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Abstract: One of the best-established findings in intelligence research is the pattern of positive
correlations among various intelligence tests. Although this so-called positive manifold became
the conceptual foundation of many theoretical accounts of intelligence, the very nature of it has
remained unclear. Only recently, Process Overlap Theory (POT) proposed that the positive manifold
originated from overlapping domain-general, executive processes. To test this assumption, the
functional relationship between different aspects of executive attention and the positive manifold
was investigated by re-analyzing an existing dataset (N = 228). Psychometric reasoning, speed, and
memory performance were assessed by a short form of the Berlin Intelligence Structure test. Two
aspects of executive attention (sustained and selective attention) and speed of decision making were
measured by a continuous performance test, a flanker task, and a Hick task, respectively. Traditional
structural equation modeling, representing the positive manifold by a g factor, as well as network
analyses, investigating the differential effects of the two aspects of executive attention and speed
of decision making on the specific correlations of the positive manifold, suggested that selective
attention, sustained attention, and speed of decision making explained the common but not the
unique portions of the positive manifold. Thus, we failed to provide evidence for POT’s assumption
that the positive manifold is the result of overlapping domain-general processes. This does not mean
that domain-general processes other than those investigated here will not be able to show the pattern
of results predicted by POT.

Keywords: psychometric intelligence; positive manifold; g factor; executive attention; process overlap
theory; mental speed

1. Introduction
1.1. Theoretical Background

One of the best-established and most replicated findings in psychology is the pattern
of positive correlations among various tests of psychometric intelligence, even if these tests
measure quite different mental abilities (van der Maas et al. 2006). This so-called positive
manifold was first described by Spearman (1904). To account for this phenomenon, he
proceeded from the assumption of a single underlying fundamental function, referred to as
the g (or general) factor of intelligence or psychometric g. Later research corroborated the
positive manifold but introduced additional group factors of intelligence to describe the
positive manifold more adequately (Deary 2012). Group factor models describe intelligence
as a hierarchical construct with specific tests or abilities at the lower level of the hierarchy,
which can be grouped to more general factors at a higher level (e.g., fluid intelligence,
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crystallized intelligence, broad visual or auditory abilities). As these group factors are still
correlated with each other, a g factor builds the apex of the hierarchy (Carroll 1993; Johnson
and Bouchard 2005; McGrew 2009; Süß and Beauducel 2015).

Although most researchers agree on the possibility of describing the positive manifold
(at least indirectly via group factors) by means of a g factor, the very meaning of this factor
is still the subject of a lively debate. While originally Spearman (1904, 1927) assumed the g
factor reflected mental energy, Jensen (1982) pointed to mental speed and Kyllonen (1996)
to working memory capacity as possible sources underlying g. To date, however, no single
function or process has been identified that fully accounts for the positive ma-nifold or
correlates perfectly with g.

As early as 1916, Thomson demonstrated that a general factor can be extracted from
a positive manifold even when, actually, no such unitary factor underlies the positive
correlations among different tests (Thomson 1916). Thomson’s idea that the positive
manifold can also be explained without the assumption of a g factor has been advanced
and refined by further theoretical frameworks (Bartholomew et al. 2009; Detterman
2000; van der Maas et al. 2006). In a more recent approach, Kovacs and Conway (2016,
2019) proposed the Process Overlap Theory (POT). According to POT, all psychometric
tests require a large number of different cognitive processes. Some processes are required
primarily by tests of the same domain-specific ability (e.g., mental rotation for tests of spatial
ability). These domain-specific processes cause the observation of group factors representing
individual differences in these domain-specific abilities. Other processes are domain-
general rather than domain-specific, i.e., they are required by tests from different domains,
such as the verbal or the spatial domains. Kovacs and Conway (2016, 2019) suggested
that processes of executive attention (also referred to as attention control or executive
functions) are domain-general because these processes serve the activation or maintenance
of goal-relevant information and the suppression of goal-irrelevant information during test
completion—irrespective of whether information is processed in the verbal, spatial, or any
other specific domain.

It is important to note that a given domain-general process is not necessarily required
by all psychometric tests of a test battery. As long as each psychometric test shares a
domain-general process with a test from another domain, this should lead to a positive
ma-nifold—even if not a single domain-general process is required by all tests. This
constellation should be sufficient to derive a g factor mathematically from the positive
manifold (Detterman 2000). Obviously, this factor cannot be interpreted as a single reflective
factor causally influencing performance on all tests. Rather, and this is a decisive point of
POT, if psychometric g is the result of overlapping processes, it should be interpreted as a
formative factor, which is a “summary statistic” (Kovacs and Conway 2019, p. 267) without
psychological meaning.

POT implies several additional assumptions. Two major assumptions refer to the
notion of a unique variance of g unrelated to overlapping processes and the non-additivity
of the domain-specific and domain-general processes. Both these assumptions dissociate
POT from similar previous theories, and they explain important phenomena in the realm
of intelligence research, such as factor differentiation, or that more complex tasks show
higher g loadings than less complex tasks (Kovacs and Conway 2019).

For the present study, Kovacs and Conway’s (2016) assumption of overlapping
domain-general processes is of particular importance. This assumption means that each
positive correlation (or at least most of them) in the positive manifold is formatively caused
by other more or less independent domain-general processes or, in other words, by different
aspects of executive attention. It is important not to confuse this assumption with the as-
sumption that a single and general latent variable underlying different aspects of executive
attention is related to psychometric g (cf. Kovacs and Conway 2016). In this latter case, the
same basic function underlying psychometric g might also cause a positive manifold for
different aspects of executive attention. Hence, the correlation between psychometric g
derived from psychometric tests and general executive attention might then inform the
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amount of g-related variance shared by the psychometric tests and cognitive tasks. POT
explicitly contradicts such a g theory-based explanation. This contradiction, however,
also allows basic assumptions of POT to be put to a critical test. Based on these consid-
erations, the aim of the present study was to empirically investigate whether different
domain-general processes are either uniquely or commonly related to psychometric g and
the correlations of the positive manifold.

1.2. The Present Study

In a previous study (Pahud et al. 2018), we assessed the functional relationship be-
tween aspects of psychometric intelligence and two kinds of executive attention—namely,
sustained attention and selective attention. Both can be regarded as domain-general since
both kinds of attention are needed to successfully complete cognitive tasks and psychomet-
ric intelligence tests—regardless of the cognitive domain. For the assessment of sustained
attention, we used an adaptation of the continuous performance test (CPT; Halperin et al.
1991) with three conditions of increasing demands on sustained attention. Analogously, the
demands on selective attention were experimentally increased across three conditions of
an adapted Eriksen flanker task (Scheres et al. 2003). Beside these two experimental tasks,
tapping two distinct aspects of executive attention, we also used a Hick task (Neubauer
et al. 1992; Rammsayer and Brandler 2007) with three levels of task complexity (0-, 1-,
and 2-bit condition). As indicated by increasing RTs from the 0- to the 2-bit condition,
task complexity increases across the conditions. Within the conceptual framework of
POT, complexity “refers to the extent to which a test taps executive/attentional processes”
(Kovacs and Conway 2016, p. 164). Therefore, within the scope of POT, the increase in
RT across the three Hick conditions as a function of increasing task complexity might be
interpreted as an indicator of the demands on executive attention. On the other hand, the
increasing RTs across the Hick conditions are a well-known function of the number of
decisions to be made or the bits of information to be processed (Proctor and Schneider
2018). Thus, the Hick task is a measure of speed of choice or simple decision making as
a function of increasing complexity levels (Jensen 1982), but it is not a genuine executive
attention task. Proceeding from this view, the Hick task might be especially interesting to
investigate whether aspects of executive attention relate differently to the correlations of
the positive manifold compared to increasingly complex measures of speed of information
processing (here speed of decision making)—broadly irrespective of executive attention.

Pahud et al. (2018) analyzed RTs in all three tasks by means of fixed-links modeling
(Schweizer 2008). With this type of confirmatory factor analysis, two latent variables were
extracted from each experimental task. One latent variable depicted variance in RT that
did not vary as a function of the experimental manipulation and, therefore, was related to
more general aspects of speed of information processing such as speed of sensory encoding
or speed of motor execution. The other latent variable represented variance in RT, which
systematically increased from the least to the most demanding condition. Thus, these latent
variables reflected the increasing demands on sustained attention in the CPT, on selective
attention in the flanker task, and speed of decision making in the Hick task.

In the study by Pahud et al. (2018) psychometric intelligence was assessed with
a battery of 18 intelligence subtests of the Berlin Intelligence Structure (BIS) test (Jäger
et al. 1997). This battery included six measures of processing capacity (broadly similar
to reasoning), clerical speed, and memory, respectively, but abandoned the creativity
measures, which represented the fourth operation in Jäger’s (1984) BIS model. A g factor of
psychometric intelligence was extracted from indices of capacity, speed, and memory. In
the present study, we expand these investigations by analyzing not only the g factor but also
the positive manifold, i.e., the specific correlations among different aspects of intelligence in
order to put POT to the test. A re-analysis of Pahud et al.’s data is of particular interest for
this purpose since it contains the positive manifold of the psychometric tests as well as two
different aspects of executive attention and a measure of speed of decision making. Thus,
this data facilitates an investigation into whether different aspects of executive attention are
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differentially related to g and, most importantly, whether they contribute to the correlations
among psychometric tests in the positive manifold to different degrees. More specifically,
we investigated the following research questions:

1. Do different aspects of executive attention and speed of decision making uniquely
or commonly explain variance in psychometric g? The approach to answering this
question is in line with the traditional research on the g factor because g is more or
less premised as an entity underlying the positive manifold.

2. In order to investigate the positive manifold more differentially, we employed network
analyses to answer the question of how the correlations in the positive manifold
change when considered concurrently with different aspects of executive attention
and speed of decision making. These analyses focused on correlations in the positive
manifold, from which the influence of executive attention was partialled out.

2. Materials and Methods
2.1. Participants

Pahud et al.’s (2018) sample consisted of 110 male and 118 female volunteers with
an age range from 18 to 30 years. One hundred and four participants had no academic
background. All participants reported normal or corrected-to-normal vision. The study
was approved by the local ethics committee (2012-9-189242) and all participants gave their
written informed consent prior to the testing.

2.2. Measurement of Psychometric Intelligence

A modified version of the short form of the Berlin Intelligence Structure (BIS) test
was used to measure psychometric intelligence (Jäger et al. 1997). This test consisted of
18 subtests that are described in more detail in Pahud et al. (2018). BIS-Capacity, BIS-Speed,
and BIS-Memory, representing individual performance in relation to reasoning, clerical
speed, and memory (Oberauer et al. 2008), respectively, were assessed with six subtests
each. Each set of the six subtests consisted of two verbal, two numerical, and two figural
tests. For the purpose of the present study, each subtest was z standardized. Then, the
standardized test scores of the six subtests per set were averaged to yield BIS-Capacity, BIS-
Speed, and BIS-Memory scores. In an unpublished study (Wicki 2014), the retest reliability
coefficients for the BIS-Capacity, BIS-Speed, and BIS-Memory scores in this adapted short
form were rtt = .79, rtt = .85, and rtt = .86, respectively (N = 122; test retest interval = 1
month). The retest reliability of the g factor derived from this modified short-form of the
BIS test was rtt = .79.

2.3. Experimental Tasks

All tasks were fully computer controlled and programmed in Eprime 2.0. Stimuli were
presented on a computer monitor and responses were registered via an external Cedrus© key
pad with a temporal resolution of ±1ms. All tasks were preceded by verbal and written
instructions and practice trials. A very detailed description of the experimental tasks is
provided in Pahud et al. (2018).

2.4. Flanker Task

To assess selective attention, a version of Eriksen’s flanker task was adapted from
Scheres et al. (2003) with three task conditions. On each trial of the first and the second
condition, an arrow was presented on the monitor screen. This arrow could point to
the right- or to the left-hand side. Participants had to respond to the arrow by pressing
a designated response key as fast as possible. In the 32 trials of the first condition, the
direction of the arrow was not to be attended to. In the 32 trials of the second condition,
participants were required to respond with the forefingers of the right and the left hand
when the arrow pointed to the right or the left side, respectively. As in the second condition,
participants had to respond to the direction of the arrow in the third condition. Here,
however, the arrow was flankered by additional arrows, which pointed congruently to the
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same direction or incongruently to the opposite direction. The third condition consisted of
32 trials with congruent flankers and 32 trials with incongruent flankers. In all conditions,
the next trial started 500 ms after the completion of the response to the preceding trial.
As a measure of performance, individual mean RTs of correct responses were obtained
for each condition. With its demands to selectively attend to relevant information and to
inhibit irrelevant information, the flanker task is a well-established measure in the field of
selective attention (Scheres et al. 2003) and attention control (Draheim et al. 2021; Shipstead
et al. 2014).

2.5. Continuous Performance Test

The present version of the CPT was adapted from Halperin et al. (1991). In all three
conditions of the CPT, stimuli were presented on the monitor screen for 200 ms, followed
by a 1000-ms interval with a black screen, before the next trial started. In the 32 trials of
the first condition, only the letter “X” was presented and participants were instructed to
respond as fast as possible to its onset. The second condition consisted of 120 trials with
different letters. In 96 trials, distractor letters (K, D, W, R, S, M, G, and A) did not require a
response. In the remaining 24 trials, an “X” was presented and participants had to respond
as fast as possible to this target letter. The same stimuli were used in the third condition,
which consisted of 240 trials with 196 distractor letters. The letter “X” was presented in
normal font (24 trials) or italic font (24 trials). Participants were told that they should only
respond to the italic “X” as fast as possible. As dependent variables, individual mean RTs
of correct answers in the three CPT conditions were determined. The CPT is one of the
best-established measures of sustained attention and vigilance, for which reliability and
validity have been demonstrated repeatedly (Raz et al. 2014; Riccio et al. 2002).

2.6. Hick Task

A version of the Hick task, adapted from Neubauer et al. (1992), was used which
measures the speed of making simple decisions or choices. The task consisted of a 0-bit, a
1-bit, and a 2-bit condition. In the 0-bit condition, a trial started with the presentation of a
rectangle in the center of the computer monitor. After a foreperiod, which varied randomly
between 1000 and 2000 ms, a “+” sign appeared in the rectangle and participants’ task was
to press a designated key as fast as possible after the onset of the “+” sign. In the 1-bit
condition, two rectangles were presented next to each other on the monitor and the “+”
sign appeared after the fore period in the right or the left rectangle. Participants pressed a
right or a left key (with the right or the left forefinger) corresponding to the rectangle, in
which the “+” sign was presented. In the 2-bit condition, four rectangles were presented (in
two lines and two columns) and participants responded with the forefingers and middle
fingers of their right and left hand corresponding to the rectangle, in which the “+” sign
was presented. For each condition, the mean RT of the correct answers was determined.

2.7. Statistical Analyses

The analyses will be outlined during the course of the results section for reasons of
comprehensibility. All analyses were carried out with RStudio (psych package for descrip-
tive statistics and correlational analyses; lavaan package for confirmatory factor analyses
and structural equation modeling; SEM; qgraph and psychonetrics for network analyses).
The estimator in SEM was maximum likelihood with Satorra-Bentler correction. For the
evaluation of model fit, the following fit indices were used (evaluation criteria given in
parenthesis according to Schreiber et al. 2006): χ2 (ratio of χ2 to df < 3), robust comparative
fit index (CFIrob > .950), root mean square error of approximation (RMSEA < .080), and
standardized root mean square residual (SRMR ≤ .08). The data set can be requested under
www.osf.io/jgxsr (doi:10.17605/OSF.IO/JGXSR, accessed on 23 June 2021).

www.osf.io/jgxsr
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3. Results

The three aspects of psychometric intelligence, BIS-Capacity, BIS-Speed, and BIS-
Memory correlated significantly with each other. The correlation coefficients are presented
in Table 1. Figure 1 shows the g-factor model with g extracted from the three aspects of
psychometric intelligence. As a measure of reliability, McDonald’s omega coefficient was
Ω = .782 for the g factor.

Table 1. Coefficients of Pearson and partial correlations between BIS-Capacity, BIS-Speed, and BIS-Memory.

rMemory-Speed rCapacity-Speed rCapacity-Memory

Pearson correlation .515 .588 .517
Partial correlations controlled for . . .

1. the third aspect of intelligence, respectively. .305
(.182–.418)

.438
(.326–.538)

.309
(.187–.423)

2. latent variable “selective attention” .310 .408 .316
3. latent variable “sustained attention” .266 .459 .322
4. latent variable “speed of decision making” .318 .409 .315
5. latent variables “selective attention” and “sustained attention” .271 .433 .333
6. latent variables “selective attention” and “speed of decision
making” .319 .400 .316

7. latent variables “sustained attention” and “speed of decision
making” .282 .430 .333

8. latent variables “selective attention”, “sustained attention”, and
“speed of decision making” .282 .423 .335

9. latent variables “basic speed” (constant factor loadings) .325 .426 .303
10. all latent variables .300 .421 .321

Note. All correlations were statistically significant (p < .001). Values in parentheses refer to the 95% confidence interval.
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Figure 1. The g factor extracted from the average scores of BIS-Capacity, BIS-Memory, and BIS-Speed
tests.

Mean RTs and the corresponding standard deviations in the three conditions of the
flanker task, the CPT, and the Hick task, respectively, are presented in Figure 2. As reported
in Pahud et al. (2018), the RT differences within each task were statistically significant,
indicating that the experimental manipulation led to increasing demands on selective
attention in the flanker task, to increasing demands on sustained attention in the CPT, and
to increasing response latencies as a function of the number of decisions in the Hick task.
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mance test (CPT), and the Hick task, respectively. Error bars represent the corresponding standard
deviations.

For each task, the RTs in the three task conditions were analyzed by means of fixed-
links modeling. With this kind of confirmatory factor analysis, the effect of the experimental
manipulation of the task demands can be dissociated from variability in the data that did
not vary with the manipulation (Schweizer 2009). Thus, for each task, two latent variables
were extracted. For one latent variable, factor loadings were fixed to “1” to depict individual
differences in the RT that did not vary as a function of the task demands and, hence,
individual differences in the task-unspecific aspects of speed of information processing
(e.g., sensory encoding or motor execution) were captured. The second latent variable had
factor loadings, which increased monotonically from the easiest to the most demanding
task condition. This increasing variability in the RT data reflects individual differences in
selective attention, sustained attention, and in speed of decision making, respectively. The
increasing trajectories of the factor loadings of the latent variables representing selective
attention, sustained attention, and speed of decision making are presented in Figure 3. The
RT data of all three tasks could be adequately described by this statistical procedure as
indicated by the model fit indices reported in Figure 3. Since all factor loadings were fixed
in these models, the variances of the latent variables were estimated. The variances of the
latent variables with increasing factor loadings (p < .001) as well as those with constant
factor loadings (p < .05) were statistically significant. Furthermore, reliability analyses
resulted in estimations of the McDonald’s Ω of .816, .753, and .770 for the increasing latent
variables in the CPT, the Hick, and the Flanker task, respectively, and Ω = .760, .808, and
.401 for the constant latent variables.
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Figure 3. Fixed-links models for the Hick task, the flanker task, and the continuous performance test (CPT). Unstandardized
factor loadings are presented as well as model fit by the χ2 test, the robust comparative fit index (CFIrob), the root mean
squared error of approximation (RMSEA), and the standardized root mean square residual (SRMR).

After having established measurement models for psychometric g, selective and
sustained attention as well as speed of decision making, the following analyses aimed to
answer the first research question of whether the two aspects of executive attention and
speed of decision making uniquely or commonly explain variance in psychometric g. All
latent variables with increasing factor loadings correlated with the g factor of psychometric
intelligence (see Table 2). A different picture emerged for the latent variables with constant
factor loadings, where only the latent variable extracted from the flanker task correlated
significantly with g. In the next step, we investigated the unique variance in g explained
by these latent variables. Due to very high correlations between the latent variables with
constant factor loadings and to avoid collinearity-related issues, these variables were
reduced to one latent variable before g was regressed on this latent variable together
with the three latent variables with increasing factor loadings (see Figure 4). The model
described the data well according to all fit indices except the CFI (.947), which fell below
the criterion value of .950. Neither the latent variables reflecting selective and sustained
attention, respectively, nor those reflecting speed of decision making or more basic speed
of information processing explained unique portions of variance in g above and beyond
the variance explained by the other latent variables. Given the results reported in Table 2,
this pattern of results indicated that the portion of the variance of g explained by any
of the latent variables from our three tasks was the same portion explained by the other
latent variables.

Table 2. Correlations between different aspects of intelligence (BIS-Capacity, BIS-Memory, BIS-Speed as well as the g factor
extracted from these three aspects) and the latent variables derived from the flanker task, the continuous performance test
(CPT) and the Hick task.

Capacity Memory Speed g

Flankerincreasing (selective attention) −.330 *** −.211 *** −.259 *** −.337 ***
CPTincreasing (sustained attention) −.058 −.230 ** −.256 *** −.245 **

Hickincreasing (speed of decision making) −.287 ** −.153 −.296 ** −.288 **
Flankerconstant −.044 .045 −.283 * −.206 *

CPTconstant .037 .157 * −.104 −.091
Hickconstant −.014 .028 −.182 ** −.159

Note. “increasing” and “constant” refer to latent variables with increasing and constant factor loadings, respectively. * p < .05; ** p < .01;
*** p < .001.



J. Intell. 2021, 9, 37 9 of 17
J. Intell. 2021, 9, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 4. Latent regression analysis of the relationship between the g factor and the latent variables 

extracted from the flanker task, the continuous performance test (CPT), and the Hick task. Model 

fit: χ2SB(44) = 102.254; p < .001; CFIrob = .947; RMSEA = .076; SRMR = .056. *** p < .001 

In other words, the portions of the variance in g explained by selective attention, sus-

tained attention, and speed of decision making, respectively, overlapped. To further elab-

orate on this idea, a second-order latent variable was derived from the three latent varia-

bles with increasing factor loadings and the three latent variables with constant factor 

loadings, respectively. Then, these two second-order latent variables were combined with 

g in a structural equation model (see Figure 5). The model data fit was acceptable except 

for the CFI (.949), which just failed to reach the criterion of .950. While the second-order 

latent variable representing the increasing complexity across the three tasks was substan-

tially related to g (β = −.52, p < .001), the second-order latent variable representing individ-

ual differences in the basic aspects of speed of information processing was not associated 

with g (β = .045, p = .726). 

Proceeding from the model depicted in Figure 5, we tested whether one of the first-

order latent variables with increasing factor loadings could explain portions of variance 

in g above and beyond the variance explained by the second-order latent variable. When 

simultaneously considering all three additional regressions, the process of estimation did 

not converge so that three separate models were computed. In these models, the regres-

sion coefficients were β = −.140, p = .444, and β = .001, p = .995 for the flanker task and the 

continuous performance test, respectively. No model explained the data better than the 

more parsimonious model without these additional regressions. For the Hick task, the 

model did not converge. 

Figure 4. Latent regression analysis of the relationship between the g factor and the latent variables
extracted from the flanker task, the continuous performance test (CPT), and the Hick task. Model fit:
χ2

SB(44) = 102.254; p < .001; CFIrob = .947; RMSEA = .076; SRMR = .056. *** p < .001.

In other words, the portions of the variance in g explained by selective attention,
sustained attention, and speed of decision making, respectively, overlapped. To further
elaborate on this idea, a second-order latent variable was derived from the three latent
variables with increasing factor loadings and the three latent variables with constant factor
loadings, respectively. Then, these two second-order latent variables were combined with g
in a structural equation model (see Figure 5). The model data fit was acceptable except for
the CFI (.949), which just failed to reach the criterion of .950. While the second-order latent
variable representing the increasing complexity across the three tasks was substantially
related to g (β = −.52, p < .001), the second-order latent variable representing individual
differences in the basic aspects of speed of information processing was not associated with
g (β = .045, p = .726).
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Proceeding from the model depicted in Figure 5, we tested whether one of the first-
order latent variables with increasing factor loadings could explain portions of variance
in g above and beyond the variance explained by the second-order latent variable. When
simultaneously considering all three additional regressions, the process of estimation did
not converge so that three separate models were computed. In these models, the regression
coefficients were β = −.140, p = .444, and β = .001, p = .995 for the flanker task and the
continuous performance test, respectively. No model explained the data better than the
more parsimonious model without these additional regressions. For the Hick task, the
model did not converge.

In sum, these analyses, including the g factor of psychometric intelligence as a latent
variable representing the positive manifold, did not provide evidence for the notion that
selective and sustained attention as two different aspects of executive attention and speed
of decision making differentially predicted g as a representation of the positive manifold.
Rather, the different aspects of executive attention appeared to have a substantial amount of
variance in common, which they also shared with speed of decision making and, eventually,
with g.

Previous analyses proceeded from the assumption of the g factor as an entity un-
derlying the positive manifold. POT, however, is less concerned with accounting for the
representation of all correlations in the positive manifold. Instead, it assumes that various
aspects of executive attention uniquely explain these correlations. Therefore, the following
analyses focused on the correlations among BIS-Capacity, BIS-Speed, and BIS-Memory
depending on variables reflecting aspects of executive attention, speed of decision making,
and basic speed of information processing. For this purpose, we applied a network analysis
approach (Epskamp et al. 2012) in which the variables under investigation are depicted as
nodes and the strength of the relationships among these variables are represented by the
distance between the nodes and the thickness of the edges connecting the variables. For
the present purpose, the possibility of investigating partial correlations was of particular
interest. As each partial correlation in the network analysis is controlled for the influence
of all other variables in the network, changes in the positive manifold due to integrating
one or more aspects of executive attention can be easily depicted.

From the above described fixed-links models for the experimental tasks, we extracted
factor scores for “sustained attention”, “selective attention”, and “speed of decision mak-
ing”, as well as for the three constant latent variables representing basic speed. Together
with BIS-Capacity, BIS-Speed, and BIS-Memory, these six factor scores were submitted to a
first network analysis based on Pearson correlations. The result of this analysis is shown
in the left panel of Figure 6, with green and red edges representing significant positive
and negative correlations, respectively. The three BIS variables clustered together and,
similarly, the three variables of basic speed were also close together. In contrast to the
basic speed variables, the variables representing different aspects of executive attention
and speed of decision making were less unambiguously clustered, but closer to the in-
telligence cluster than the basic-speed variables. Interestingly, sustained attention was
somewhat separated despite its negative associations with BIS-Memory and BIS-Speed.
Moreover, while BIS-Memory was only related to sustained attention, both BIS-Capacity
and BIS-Speed were related to selective attention and speed of decision making. Finally, all
variables representing basic speed were significantly and negatively related to BIS-Speed
but not to BIS-Capacity or to BIS-Memory.
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aspects of psychometric intelligence (BIS-Capacity, BIS-Speed, and BIS-Memory), sustained attention, selective attention,
and speed of decision making, as well as three variables representing basic speed in the three experimental tasks. Green and
red edges indicate positive and negative relationships, respectively. Only the (partial) correlations that reached statistical
significance (p < .05) are presented. Abbreviations: Cap = BIS-Capacity; Mem = BIS-Memory; Spd = BIS-Speed; CPT = factor
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factor scores of the latent variable with increasing factor loadings from the Hick task (speed of decision making); C_C, C_F
and C_H = factor scores of the latent variables with constant factor loadings from the CPT (C_C), the flanker task (C_F), and
the Hick task (C_H).

To investigate the partial correlations, we used a step-wise procedure. In the first
step, the variance shared by all three aspects of intelligence was partialled out so that the
partial correlations reflected the variance, which was shared pairwise by BIS-Memory and
BIS-Speed, BIS-Capacity and BIS-Speed, and BIS-Memory and BIS-Capacity, respectively.
As can be seen from the first line of partial correlations in Table 1, the partial correlations
between BIS-Capacity, BIS-Speed, and BIS-Memory were substantially lower than the
corresponding Pearson correlations (see the first numbered line in Table 1 with the 95%
confidence intervals of these partial correlations reported in parentheses). In the next three
steps, either selective attention, sustained attention, or speed of decision making were
added to the model, respectively. The numbered lines 2 to 4 of Table 1 show the resulting
partial correlations, which hardly changed compared to the model, without controlling
for the influence of executive attention variables and speed of decision making, given that
none of these partial correlations were lower than the lower bounds of the confidence
intervals of the respective partial correlation in the first step.

Then, the combinations of two aspects of executive attention/speed of decision making
were included in the analyses (see numbered lines 5–7 of the partial correlations in Table 1).
These partial correlations were not substantially lower compared to the partial correlations
when only selective attention, sustained attention, or speed of decision making were
considered solely. A similar result was obtained when selective and sustained attention as
well as speed of decision making were controlled for simultaneously (see numbered line 8
of the partial correlations in Table 1).

When only the factor scores of the three latent variables with constant factor loadings
were controlled for, the partial correlations were again very similar to the previous partial
correlations (see numbered line 9 of the partial correlations in Table 1). Eventually, a
virtually identical pattern of results was obtained for the final model, in which all the
variables were controlled for (see numbered line 10 of the partial correlations in Table 1).
Again, the partial correlations in this final model were not lower than the lower bounds
of the confidence intervals of the partial correlations in the first model. Thus, regardless
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of the type of controlled processes and, most surprisingly, irrespective of the number of
controlled processes, the positive manifold always changed in a very similar way.

The final network analysis based on the partial correlations and including all the
variables is depicted in the right panel of Figure 6. The three aspects of intelligence as well
as the three aspects of basic speed still clustered together. Selective attention and speed of
decision making in the Hick task were also still close to each other, while both lost their
relationship to sustained attention. Furthermore, selective attention was still related to
BIS-Capacity, but no longer to BIS-Speed. As in the correlation-based network analysis,
selective attention was unrelated to BIS-Memory and sustained attention was related to
BIS-Speed—even when all other influences were controlled for in the partial-correlation-
based network analysis. Finally, speed of decision making as well as all three variables
of basic speed were unrelated to aspects of psychometric intelligence, when the variance
shared with all other variables was controlled for.

4. Discussion

The present study examined the relationship between two different aspects of execu-
tive attention (selective attention and sustained attention), speed of decision making and
the positive manifold of correlations between different aspects of psychometric intelligence
(BIS-Capacity, BIS-Speed, and BIS-Memory). For this purpose, two different approaches
were applied. With the first approach, the positive manifold was represented by a g fac-
tor to probe whether different aspects of executive attention explain unique or common
portions of variance in g. Although both aspects of executive attention as well as speed of
decision making were significantly related to g, we found no evidence that one of them
explained portions of variance in g above and beyond the variance explained by the others.
The second approach used network analyses with partial correlations to investigate the
influence of the two aspects of executive attention and speed of decision making on the
single correlations of the positive manifold. Partial correlations were computed between
BIS-Capacity and BIS-Memory, BIS-Capacity and BIS-Speed, as well as BIS-Memory and
BIS-Speed with the variance common to all three aspects of intelligence partialled out.
Then, the influence of sustained and selective attention as well as speed of decision making
on these partial correlations was investigated. Neither sustained or selective attention
nor speed of decision making substantially affected these relationships. Hence, both ap-
proaches failed to provide evidence for POT’s assumption that the positive manifold is the
result of overlapping domain-general processes.

Within the conceptual framework of POT, Kovacs and Conway (2016) assumed that
the g factor does not represent an entity but is the result of different aspects of execu-
tive attention causing (more or less pairwise) correlations between different aspects of
intelligence such as BIS-Capacity, BIS-Speed, and BIS-Memory. As has been shown by
Detterman (2000), the positive entries of a correlation matrix—even if not caused by the
same single mechanism or process—represent a sufficient condition for the extraction of a
g factor. Therefore, according to POT, the long-lasting search for Spearman’s basic function
underlying the g factor has not been successful because there is no such basic function.
Instead, different domain-general processes contribute differentially to the correlations
of the positive manifold. Executive functions (or aspects of executive attention) are es-
pecially emphasized by POT because they refer to the activation or the maintenance of
goal-relevant information and to the suppression of goal-irrelevant information. These
aspects of executive attention are required by various tasks, even when these tasks belong
to different group factors (e.g., spatial and verbal abilities). For this reason, they are con-
sidered domain-general and should cause correlations between otherwise distinct areas
of information processing. POT’s core assumption of overlapping processes causing the g
factor in a formative (rather than a reflective) way is enthralling and plausible but certainly
needs empirical validation.

In the present study, we started the investigation with a traditional approach to the
positive manifold by extracting a g factor from BIS-Capacity, BIS-Speed, and BIS-Memory.
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In all three experimental tasks, the means and variances of RTs increased from the simple
to the most complex task condition, pointing to increasing demands on executive attention
in the CPT and the flanker task, and an increasing number of decisions in the Hick task. By
means of fixed-links modeling, selective attention and sustained attention were represented
by latent variables, which described the increasing variance across the three conditions
of the flanker task and the CPT, respectively. In the Hick task, the latent variable with
increasing factor loadings from the 0-bit to the 2-bit condition was interpreted to reflect
speed of decision making. The fixed-links modeling approach also allowed for the control
of the more basic aspects of speed of information processing, which were functionally
independent of the experimental manipulation and reflected processes such as speed of
stimulus encoding and motor execution.

Combining the g factor model of intelligence with the measurement models for the
CPT, flanker task, and Hick task revealed that sustained attention, selective attention, as
well as speed of decision making were indeed related to g. Of particular interest for the
present purpose was the finding that neither sustained or selective attention nor speed
of decision making explained portions of g variance independently from the other two
aspects. Sustained and selective attention as well as speed of decision making shared
a substantial amount of variance. Furthermore, this common variance facilitated the
extraction of a higher-order latent variable, which shared about 25% of the variance in g.
Neither sustained or selective attention nor speed of decision making explained further
variance in g beyond the amount explained by the higher-order latent variable. Our finding
of a substantial portion of shared variance between aspects of executive attention and
intelligence is consistent with a large number of previous reports (Friedman and Miyake
2017; Friedman et al. 2008; Tsukahara et al. 2020). It should be noted though that other
studies have failed to establish a higher-order latent variable (e.g., Friedman et al. 2006;
Rey-Mermet et al. 2019).

The finding that the three latent variables representing different aspects of executive
attention and speed of decision making shared a substantial portion of common variance
as well as the fact that this common variance was shared with g contradicted the above-
mentioned assumptions of POT. The representation of the positive manifold by the g
factor, however, might have concealed the fact that single correlations in the positive
manifold are differentially related to aspects of executive attention (and speed of decision
making) as proposed by POT. To probe this idea, we employed a network analysis approach
based on partial correlations. It was of particular interest in these analyses whether single
correlations between aspects of psychometric intelligence would differentially decrease
when controlled for one or more aspects of executive attention. The outset was quite
promising for these analyses because selective attention correlated significantly with all
three aspects of psychometric intelligence, but sustained attention only correlated with
BIS-Memory and BIS-Speed, and speed of decision making in the Hick task only correlated
with BIS-Capacity and BIS-Speed. At first sight, this pattern of results might be considered
as supporting evidence for POT. The partial correlations, however, revealed that none of
the correlations between pairs of aspects of intelligence were substantially decreased when
controlled for selective or sustained attention or speed of decision making. Thus, similar
to the outcome obtained in the investigation of g, the results of the network analyses did
not support the assumptions of POT. Rather, our results indicate that different aspects of
executive attention have something in common, which is also shared by speed of decision
making. This communality appeared to be related to the common variance of all aspects of
psychometric intelligence which means to g.

With the fixed-links modeling approach, we aimed to measure aspects of executive
attention and speed of decision making and, concurrently, to control for more basic aspects
unrelated to the experimental manipulation of task demands such as speed of stimulus
encoding and motor execution. Nevertheless, the focus on RT measures in the present
study might be considered a limitation as the same method of measurement can easily lead
to a bias, such as speed-accuracy trade-offs, which can only be controlled for when different
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methods of measurement are used. From this point of view, a more heterogeneous battery
of executive attention tasks is recommended for future studies. Such a battery could tap,
for example, the most common taxonomy of executive attention that is based on the work
by Friedman and Miyake (Friedman et al. 2006; Friedman et al. 2008) with the three basic
functions referred to as “working-memory updating”, “pre-potent response inhibition”,
and “task-set shifting” (Friedman and Miyake 2017). However, extensions of this frame-
work by relational integration (Himi et al. 2021) or more fine-grained investigations of
different aspects of inhibition (Rey-Mermet et al. 2018) might also be promising to examine
whether other aspects of executive attention—primarily when based on error rates rather
than RT measures—differentially account for correlations in the positive manifold.

The high correlation between selective and sustained attention as two aspects of
executive attention might be surprising given that previous research pointed to distinct
attentional and neural networks underlying selective and sustained attention (e.g., Fan
et al. 2002; Raz and Buhle 2006). The correlational approach in the present study, however,
is not well suited to decide whether two or more processes are distinct. If a biological
characteristic of the brain such as white matter integrity leads to individual differences
in general brain functioning (Penke et al. 2012), individuals with better function in one
network will probably also show better function in other networks. Garlick (2002) put
forward a similar (and more elaborated) idea to explain the positive manifold of psychome-
tric intelligence by means of neural plasticity. Proceeding from the assumption of such a
brain characteristic (whether white-matter integrity, neural plasticity, or any other), which
affects most or all brain regions, individual differences in most or all kinds of information
processing should be affected by this characteristic. More precisely, if the completion of a
task needs a certain number of single processes and each process is affected by this brain
characteristic, then it is reasonable to assume that the performance in this task will be more
affected than the performance in another task that requires fewer processes. As a result,
performances in tasks requiring a higher number of processes should be more strongly
associated with each other rather than performances in tasks requiring a lower number of
processes. Such a pattern became evident in the present data and is depicted in Figure 6,
since the strongest correlations were obtained among the three aspects of psychometric
intelligence with each aspect comprising a high number of different processes. Correlations
between psychometric intelligence and aspects of executive attention as well as speed of
decision making were lower—maybe due to the lower number of processes required by
the experimental tasks compared to the psychometric intelligence tests. The correlations
among sustained and selective attention as well as speed of decision making, in turn,
were in a similar range as those between these variables and aspects of intelligence. This
suggests again that the number of required processes might be the limiting factor. Finally,
the weakest correlations were found between aspects of psychometric intelligence and
the latent variables representing basic aspects of speed of information processing and,
therefore, representing the lowest number of processes.

Our executive attention and speed of decision making latent variables might therefore
just describe the increasing number of processes required across the three conditions of each
task, representing the core of task complexity. From this point of view, our results are in line
with the complexity hypothesis (e.g., Stankov 2000; Vernon and Weese 1993), which holds
that an increase in the complexity of an RT task leads to a stronger correlational relationship
between RT and psychometric intelligence—regardless of the specific operations required
by the RT task. This would also explain why increasing the number of decisions in the Hick
task led to a similar effect for the RT–intelligence relationship as the increase in the demands
on executive attention in the CPT and the flanker task. It should be noted, however, that
the interpretation of task complexity on the basis of the number of the required processes
differs from the one proposed by POT. According to POT, complexity “refers to the extent
to which a test taps executive/attentional processes” (Kovacs and Conway 2016, p. 164)
and aspects of executive attention are conceptualized as top-down processes enabling
goal-oriented behavior. Oberauer (2016) casts doubt on the assumption of processes, which



J. Intell. 2021, 9, 37 15 of 17

are more general than others, since those processes are not considered in most models
of cognitive control. Our results can be easily and quite parsimoniously explained by
complexity as defined by the number of processes required for successfully performing a
given task. A more systematic investigation of this idea, however, would require a more
balanced selection of tasks with several tasks on different aspects of executive attention
as well as different tasks in which—similar to the Hick task—the number of (the same)
processes to be executed is manipulated to contrast their prediction of g or correlations in
the positive manifold.

Finally, the fact that the aspects of executive attention, speed of decision making, and
their interplay with aspects of psychometric intelligence did not support the assumptions
made by POT does not necessarily mean that other aspects of executive attention will also
fail to show a pattern of results as predicted by POT. Even if the present results were not
consistent with POT, a rejection of POT would be premature. Therefore, our study should
be considered as a paradigmatic proposal of how to examine major assumptions of POT
rather than a (final) judgment of its validity.

Author Contributions: Conceptualization, S.J.T. and T.H.R.; methodology, S.J.T., H.M.v.G., O.P.;
software, O.P.; formal analysis, O.P., S.J.T., H.M.v.G.; investigation, O.P.; resources, S.J.T., T.H.R.;
writing—original draft preparation, S.J.T.; writing—review and editing, T.H.R., H.M.v.G.; visual-
ization, S.J.T., H.M.v.G.; funding acquisition, S.J.T., T.H.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Swiss National Science Foundation [Grant No. 100014_146034].

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board of the faculty of human
sciences at the University of Bern (approval no. 2012-9-189242).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Data are available at https://osf.io/jgxsr, accessed on 23 June 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
Bartholomew, David J., Ian J. Deary, and Martin Lawn. 2009. A new leas of life for Thomson’s bonds model of intelligence. Psychological

Review 116: 567–79. [CrossRef]
Carroll, John B. 1993. Human Cognitive Abilities: A Survey of Factor Analytic Studies. Cambridge: Cambridge University Press.
Deary, Ian J. 2012. Intelligence. Annual Review of Psychology 63: 453–82. [CrossRef] [PubMed]
Detterman, Douglas K. 2000. General intelligence and the definition of phenotypes. In The Nature of Intelligence, Novartis Foundation

Symposium. Edited by Gregory R. Bock, Jamie A. Goode and Kate Webb. Chichester: Wiley, pp. 136–48.
Draheim, Christopher, Jason S. Tsukahara, Jessie D. Martin, Cody A. Mashburn, and Randall W. Engle. 2021. A toolbox approach to

improving the measurement of attention control. Journal of Experimental Psychology: General 150: 242–75. [CrossRef]
Epskamp, Sacha, Angélique O. J. Cramer, Lourens J. Waldorp, Verena D. Schmittmann, and Denny Borsboom. 2012. qgraph: Network

visualizations of relationships in psychometric data. Journal of Statistical Software 48: 1–18. [CrossRef]
Fan, Jin, Bruce D. McCandliss, Tobias Sommer, Amir Raz, and Michael I. Posner. 2002. Testing the efficiency and independence of

attention networks. Journal of Cognitive Neuroscience 14: 340–47. [CrossRef]
Friedman, N. P., and A. Miyake. 2017. Unity and diversity of executive functions: Individual differences as a window on cognitive

structure. Cortex 86: 186–204. [CrossRef]
Friedman, Naomi P., Akira Miyake, Robin P. Corley, Susan E. Young, John C. DeFries, and John K. Hewitt. 2006. Not all executive

functions are related to intelligence. Psychological Science 17: 172–79. [CrossRef]
Friedman, Naomi P., Akira Miyake, Susan E. Young, John C. DeFries, Robin P. Corley, and John K. Hewitt. 2008. Individual differences

in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology, General 137: 201–25. [CrossRef]
Garlick, Dennis. 2002. Understanding the nature of the general factor of intelligence: The role of individual differences in neural

plasticity as an explanatory mechanism. Psychological Review 109: 116–36. [CrossRef]
Halperin, Jeffrey M., Vanshdeep Sharma, Edward Greenblatt, and Susan T. Schwartz. 1991. Assessment of the continuous performance

test: Reliability and validity in a nonreferred sample. Psychological Assessment: A Journal of Consulting and Clinical Psychology 3:
603–08. [CrossRef]

https://osf.io/jgxsr
http://doi.org/10.1037/a0016262
http://doi.org/10.1146/annurev-psych-120710-100353
http://www.ncbi.nlm.nih.gov/pubmed/21943169
http://doi.org/10.1037/xge0000783
http://doi.org/10.18637/jss.v048.i04
http://doi.org/10.1162/089892902317361886
http://doi.org/10.1016/j.cortex.2016.04.023
http://doi.org/10.1111/j.1467-9280.2006.01681.x
http://doi.org/10.1037/0096-3445.137.2.201
http://doi.org/10.1037/0033-295X.109.1.116
http://doi.org/10.1037/1040-3590.3.4.603


J. Intell. 2021, 9, 37 16 of 17

Himi, Samsad A., Markus Bühner, and Sven Hilbert. 2021. Advancing the understanding of the factor structure of executive functioning.
Journal of Intelligence 9: 16. [CrossRef] [PubMed]

Jäger, Adolf O. 1984. Intelligenzstrukturforschung: Konkurrierende Modelle, neue Entwicklungen, Perspektiven. [Research in the
structure of intelligence: Competing models, new developments, perspectives]. Psychologische Rundschau 35: 21–35.

Jäger, Adolf O., Heinz-Martin Süß, and Andre Beauducel. 1997. Berliner Intelligenzstruktur Test Form 4. Göttingen: Hogrefe.
Jensen, Arthur R. 1982. Reaction time and psychometric g. In A model for intelligence. Edited by Hans J. Eysenck. New York: Springer,

pp. 93–132.
Johnson, Wendy, and Thomas J. Bouchard Jr. 2005. The structure of human intelligence: It is verbal, perceptual, and image rotation

(VPR), not fluid and crystallized. Intelligence 33: 393–416. [CrossRef]
Kovacs, Kristof, and Andrew R. A. Conway. 2016. Process overlap theory: A unified account of the general factor of intelligence.

Psychological Inquiry 27: 151–77. [CrossRef]
Kovacs, Kristof, and Andrew R. A. Conway. 2019. A unified cognitive/differential approach to human intelligence: Implications for IQ

testing. Journal of Applied Research in Memory and Cognition 8: 255–72. [CrossRef]
Kyllonen, Patrick C. 1996. Is working memory capacity Spearman’s g? In Human Abilities: Their Nature and Measurement. Edited by Ian

Dennis and Patrick Tapsfield. Mahwah: Erlbaum, pp. 49–75.
McGrew, Kevin S. 2009. CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric

intelligence research. Intelligence 37: 1–10. [CrossRef]
Neubauer, Aljoscha C., Christa Bauer, and Gerald Höller. 1992. Intelligence, attention, motivation and speed-accuracy tradeoff in the

Hick paradigm. Personality and Individual Differences 13: 1325–32. [CrossRef]
Oberauer, Klaus, Heinz-Martin Süß, Werner W. Wittmann, and Oliver Wilhelm. 2008. Which working memory functions predict

intelligence? Intelligence 36: 641–52. [CrossRef]
Oberauer, Klaus. 2016. Parameters, not processes, explain general intelligence. Psychological Inquiry 27: 231–35. [CrossRef]
Pahud, Olivier, Thomas H. Rammsayer, and Stefan J. Troche. 2018. Putting the temporal resolution power (TRP) hypothesis to a critical

test: Is the TRP-g relationship still more fundamental than an optimized relationship between speed of information processing
and g? Intelligence 70: 52–60. [CrossRef]

Penke, Lars, Susana Muñoz Maniega, Mark E. Bastin, Maria C. Valdés Hernandez, Catherine Murray, Natalie A. Royle, John M. Starr,
Joanna M. Wardlaw, and Ian J. Deary. 2012. Brain white matter tract integrity as a neural foundation for general intelligence.
Molecular Psychiatry 17: 1026–30. [CrossRef]

Proctor, Robert W., and Darryl W. Schneider. 2018. Hick’s law for choice reaction time: A review. Quarterly Journal of Experimental
Psychology. [CrossRef] [PubMed]

Rammsayer, Thomas H., and Susanne Brandler. 2007. Performance on temporal information processing as an index of general
intelligence. Intelligence 35: 123–39. [CrossRef]

Raz, Amir, and Jason Buhle. 2006. Typologies of attentional networks. Nature Reviews Neuroscience 7: 367–79. [CrossRef] [PubMed]
Raz, Sivan, Yair Bar-Haim, Avi Sadeh, and Orrie Dan. 2014. Reliability and validity of the online continuous performance test among

young adults. Assessment 21: 108–18. [CrossRef]
Rey-Mermet, Alodie, Miriam Gade, and Klaus Oberauer. 2018. Should we stop thinking about inhibition? Searching for individual and

age differences in inhibition ability. Journal of Experimental Psychology: Learning, Memory, and Cognition 44: 501–26. [CrossRef]
[PubMed]

Rey-Mermet, Alodie, Miriam Gade, Alessandra S. Souza, Claudia C. von Bastian, and Klaus Oberauer. 2019. Is executive control
related to working memory capacity and fluid intelligence? Journal of Experimental Psychology: General 148: 1335–72. [CrossRef]

Riccio, Cynthia A., Cecil R. Reynolds, Patricia Lowe, and Jennifer J. Moore. 2002. The continuous performance test: A window on the
neural substrates for attention? Archives of Clinical Neuropsychology 17: 235–72. [CrossRef]

Scheres, Anouk, Jaap Oosterlaan, James Swanson, Sharon Morein-Zamir, Nachson Meiran, Harry Schut, Laurens Vlasveld, and Joseph
A. Sergeant. 2003. The effect of methylphenidate on three forms of response inhibition in boys with AD/HD. Journal of Abnormal
Child Psychology 31: 105–20. [CrossRef]

Schreiber, James B., Amaury Nora, Frances K. Stage, Elizabeth A. Barlow, and Jamie King. 2006. Reporting structural equation
modeling and confirmatory factor analysis results: A review. The Journal of Educational Research 99: 323–37. [CrossRef]

Schweizer, Karl. 2008. Investigating experimental effects within the framework of structural equation modeling: An example with
effects on both error scores and reaction times. Structural Equation Modeling 15: 327–45. [CrossRef]

Schweizer, Karl. 2009. Fixed-links models for investigating experimental effects combined with processing strategies in repeated
measures designs: A cognitive task as example. British Journal of Mathematical and Statistical Psychology 62: 217–32. [CrossRef]
[PubMed]

Shipstead, Zach, Dakota R. B. Lindsey, Robyn L. Marshall, and Randall W. Engle. 2014. The mechanisms of working memory capacity:
Primary memory, secondary memory, and attention control. Journal of Memory and Language 72: 116–41. [CrossRef]

Spearman, Charles. 1904. “General intelligence”, objectively determined and measured. American Journal of Psychology 15: 201–93.
[CrossRef]

Spearman, Charles. 1927. The Abilities of Man: Their Nature and Measurement. New York: Macmillan.
Stankov, Lazar. 2000. Complexity, metacognition, and fluid intelligence. Intelligence 28: 121–43. [CrossRef]

http://doi.org/10.3390/jintelligence9010016
http://www.ncbi.nlm.nih.gov/pubmed/33809636
http://doi.org/10.1016/j.intell.2004.12.002
http://doi.org/10.1080/1047840X.2016.1153946
http://doi.org/10.1016/j.jarmac.2019.05.003
http://doi.org/10.1016/j.intell.2008.08.004
http://doi.org/10.1016/0191-8869(92)90175-O
http://doi.org/10.1016/j.intell.2008.01.007
http://doi.org/10.1080/1047840X.2016.1181999
http://doi.org/10.1016/j.intell.2018.08.002
http://doi.org/10.1038/mp.2012.66
http://doi.org/10.1080/17470218.2017.1322622
http://www.ncbi.nlm.nih.gov/pubmed/28434379
http://doi.org/10.1016/j.intell.2006.04.007
http://doi.org/10.1038/nrn1903
http://www.ncbi.nlm.nih.gov/pubmed/16760917
http://doi.org/10.1177/1073191112443409
http://doi.org/10.1037/xlm0000450
http://www.ncbi.nlm.nih.gov/pubmed/28956944
http://doi.org/10.1037/xge0000593
http://doi.org/10.1093/arclin/17.3.235
http://doi.org/10.1023/A:1021729501230
http://doi.org/10.3200/JOER.99.6.323-338
http://doi.org/10.1080/10705510801922621
http://doi.org/10.1348/000711007X268558
http://www.ncbi.nlm.nih.gov/pubmed/18162141
http://doi.org/10.1016/j.jml.2014.01.004
http://doi.org/10.2307/1412107
http://doi.org/10.1016/S0160-2896(99)00033-1


J. Intell. 2021, 9, 37 17 of 17

Süß, Heinz-Martin, and Andre Beauducel. 2015. Modeling the construct validity of the Berlin Intelligence Structure Model. Estudos de
Psicologia 32: 13–25. [CrossRef]

Thomson, Godfrey H. 1916. A hierarchy without a general factor. British Journal of Psychology 8: 271–81.
Tsukahara, Jason S., Tyler L. Harrison, Christopher Draheim, Jessie D. Martin, and Randall W. Engle. 2020. Attention control: The

missing link between sensory discrimination and intelligence. Attention, Perception, & Psychophysics 82: 3445–78. [CrossRef]
van der Maas, Han L. J., Conor V. Dolan, Raoul P. P. P. Grasman, Jelte M. Wicherts, Hilde M. Huizenga, and Maartje E. J. Raijmakers.

2006. A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review 113:
842–61. [CrossRef]

Vernon, Philip A., and Sandra E. Weese. 1993. Predicting intelligence with multiple speed of information-processing tests. Personality
and Individual Differences 14: 413–19. [CrossRef]

Wicki, Joël. 2014. Struktur- und Reliabilitätsanalyse einer modifizierten Kurzversion des Berliner Intelligenzstruktur-Tests [Structure
and reliability analysis of a modified short version of the Berlin intelligence structure test]. master thesis, University of Bern,
Bern, Switzerland. Unpublished.

http://doi.org/10.1590/0103-166X2015000100002
http://doi.org/10.3758/s13414-020-02044-9
http://doi.org/10.1037/0033-295X.113.4.842
http://doi.org/10.1016/0191-8869(93)90310-Y

	Introduction 
	Theoretical Background 
	The Present Study 

	Materials and Methods 
	Participants 
	Measurement of Psychometric Intelligence 
	Experimental Tasks 
	Flanker Task 
	Continuous Performance Test 
	Hick Task 
	Statistical Analyses 

	Results 
	Discussion 
	References

