the trained processes were not explicitly defined and thus the effects cannot be
unambiguously attributed to specific treatments. In the natural environment, it was not possible to
control all or many potentially confounding variables, and different aspects of participant schools might
have also played a role in addition to that of creative thinking exercises. The school environment factor
is an important and relevant aspect of the debate since laboratory-based training over several weeks
(despite carefully crafted exercises) has produced controversial or mixed outcomes. The Kvashchev’s
experiment results, based on the comparison to the control group that was similar to the experimental
group, coupled with the prolonged training over three years conducted in the natural environment,
the presences of the pre-test measures, and the employment of a variety of 28 IQ tests, cannot be easily
dismissed. We may further claim that the experiments conducted in the actual classroom, on a weekly
basis, involving collaboration between the school teachers and the researcher, in fact, strengthen the
external validity argument.

Contemporary studies involving cognitive performance training often do not contain many
subtests of WAIS or WISC, let alone as many as 28 tests employed here. Such studies often rely on a
single test, like the Raven’s Progressive Matrices. The evidence collected from many tests is certainly a
better approximation of g than a single or smaller number of tests (Gignac 2015). With a variety of
cognitive tests, one can expect some variation in the training effects. Stankov and Stankov and Chen
(1988a, 1986) studies indicate that the broad Gf and Gc factors happen to be about equally affected by
Kvashchev’s training. However, the differences in the effects of training on Gf factors suggest that
visual perceptual processes may be pronounced in one set of Gf tests but less so in the other. Thus, it is
useful to examine closely varying degrees of training outcomes on a range of different cognitive tests.

Some contemporary theorists also do not attach particular importance to g. For example,
some adherents of the Cattell–Horn–Carroll (CHC) theory have pointed out that the percentage of the
variance accounted for by the first principal component is small and can be neglected in favour of the
broad factors, such as Gf and Gc (Stankov 2019a). Another group of theorists view g as a formative
construct rather than a reflective “source trait”. For example, in Kovacs and Kovacs and Conway
(2019) process overlap theory (POT), intelligence was interpreted in a way similar to socio-economic
status, i.e., different indices (tests) contribute to its formation but there is no psychological entity
underlying it. Although it is not clear how the increase in cognitive performance following the training
would be interpreted under this formulation, the importance of IQ is also diminished by the POT
(Stankov 2019b).

In conclusion, we argue that cognitive abilities captured by the tests of intelligence may not
be fixed entities, since prolonged and intensive training in creative problem-solving within typical
school environments can lead to sizable and positive gains in the overall cognitive function in late
adolescence (ages 18–19). It may be argued that future work needs to focus on theoretical issues,
such as the identification of elementary cognitive processes that facilitate gains. An alternative direction



J. Intell. 2020, 8, 41 10 of 12

may involve practical topics, such as validation of the effects of training in creative problem-solving
on real-life situations beyond IQ tests. Finally, training based on computerized games, machine
learning, and artificial intelligence may benefit from the use of principles incorporated in creative
problem-solving exercises.
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Appendix A

Table A1. Means and Standard Deviations from Stankov (1986) Table 1 for the control and experimental
groups on the Initial and 2nd Retest Occasions and effect sizes in IQ Units.

IQ Tests

Control Group Experimental Group
Difference

(Experimental–
Control) in IQ

Units

Initial
(Age 15)

2nd Retest
(Age 19)

Effect
Size in

IQ Units

Initial
(Age 15)

2nd Retest
(Age 19)

Effect
Size in

IQ UnitsMean SD Mean SD Mean SD Mean SD

1. Essential Features (Gc) 30.76 5.45 37.49 4.21 20.90 28.41 6.72 39.42 2.83 34.59 13.69
2. Word Classification (Gc) 10.84 2.52 12.84 3.51 9.95 10.05 2.76 14.29 1.56 29.44 19.49
3. Number Series 10.61 2.37 12.46 2.14 12.31 9.87 2.44 13.77 1.81 27.53 15.22
4. Consequences (Gc) 34.90 4.92 38.33 3.29 12.53 31.91 6.41 39.21 3.38 22.37 9.84
5. Relations (Gc) 12.56 2.63 14.87 1.66 16.15 10.59 3.04 15.15 1.21 32.19 16.03
6. Word Meanings 28.78 6.83 37.32 5.02 21.62 26.63 7.48 39.20 4.25 32.15 10.53
7. Unbalanced Structures (Gc) 10.28 2.53 13.19 2.08 18.94 8.85 2.62 13.66 1.73 33.17 14.24
8. Numeric 14.08 2.01 14.88 1.11 7.69 13.60 2.07 15.12 1.11 14.34 6.65
9. Pictorial Poly-profile 23.00 6.67 33.01 6.33 23.10 20.53 6.00 35.33 5.23 39.54 16.44
10. Meaningful Memory 12.96 4.55 21.72 8.59 20.00 13.81 5.53 25.91 8.63 25.64 5.64
11. Word Classification “S” 14.29 2.79 18.59 2.97 22.40 15.46 2.79 20.82 2.26 31.84 9.45
12. Proverbs (Gc) 9.50 3.93 16.22 4.00 25.42 9.46 3.95 17.81 2.92 36.46 11.04
13. Verbal Analogies (Gc) 19.51 5.11 24.73 3.25 18.73 20.06 4.76 26.11 2.66 24.46 5.73
14. Disarranged Sentences (Gc) 10.42 4.12 16.84 3.62 24.88 10.11 3.88 17.38 3.52 29.47 4.59
15. Proverbs Interpretation 6.71 2.36 9.44 2.06 18.53 6.93 2.37 9.89 1.98 20.41 1.88
16. Arithmetic 6.85 3.09 11.76 4.34 19.83 7.20 4.43 13.62 5.42 19.55 −0.27
17. Perceptual Reason. (Gf) 23.84 5.28 33.84 4.43 30.90 22.54 6.62 35.05 4.00 35.34 4.44
18. Pictorial Unbalanced Structure 41.36 9.64 49.94 9.28 13.60 38.18 8.16 53.24 6.08 31.73 18.12
19. Combined Solutions 39.99 10.1 45.73 8.95 9.04 37.47 9.44 49.17 7.41 20.83 11.79
20. Multiple Solutions (Gf) 44.54 6.55 50.68 4.81 16.21 42.55 7.15 51.91 3.70 25.88 9.67
21. Pictorial Poly-profile (Gf) 38.68 6.17 45.44 5.83 16.90 38.03 5.99 48.28 4.46 29.43 12.53
22. Dominoes D-48 (Gf) 26.12 4.99 32.82 4.96 20.20 28.09 4.41 34.62 4.65 21.72 1.52
23. Figure Classification (Gf) 6.62 2.39 9.89 2.20 21.37 6.40 2.41 10.89 2.14 29.60 8.23
24. Projection in Water (Gf) 7.22 1.62 8.12 1.23 9.47 7.00 1.69 8.43 0.92 16.44 6.96
25. Figure Series (Gf) 9.95 2.68 12.31 2.20 14.51 9.42 3.29 13.38 2.32 21.18 6.67
26. Matrices I (Gf) 8.25 1.46 9.34 0.94 13.63 7.85 1.54 9.56 0.74 22.50 8.88
27. Matrices II (Gf) 9.23 1.52 9.99 1.15 8.54 8.24 1.82 10.50 0.79 25.98 17.44
28. Matrices III (Gf) 5.46 2.72 7.51 2.07 12.84 5.46 2.64 8.90 1.66 24.00 11.16

AVERAGE 18.48 4.18 23.19 3.79 17.70 17.67 4.37 24.67 3.19 27.78 10.08

Notes: Gc and Gf refer to crystallized intelligence and fluid intelligence, respectively, as defined in Stankov and
Chen (1988a, 1988b). The last column presents the difference between experimental and control groups in the
amount of change between the Initial and 2nd Retest scores. Using values in the first row (Essential Features
test), the calculations involved (a) assessment of control groups’ mean change from the Initial to the 2nd Retest:
37.49 − 30.76 = 6.73; (b) calculating the average of SDs from the Initial and the 2nd Retest: (5.45 + 4.21)/2 = 4.83;
(c) calculating Cohen’s dav = 6.73/4.83 = 1.393; (d) converting Cohen’s dav to IQ units 1.393 × 15 = 20.90. Applying
the same approach to the data from the experimental group produced 34.59 IQ units change. The value in the last
column is the difference between the changes in experimental and control groups: 34.59 − 20.90 = 13.69.
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