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Abstract: In a recent publication in the Journal of Intelligence, Dennis McFarland mischaracterized
previous research using latent variable and psychometric network modeling to investigate the
structure of intelligence. Misconceptions presented by McFarland are identified and discussed. We
reiterate and clarify the goal of our previous research on network models, which is to improve
compatibility between psychological theories and statistical models of intelligence. WAIS-IV data
provided by McFarland were reanalyzed using latent variable and psychometric network modeling.
The results are consistent with our previous study and show that a latent variable model and a
network model both provide an adequate fit to the WAIS-IV. We therefore argue that model preference
should be determined by theory compatibility. Theories of intelligence that posit a general mental
ability (general intelligence) are compatible with latent variable models. More recent approaches,
such as mutualism and process overlap theory, reject the notion of general mental ability and are
therefore more compatible with network models, which depict the structure of intelligence as an
interconnected network of cognitive processes sampled by a battery of tests. We emphasize the
importance of compatibility between theories and models in scientific research on intelligence.

Keywords: intelligence; psychometric network analysis; latent variable modeling; statistical model-
ing; WAIS-IV; theory compatibility

1. Introduction

In a recent issue of the Journal of Intelligence, McFarland (2020) compares traditional
latent variable models of intelligence to more recent psychometric network models. In
contrast to Kan et al. (2019) and Schmank et al. (2019), McFarland finds that latent variable
models generally outperform network models. McFarland suggests that previous support
for network models reported by Kan et al. (2019) and Schmank et al. (2019) is limited to
analyses based on partial, rather than uncorrected, correlation matrices. If correct, this
finding calls into question recent claims that psychometric network models provide unique
support for theories of intelligence like mutualism and process overlap theory.

We are grateful to McFarland for providing such a detailed comparison of latent vari-
able and network models of intelligence. In many ways, it is representative of his program
of research on intelligence, which managed to combine statistical rigor and theoretical
impact. Indeed, it has forced us to reconsider both methodological and theoretical aspects
of our recent work on psychometric network models of intelligence. It has also provided
us with plenty of food for thought and ideas for future research.

At the same time, unfortunately, we get the impression that McFarland misunderstood
some methodological details, as well as the overall purpose of Kan et al. (2019) and
Schmank et al. (2019). Kan et al. (2020) have already addressed McFarland’s misconceptions
of Kan et al. (2019) and so we focus here on issues that pertain to Schmank et al. (2019). We
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also report an analysis of Wechsler Adult Intelligence Scale–Fourth Edition (WAIS-IV) data
generously provided by McFarland. We conducted the same exact statistical procedures
reported in Schmank et al. (2019). To preview, the results are consistent with Schmank
et al. (2019) and Kan et al. (2019) and illustrate that network models can account for
the psychometric structure of intelligence and should therefore be considered as a viable
alternative to latent variable models. For many investigators, network models are an
attractive alternative because they are more compatible with recent theories of intelligence
like mutualism (Van Der Maas et al. 2006) and process overlap theory (Kovacs and Conway
2016). We argue that compatibility between theories and models of intelligence can, and
should, guide model selection.

We review here two general concerns with the discussion of our previous research by
McFarland (2020). First, McFarland states, “[t]he rationale for the use of partial correlations
is that one can rule out the relationship between any pair of variables as being due to
the other variables in the analysis and thus more readily infer causation” (p. 1). We
agree that partial correlations can be used for this purpose; however, this was not the
rationale behind the Schmank et al. (2019) study. Psychometric network modeling offers an
alternative approach to investigations of the underlying structure of individual differences
in cognitive abilities (i.e., intelligence), without the assumptions that come with reflective
latent variable models (Conway et al. 2021; see also Goring et al. 2019). According to the
view of intelligence endorsed by Schmank et al. (2019), process overlap theory (Kovacs and
Conway 2016), there is no need to assume that (all or some of) the factors in higher-order
factor models represent common causes of individual differences in test performance. It is
in this sense that process overlap theory fits with the network approach, which also does
not assume the presence of reflective latent variables.

Second, McFarland (2020) states “[b]oth Kan et al. (2019) and Schmank et al. (2019)
compared model fit indices for network models with those for traditional latent variable
models” (p. 1). He then goes on to state “[o]ne problem in attempting to compare network
models with traditional latent variable models [ . . . ] is that the two deal with different
aspects of test correlations” (p. 2). The first statement is inconsistent with Schmank et al.
(2019): “[d]irect model comparisons were not conducted [ . . . ] we caution readers from
making direct comparisons based on the presented model fit indices” (p. 7). To be clear,
these two kinds of models can be compared in principle, namely when they are both
confirmatory, but this was not the case here. The second statement is also inaccurate. The
data for all latent variable and psychometric network modeling analyses were uncorrected
correlation matrices.

To be sure, we reviewed our R scripts (https://osf.io/3wpcm/) but we found no
direct comparisons of network models and latent variable models or partial correlations
matrices. However, in our original pre-print of the Schmank et al. (2019) publication
(https://osf.io/f9d2v/), we did report a direct comparison of the models. We therefore
assume that the pre-print was the source of the confusion. To be clear, that pre-print was
an unpublished draft and was later revised. The direct comparison between the model fit
of latent variable and psychometric network models was not included in Schmank et al.
(2019).

Commentary Reanalysis

The remainder of this commentary provides a statistical reanalysis of the uncorrected
WAIS-IV correlation matrices used by McFarland (2020). McFarland provided these cor-
relation matrices to our research group and we then conducted the same set of analyses
reported by Schmank et al. (2019). Thus, these correlation matrices were used as input for
reflective latent variable modeling and psychometric network modeling, respectively. First,
confirmatory factor analyses were conducted to determine the underlying measurement
model of the WAIS-IV data assuming a correlated latent variable model. Next, we assessed
the Cattell–Horn–Carrol model (Carroll 1993; Cattell 1943; Horn and Cattell 1966)—a
reflective, higher-order model of intelligence—using an additional confirmatory factor
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analysis. Finally, psychometric network modeling was employed as an alternative method
to traditional latent variable modeling techniques. For all psychometric models considered
we provide model fit indices.

2. Materials and Methods
2.1. Participants and Measures

The WAIS-IV correlation matrices provided by McFarland (2020) were based on three
groups of participants (which we refer to here as younger, middle, and older). The age
range of the younger group was 16–19 (n = 400); the age range of the middle group was
20–54 (n = 1000); the age range of the older group was 55–69 (n = 400). The three uncorrected
correlation matrices were used as input for all confirmatory latent variable and exploratory
psychometric network models. The analyses were conducted by following the Statistical
Procedure outlined in Schmank et al. (2019).

The WAIS-IV consists of 15 subtests described as Information, Vocabulary, Compar-
isons, Similarities, Picture Completion, Block Design, Figure Weights, Matrix Reasoning,
Visual Puzzles, Arithmetic, Digit Span, Letter–Number Sequencing, Cancellation, Coding,
and Symbol Search. Information about these measures can be found in the Technical and
Interpretative Manual (Wechsler 2008).

Two latent variable models were tested: a correlated four-factor model (Model 1), and
a higher-order reflective g four-factor model (Model 2). Model 2 is based on the Cattell–
Horn–Carroll model (Carroll 1993; Cattell 1943; Horn and Cattell 1966). Model fit indices
were examined to compare Models 1 and 2 and to determine whether the same model fits
equally well across groups when using the same modeling technique (i.e., psychometric
network modeling or latent variable modeling).

2.2. Statistical Procedure and Analysis
2.2.1. Confirmatory Factor Analyses

As an initial step, factor analyses were conducted to assess whether the provided cor-
relation matrices demonstrated the same underlying structure (i.e., measurement model).
The current project employed a measurement model with four latent variables representing
crystallized intelligence, fluid reasoning, working memory, and processing speed. Addi-
tionally, a higher-order model was assessed by specifying a latent variable model with
one superordinate second-order latent variable (representing g), and four subordinate
first-order latent variables (crystallized intelligence, fluid reasoning, working memory, and
processing speed). Latent variable models were conducted using lavaan (Rosseel 2012) and
openMx (Neale et al. 2016) packages freely available in R (R Core Team 2013). The most
parsimonious latent variable model is displayed in figures using visualization software
freely available using Ωnyx (von Oertzen et al. 2015). For access to the R-scripts used in
this project, see the following OSF project page: https://osf.io/kfujs/.

2.2.2. Psychometric Network Analyses

Psychometric network analyses were conducted using the default estimation strategy
provided by the qgraph package. For each psychometric network model conducted, 100
network models were generated with varying tuning parameter lambda values. Addi-
tionally, the ratio of minimum to maximum lambda values was set to 0.01 as specified by
Epskamp et al. (2018). The final network was selected by the qgraph package by mini-
mizing the Extended Bayesian Information Criteria utilizing the specified hyperparameter
gamma that was set to 0.50. Psychometric network analyses were conducted using qgraph
(Epskamp et al. 2012) and openMx (Neale et al. 2016) packages freely available in R. These
network models were visualized using qgraph. Additionally, the average Layout () func-
tion within the qgraph package was used to make an average layout that can be beneficial
for comparing the interconnectivity of each network model. It is important to reiterate that
these packages were previously used in publications concerning the use of psychometric
network analysis on cognitive ability measures (Kan et al. 2019; Schmank et al. 2019; Van
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Der Maas et al. 2017). Finally, the EGAnet (Golino and Epskamp 2017) package and EGA
() function were used to assess the number of clusters (i.e., latent dimensions) and which
observed variables belong to which cluster.

2.2.3. Approach to Model Fit

The same approach to model fit evaluation was used in the current project as described
in Schmank et al. (2019). Model fit will be deemed appropriate when (a) the ratio of model
chi-square (χ2) to degrees of freedom is less than or equal to 3.00, (b) comparative fit indices
(e.g., Comparative Fit Index (CFI) and Tucker–Lewis Index (TLI)) greater than or equal
to 0.95, and (c) Root Mean Square Error of Approximation (RMSEA)1 values less than or
equal to 0.06. Additionally, Akaike Information Criteria (AIC) and Bayesian Information
Criteria (BIC) values can be used to compare models: smaller values indicate better fit.
Furthermore, fit indices were extracted using functions within the lavaan, openMx, and
qgraph packages which compare original covariance matrices to the implied covariance
matrices generated by each latent variable and psychometric network model.

3. Results

The correlation matrices used in the current project are presented in Tables 1–3. Model
fit indices are presented in Tables 4–6. Two sets of fit indices are reported because we
estimated model fit using two R packages: lavaan and openMx. The packages differ
with respect to model specification and estimation but the results here are identical. This
was established and reported here to check the accuracy of our results and to facilitate
reproducibility.

With respect to the latent variable modeling analysis, the correlated four-factor model
(Model 1) was preferred over the higher-order model (Model 2), based on model compar-
isons: Younger Group: ∆χ2(2) = 5.56, p = 0.06; Middle Group: ∆χ2(2) = 15.36, p < 0.001;
Older Group: ∆χ2(2) = 21.01, p < 0.001. For a visualization of these three models, see
Figures 1–3. In our original publication (Schmank et al. 2019), we presented data repre-
sentative of the higher-order (g theory) model of intelligence, as this model tends to be
the most well-known specification of latent variable models of intelligence. However,
our findings after conducting these analyses on the McFarland data are inconsistent with
a preference for the higher-order model of intelligence. Thus, when considering latent
variable modeling, the three standardized WAIS-IV correlation matrices used by McFarland
fit best when specifying a correlated, four-factor latent variable model.

Consistent with the results of Schmank et al. (2019), most fit indices indicated that the
latent variable models provided an acceptable fit to the WAIS-IV data, with the exception
of the chi-square test, which was nonsignificant for all latent variable models. However,
the ratio of χ2 to degrees of freedom was less than 3.00 for three latent variable models:
each model attributed to the younger group and for the higher-order model attributed
to the older group. The reported RMSEA values for all latent variable models exceeded
the conservative value used by the current authors to demonstrate appropriate model fit
(all latent variable RMSEA values were 0.07). However, these RMSEA values would be
adequate based on more liberal standards (see Browne and Cudeck 1993; Schermelleh-
Engel et al. 2003). Additionally, comparative fit indices (i.e., CFI and TLI) demonstrated
values in the acceptable range for all latent variable analyses. We also considered the
quality of each measure by evaluating the standardized factor loadings in each model. The
squared value of the standardized factor loading indicates the amount of variance in the
measure that can be explained by the overarching latent construct. For the younger group,
only two standardized loadings, specific to the fluid reasoning latent variable, failed to
surpass the cutoff value of 0.70 that is typically used to indicate a quality measure (see
Schmank et al. 2019). For the middle group, four standardized loadings failed to surpass

1 The present paper and Schmank et al. (2019) employ RMSEA cutoff values representing the strictest value deemed acceptable by Schreiber et al.
(2006); it should be noted that values less than 0.08 can also indicate adequate model fit (Browne and Cudeck 1993; Schermelleh-Engel et al. 2003).
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the 0.70 cutoff value, specific to fluid reasoning, working memory, and processing speed.
Finally, the oldest group demonstrated two standardized loadings that failed to reach 0.70,
specific to the fluid reasoning and processing speed latent variables.

With respect to the exploratory psychometric network modeling analysis, consistent
with Schmank et al. (2019), the network models indicated excellent model fit across the
majority of reported fit indices. First, only the psychometric network model for the middle
group demonstrated a statistically significant χ2 value (p < 0.05); however, the value of
the ratio between χ2 and degrees of freedom for each of these models was well below the
3.00 cutoff value determined prior to analyses. Finally, the comparative fit indices (i.e., CFI
and TLI) demonstrated near perfect fit, while RMSEA values were well below the cutoff
value specified.

For the visualization of the psychometric network models, see Figures 4–6. First,
nodes in the models have been colored to reflect the latent structure of the finalized
measurement model. Second, the connections between nodes have been colored so that
blue and red indicate positive and negative partial correlations, respectively. Third, the
width of each connection between nodes represents the magnitude or size of the association
or partial correlation estimated between each pair of cognitive task nodes. Additionally, the
psychometric network models and their respective exploratory graph analyses revealed
four clusters or latent dimensions. For the young (Figure 4), middle (Figure 5), and older
groups (Figure 6) these four dimensions reflect crystallized intelligence, fluid reasoning,
working memory, and processing speed. Interestingly, the Arithmetic (A) node in the
older group network was explained by the crystallized intelligence dimension and not the
working memory or fluid reasoning dimensions. Finally, three additional network models
were generated that shared an averaged network layout (Figure 7).

Table 1. Uncorrected correlation matrix provided by McFarland (2020): youngest group.

BD S DS MR V A SS VP I Cd LN FW C Ca PC

BD 1.00
S 0.43 1.00

DS 0.39 0.34 1.00
MR 0.52 0.37 0.42 1.00
V 0.46 0.67 0.40 0.44 1.00
A 0.47 0.41 0.60 0.48 0.51 1.00
SS 0.36 0.30 0.27 0.31 0.29 0.33 1.00
VP 0.66 0.42 0.34 0.51 0.47 0.47 0.32 1.00
I 0.47 0.58 0.36 0.44 0.66 0.49 0.34 0.48 1.00

Cd 0.32 0.29 0.34 0.35 0.28 0.43 0.57 0.30 0.29 1.00
LN 0.42 0.34 0.67 0.35 0.39 0.52 0.27 0.35 0.40 0.22 1.00
FW 0.54 0.48 0.46 0.51 0.51 0.58 0.29 0.55 0.49 0.32 0.42 1.00
C 0.46 0.67 0.38 0.44 0.70 0.47 0.26 0.46 0.60 0.32 0.38 0.49 1.00
Ca 0.38 0.24 0.44 0.30 0.30 0.41 0.42 0.37 0.34 0.39 0.33 0.31 0.24 1.00
PC 0.47 0.44 0.37 0.39 0.38 0.36 0.29 0.47 0.42 0.24 0.35 0.40 0.46 0.31 1.00

Note. BD = block design; S = similarities; DS = digit span; MR = matrix reasoning; V = vocabulary; A = arithmetic;
SS = symbol search; VP = visual puzzles; I = information; Cd = coding; LN = letter–number sequencing;
FW = figure weights; C = comparisons; Ca = cancellation; PC = picture completion. N = 400.
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Table 2. Uncorrected correlation matrix provided by McFarland (2020): middle group.

BD S DS MR V A SS VP I Cd LN FW C Ca PC

BD 1.00
S 0.47 1.00

DS 0.44 0.49 1.00
MR 0.54 0.52 0.49 1.00
V 0.44 0.74 0.52 0.49 1.00
A 0.51 0.55 0.61 0.52 0.59 1.00
SS 0.39 0.33 0.41 0.36 0.35 0.38 1.00
VP 0.67 0.48 0.43 0.54 0.43 0.49 0.35 1.00
I 0.43 0.65 0.42 0.48 0.74 0.56 0.30 0.43 1.00

Cd 0.35 0.35 0.43 0.42 0.38 0.43 0.64 0.33 0.29 1.00
LN 0.43 0.46 0.71 0.46 0.50 0.59 0.36 0.43 0.44 0.37 1.00
FW 0.56 0.54 0.52 0.58 0.53 0.61 0.33 0.59 0.51 0.34 0.52 1.00
C 0.44 0.72 0.48 0.51 0.76 0.54 0.31 0.46 0.65 0.36 0.49 0.54 1.00
Ca 0.32 0.19 0.32 0.25 0.20 0.28 0.46 0.31 0.18 0.42 0.28 0.26 0.17 1.00
PC 0.49 0.36 0.36 0.39 0.34 0.31 0.39 0.47 0.33 0.31 0.35 0.39 0.33 0.33 1.00

Note. BD = block design; S = similarities; DS = digit span; MR = matrix reasoning; V = vocabulary; A = arithmetic;
SS = symbol search; VP = visual puzzles; I = information; Cd = coding; LN = letter–number sequencing;
FW = figure weights; C = comparisons; Ca = cancellation; PC = picture completion. N = 1000.

Table 3. Uncorrected correlation matrix provided by McFarland (2020): older group.

BD S DS MR V A SS VP I Cd LN FW C Ca PC

BD 1.00
S 0.52 1.00

DS 0.44 0.52 1.00
MR 0.57 0.50 0.52 1.00
V 0.49 0.75 0.55 0.54 1.00
A 0.54 0.63 0.58 0.55 0.64 1.00
SS 0.48 0.38 0.44 0.47 0.35 0.39 1.00
VP 0.64 0.43 0.38 0.51 0.46 0.52 0.45 1.00
I 0.48 0.65 0.47 0.46 0.75 0.61 0.35 0.48 1.00

Cd 0.44 0.47 0.48 0.51 0.43 0.46 0.65 0.39 0.36 1.00
LN 0.40 0.51 0.65 0.51 0.51 0.53 0.48 0.43 0.44 0.54 1.00
FW 0.58 0.57 0.51 0.60 0.58 0.64 0.43 0.59 0.53 0.46 0.47 1.00
C 0.46 0.72 0.51 0.50 0.74 0.60 0.32 0.45 0.65 0.45 0.52 0.56 1.00
Ca 0.37 0.36 0.31 0.26 0.29 0.32 0.48 0.32 0.23 0.46 0.37 0.36 0.32 1.00
PC 0.55 0.49 0.41 0.45 0.49 0.45 0.44 0.54 0.51 0.42 0.43 0.49 0.51 0.36 1.00

Note. BD = block design; S = similarities; DS = digit span; MR = matrix reasoning; V = vocabulary; A = arithmetic;
SS = symbol search; VP = visual puzzles; I = information; Cd = coding; LN = letter–number sequencing;
FW = figure weights; C = comparisons; Ca = cancellation; PC = picture completion. N = 400.

Table 4. Model fit for latent variable and network models of WAIS-IV correlations (young group).

Models χ2 df CFI/TLI RMSEA AIC BIC

lavaan/
qgraph

Correlated Factors 226.66 *** 84 0.95/0.94 0.07 298.66 328.12
Higher-Order 232.22 *** 86 0.95/0.94 0.07 300.22 328.05

Network 44.50 32 1.00/0.99 0.03 220.50 292.52

openMx Correlated Factors 226.64 *** 84 0.95/0.94 0.07 298.64 328.10
Network 44.48 32 1.00/0.99 0.03 220.48 292.50

Note. *** p < 0.001. χ2 = model chi-square value; df = degrees of freedom; CFI = Comparative Fit Index; TLI = Tucker–
Lewis Index; RMSEA = root mean square error of approximation; AIC = Akaike information criteria; BIC = sample
size adjusted Bayesian information criteria. AIC and BIC were calculated using the following formulas to allow for
comparison across packages: AIC = χ2 + 2 × (120 − df ); BIC = χ2 + ln(N + 2/24) × (120 − df ).
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Table 5. Model fit for latent variable and network models of WAIS-IV correlations (middle group).

Models χ2 df CFI/TLI RMSEA AIC BIC

lavaan/
qgraph

Correlated Factors 469.08 *** 84 0.96/0.94 0.07 541.08 603.42
Higher-Order 484.45 *** 86 0.95/0.94 0.07 552.45 580.27

Network 50.50 * 32 1.00/0.99 0.02 226.50 378.89

openMx Correlated Factors 469.08 *** 84 0.96/0.94 0.07 541.08 603.42
Network 50.49 * 32 1.00/0.99 0.02 226.49 378.88

Note. * p < 0.05. *** p < 0.001. χ2 = model chi-square value; df = degrees of freedom; CFI = Comparative Fit
Index; TLI = Tucker–Lewis Index; RMSEA = root mean square error of approximation; AIC = Akaike information
criteria; BIC = sample size adjusted Bayesian information criteria. AIC and BIC were calculated using the following
formulas to allow for comparison across packages: AIC = χ2 + 2 × (120 − df ); BIC = χ2 + ln(N + 2/24) × (120 − df ).

Table 6. Model fit for latent variable and network models of WAIS-IV correlations (older group).

Models χ2 df CFI/TLI RMSEA AIC BIC

lavaan/
qgraph

Correlated Factors 245.63 *** 84 0.96/0.94 0.07 317.63 347.09
Higher-Order 266.64 *** 86 0.95/0.94 0.07 334.64 362.47

Network 27.28 30 1.00/1.00 <0.001 207.28 275.30

openMx Correlated Factors 245.61 *** 84 0.96/0.94 0.07 317.61 347.07
Network 27.26 30 1.00/1.00 <0.001 207.26 280.92

Note. *** p < 0.001. χ2 = model chi-square value; df = degrees of freedom; CFI = Comparative Fit Index; TLI = Tucker–
Lewis Index; RMSEA = root mean square error of approximation; AIC = Akaike information criteria; BIC = sample
size adjusted Bayesian information criteria. AIC and BIC were calculated using the following formulas to allow for
comparison across packages: AIC = χ2 + 2 × (120 − df ); BIC = χ2 + ln(N + 2/24) × (120 − df ).
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4. Discussion

The current commentary addressed several inaccurate statements made by McFarland
(2020). The commentary also provided an opportunity to further examine confirmatory
latent variable models and exploratory psychometric network models of intelligence.
Our general goal was to establish that psychometric network modeling can provide an
alternative approach of the psychometric structure of test scores from the WAIS-IV like
latent variable modeling. Furthermore, uncorrected correlation matrices of standardized
WAIS-IV data provided by McFarland (2020) were submitted to the statistical procedures
used by Schmank et al. (2019).

The results are consistent with the findings presented in Kan et al. (2019) and Schmank
et al. (2019). Based on the criteria provided by Schreiber et al. (2006), when confirmatory
latent variable modeling and psychometric network modeling techniques were applied to
the WAIS-IV correlation matrices provided by McFarland (2020), the resulting model fit
indices were generally within what best practices and standards deem acceptable. From
the perspective of model fit indices, we have corroborated the major findings presented
by Kan et al. (2019); however, due to the exploratory nature of the psychometric network
models and the confirmatory nature of the latent variable models, a direct comparison was
not tenable as these types of analyses represent two separate stages of the psychometric
research process, exploration, and confirmation.

It is worth restating the main point presented in Schmank et al. (2019): that theories
of intelligence like mutualism and process overlap theory (Kovacs and Conway 2016) are
incompatible with reflective, higher-order latent variable models. By assuming process
overlap theory, g is viewed as an emergent property or index and not some higher-order
reflective factor. Process overlap theory is, however, compatible with psychometric network
analysis. Furthermore, the psychometric network models presented in the current project
are visual representations of the positive manifold as interconnected networks of the
interaction between pairs of cognitive tests, similar to how process overlap theory proposes
formative g using the explanation of the positive manifold via overlapping general and
specific processes. Ultimately, this demonstrates that psychometric network models are
viable alternatives to latent variable models. In future, projects focused on theory building
or theory assessment must first determine the underlying data-generating mechanisms
assumed by the theories to establish whether a latent variable or psychometric network
approach is most appropriate.

5. Limitations and Future Directions

The aim of this paper was to address specific comments by McFarland (2020) regard-
ing the network models reported in Schmank et al. (2019). Therefore, many remaining
important theoretical issues, as well as further analyses of the current data, are beyond
the scope of the current paper. In particular, the conditions of comparability of the model
fit of network and latent variable models will probably invoke important exchanges in
the future.

A shortcoming of the current study is that it did not address the developmental
question introduced by McFarland, that is, we did not repeat the analysis for different age
categories. This clearly is a possible line of future research. In particular, such an analysis
would make cross-validation possible, just like in the case of McFarland’s analysis.

Additionally, some of the models fitted by McFarland, such as a bifactor model and a
penta-factor model, were not investigated in the current paper. Since these were important
aspects of McFarland’s paper, further investigation on the matters discussed in this paper
should address them. Our purpose with the current paper was to focus on what we
perceived as central issues of McFarland’s paper as well as possible misconceptions of our
previous results. There are excellent ideas and analyses in McFarland (2020) that have not
been addressed here and which are worthy of exploration by future research.
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