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Abstract: Antibacterial resistance is observed as a public health issue around the world. Every day,
new resistance mechanisms appear and spread over the world. For that reason, it is imperative
to improve the treatment schemes that have been developed to treat infections caused by wound
infections, for instance, Staphylococcus epidermidis (S. epidermidis), Proteus mirabilis (P. mirabilis), and
Acinetobacter baumannii (A. baumannii). In this case, we proposed a method that involves mixing the
Gentamicin (Gen) with iron oxide nanoparticles (Fe3O4 NPs) and a polymer (polyethylene glycol
(PEG)) with Fe3O4 NPs. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR),
energy dispersive X-ray (EDX), scanning electron microscope (SEM), and transmission electron
microscope (TEM) were used to characterize Fe3O4 NPs. Zeta potential and dynamic light scat-
tering (DLS) were also assessed. The antibacterial activity of Fe3O4 NPs, Fe3O4 NPs+PEG, Fe3O4

NPs+Gen, and Fe3O4 NPs+PEG+Gen composites was investigated. The results showed a signifi-
cant improvement in the antibacterial activity of nanoparticles against bacterial isolates, especially
for the Fe3O4 NPs+PEG+Gen as the diameter of the inhibition zone reached 26.33 ± 0.57 mm for
A. baumannii, 25.66 ± 0.57 mm for P. mirabilis, and 23.66 ± 0.57 mm for S. epidermidis. The Fe3O4 NPs,
Fe3O4 NPs+PEG, Fe3O4+Gen, and Fe3O4+PEG+Gen also showed effectiveness against the biofilm
produced by these isolated bacteria. The minimum inhibitory concentration (MIC) of Fe3O4 NPs for
S. epidermidis was 25 µg mL−1 and for P. mirabilis and A. baumannii was 50 µg mL−1. The findings
suggest that the prepared nanoparticles could be potential therapeutic options for treating wound
infections caused by S. epidermidis, P. mirabilis, and A. baumannii.

Keywords: pathogenic bacteria; antibacterial activity; biofilm; PEG; Fe3O4 nanoparticle

1. Introduction

Wound infections are one of the most common causes of wound healing failure [1].
When the skin’s ability to protect itself from bacterial invasion is harmed, a substantial
amount of exudate accumulates at the damaged location, which along with body temper-
ature, creates a perfect environment for bacterial growth [2–4]. Staphylococcus epidermidis
is the most common Gram-positive bacteria that can cause a range of ailments when it
emerges at wound sites. These bacteria can cause serious infections, ranging from localized
skin infections to life-threatening conditions including bacteremia and pneumonia [5].
Gram-negative bacteria (such as Acinetobacter baumannii and Proteus mirabilis) can colonize
wounds and cause persistent infections [6]. The formation of biofilms, which are multicellu-
lar communities of microbial species that exhibit specific behavior and greater tolerance to
high doses of antimicrobial medications as well as the host’s immune response, is a major
problem in infected wounds [7,8]. There has recently been a surge in interest in developing
new wound dressings that can speed-up healing and prevent infection [9]. Recent increases
in bacterial resistance to antibiotics have resulted in serious health consequences. Bacterial
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resistance has emerged as one of the most difficult problems confronting the majority
of antibiotics around the world. Antibiotic resistance has been the subject of numerous
attempts to design safe and efficient treatment methods. Antibiotic resistance in bacteria
is caused by a variety of processes, including decreased antibiotic absorption and greater
antibiotic efflux from the microbial cell [10].

Scientists have been particularly interested in the subject of nanostructured materi-
als technology in recent years because several forms of metallic or oxide nanomaterials
offer appealing features and capabilities. Magnetic nanoparticles’ (MNPs) antibacterial
mechanisms are thought to be caused by two factors: The development of reactive oxygen
species (ROS) on the NPs’ surfaces causes oxidative stress inside the bacterial cell, resulting
in cell death [11]. Iron oxide nanoparticles ranging in size from 1 to 100 nm represent a new
trend that is increasingly being developed and of interest for adoption in research related
to medical applications. Gram-positive and Gram-negative bacteria cause human disease
in general. Different bacterial strains were found to be excellent inhibitors of various
synthesized metal oxide nanoparticles because Gram-positive and Gram-negative bacteria
have different cell walls, and the activity of metal oxide nanoparticles is directly reliant on
the bacterial strain [12].

Iron oxide nanoparticles can interact with bacterial cell membranes via electrostatic
contact, causing harmful oxidative stress in the bacterium by the generation of free radicals,
known as radical oxygen species (ROS) [13]. To synthesize iron oxide nanoparticles, various
approaches have been used, including the chemical method, which is simple, efficient,
and tractable and allows the size, composition, and form of the NPs to be controlled.
The iron oxides can be synthesized through the co-precipitation method of Fe2+ and Fe3+

by the addition of a base. The size, shape, and composition of iron NPs synthesized by
chemical methods rely upon the type of salt used, Fe2+ and Fe3+ ratio, pH, and ionic
strength [14]. A surfactant or a polymer is frequently added at the time of preparation to
prevent the nanoscale particle stabilizer from aggregation. The majority of these polymers
have substrate-specific adhesion [15]. MNPs can be synthesized and surface-modified by
using polyethylene glycol, poly (vinyl alcohol), poly (lactic-co-glycolic acid), poly (vinyl-
pyrrolidone), and poly (ethylene-co-vinyl acetate) [16]. Nanoparticles have a high potential
as components of wound dressings as an alternative to antibiotics because they have fewer
side effects and are not prone to causing microbial resistance. This makes it possible to use
them to inhibit the growth of drug-resistant bacteria [17].

Several review articles are known to deal with various wound healing materials, i.e.,
nanofibers modified with silver nanoparticles [18], electroconductive films, membranes,
hydrogels [19], nanocomposites based on polylactic acid and zinc oxide nanoparticles [20],
polysaccharide antibacterial hydrogels [21,22], hydrogels with copper nanoparticles [23],
membranes with gold or silver nanoparticles [24], and others. The current study aimed to
synthesize Fe3O4 NPs coated with polyethylene glycol (PEG) and combined with Gentam-
icin (Gen) antibiotic, and to evaluate their antibacterial, anti-biofilm, determination growth
curve, minimum inhibitory concentration (MIC), and minimum bactericidal concentration
(MBC) on three types of pathogenic bacteria, including S. epidermidis, P. mirabilis, and
A. baumannii.

2. Materials and Methods
2.1. Materials and Reagents

The chemicals employed in this research were ferrous chloride di-hydrate (FeCl2·2H2O,
MW: 162.78 gmoL−1), ferric chloride anhydrous (FeCl3, MW: 162.2 gmoL−1), ammonium
hydroxide (NH4OH, MW: 35.04 gmoL−1), phosphate buffer solution (PBS), and Gen (MW:
477.59 gmoL−1), which were procured from Sigma-Aldrich, St. Louis, MO, USA. Deionized
water (D.I) was used. PEG was purchased from Beijing Company, Beijing, China. Mueller-
Hinton agar medium, brain–heart infusion broth, and tryptone soy broth (TSB) medium
from HiMedia, Thane West, India, were used in this study. The dyes used in this study
were crystal violet and Giemsa stain (Sigma-Aldrich, Darmstadt, Germany).
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2.2. Preparation of Iron Oxide Nanoparticles (Fe3O4)

The Fe3O4 NPs were prepared using a co-precipitation process described by Lin and
his coworkers [25], with minor modifications. Iron (II) chloride dihydrate (FeCl2·2H2O)
has been used instead of iron (II) chloride tetrahydrate (FeCl2·4H2O) and iron (lll) chloride
anhydrous (FeCl3) instead of iron (III) chloride hexahydrate (FeCl3·6H2O). Briefly, in 50 mL
of deionized water, 30 mmol of iron (II) chloride dihydrate (FeCl2·2H2O) and 45 mmol of
iron (III) chloride anhydrous (FeCl3) were dissolved. For the synthesis of magnetic iron
oxide nanoparticles, two different iron chlorides were used (ferrous and ferric precursor
salts). The maintenance of Fe2+ and Fe3+ molar ratios at exactly 1:2 is very important for
the purity of Fe3O4. Then, under steady stirring, 25 mL of ammonium hydroxide (NH4OH)
was added. The solution was heated to 80 ◦C for 1 h with constant stirring. The black
precipitated nanoparticles were washed several times with deionized water to remove
impurities and collected using an external magnet after the reaction was completed. The
iron oxide nanoparticles’ precipitate was dried in a hot-air oven for 24 h at 65 ◦C.

2.3. Coating PEG with Fe3O4 NPs

The previously prepared iron oxide nanoparticles were mixed with the aqueous
solution of PEG in a 1:1 ratio (50 mL of Fe3O4 NPs aqueous solution with 50 mL of PEG)
and placed on a magnetic stirrer for 2 h [26].

2.4. Loading of Antibiotic Gen

Gen and Fe3O4 NPs were made by mixing 100 mL of Fe3O4 NPs prepared by the
above method with a 0.001 M (100 mL) aqueous solution of Gen. To improve the inter-
action between the antibiotic and the magnetic iron oxide NPs (Fe3O4), constant stirring
under ultra-sonication was used. The sonication was performed using a bath-type digital
ultrasonic operating at 20 KHz, 5 W, for 30 min [27].

2.5. Preparation of the Gen-PEG-Fe3O4 NPs

This nanocomposite was made by mixing the Gen aqueous solution (0.001 M) with
20 mL of the prepared PEG-Fe3O4 NPs and magnetically stirring the solution for 2 h at
room temperature to enhance Gen uptake [26].

2.6. Characterization of Fe3O4 NPs

The prepared Fe3O4NPs were confirmed by using the FT-IR analysis (8000 Series,
Shimadzu, Japan) as a good method to investigate the various functional groups in Fe3O4
NPs. The spectral range of iron oxide nanoparticles was measured between wavelengths
of 4000–500 cm−1 using X-ray diffraction (XRD-6000, Shimadzu, Japan) to determine
crystallinity [28,29]. TEM and SEM-EDX from Zeiss, Jena, Germany, were used to determine
the size and morphological features of the NPs, and EDX was used to determine the
chemical elements. Their size and stability were determined using zeta potential and DLS
(SZ-100-Horiba, Indonesia) [30].

2.7. Collection of Bacterial Isolates

Three pathogenic bacterial strains were used in this study. The S. epidermidis, P. mirabilis,
and A. baumannii were collected from the microbiology laboratory of Al-Kadhimiya Teach-
ing Hospital and Medical City Hospital in Baghdad, Iraq.

2.8. Antibacterial Activity

For studying the effect of Fe3O4 NPs, Fe3O4 NPS+PEG, Fe3O4 NPs+Gen, Fe3O4
NPs+PEG+Gen, and Gen, only on the growth of bacterial isolates, Mueller–Hinton agar
medium was prepared. The bacterial suspension in this study was prepared and compared
with the standard McFarland tube. The plates were swabbed with selected strains and the
dishes were allowed to dry at room temperature. Wells were punched into the agar using
a sterilized well cutter. The well was loaded with 80 µL at a concentration of 100 µg mL−1
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of each of Fe3O4 NPs, Fe3O4 NPs+PEG, Fe3O4 NPs+Gen, Fe3O4 NPs+PEG+Gen, and Gen.
The dishes were incubated at 37 ◦C for 24 h and the inhibition zone diameter was recorded
in millimeters [31,32]. The fold increase area was calculated by the following equation:

Fold increase % = (b − a)/a × 100 (1)

where (a) refers to Fe3O4 NPs or Gen alone, and (b) refers to Fe3O4 NPs+PEG and Fe3O4
NPs+Gen.

2.9. Effect of Prepared Nanoparticles on Bacterial Biofilm by Tube Method

This approach was carried out by culturing a single colony for 24 h in tryptone
soy broth (TSB) medium in test tubes with a volume of 5 mL for each tube and adding
1 mL of each concentration of Fe3O4 NPs, Fe3O4 NPs+PEG, Fe3O4 NPs+Gen, and Fe3O4
NPs+PEG+Gen (12.5, 25, 50, 100 µg mL−1) for each tube. After 24 h of the incubation
period, the medium was removed and the tubes were washed with a phosphate buffer
solution and dried, then they were dyed with 0.1% of crystal violet dye for 5 min. The dye
was removed from the tubes and washed with tap water to remove the rest of the dye, and
the tubes were left inverted to dry. The results were recorded as follows: the result was
(−) if there was no biofilm production, the result was given as (+) if the biofilm formation
was weak, the result (+ +) was given if the biofilm formation was medium, and the result
(+ + +) was given if the biofilm formation was dense [33].

2.10. Determination of the MIC and MBC

MIC and MBC for Fe3O4 NPs were calculated. In brief, 0.8 mL of brain–heart infusion
broth medium was added to test tubes, then 0.1 mL of Fe3O4 NPs, Fe3O4 NPS+PEG,
Fe3O4+Gen, and Fe3O4+PEG+Gen (12.5, 25, 50, 100 µg mL−1) was added. Then, 0.1 mL of
suspension for each tested bacteria, S. epidermidis, P. mirabilis, and A. baumannii, compared
to a standard McFarland tube, were added. The tubes were shaken well and incubated at
37 ◦C for 24 h, and then the results were recorded based on turbidity. Then, 100 µL of the
mixture was placed over Mueller–Hinton agar medium and incubated for 24 h at 37 ◦C,
with the finding recorded based on whether there was growth (+) or no growth (−) [34].

2.11. Determination of Growth Curve

This assay was performed according to the method of Precious Ayanwale and Reyes-
López [35], with some modifications depending on the appearance of a difference in the
growth of bacteria treated with different treatments. Soy broth medium was inoculated by
adding 0.5 mL of the previously prepared bacterial suspension, then adding 1 mL of Fe3O4
NPs, Fe3O4 NPs+PEG, Fe3O4 NPs+Gen, and Fe3O4 NPs+PEG+Gen. After an incubation
period of 0 to 90 min, 0.2 mL of the suspension was transferred to Mueller–Hinton medium
and incubated for 24 h at 37 ◦C. The measurements were recorded depending on whether
there was an appearance of a difference in growth or not.

2.12. Statistical Analysis

Statistical measurements of the results were investigated by uploading to SPSS (version 16)
software and evaluated using one-way ANOVA at a 0.05 level of statistical significance. The
data were presented as mean ± SE. All experiments were carried out in triplicate.

3. Results and Discussion
3.1. Synthesis of Fe3O4 NPs

Iron oxide nanoparticles were successfully synthesized by the co-precipitation method,
as shown in Figure 1. The composition of Fe3O4 was confirmed by changing the color to
black with ferromagnetic properties, in agreement with [36]. Figure 2A shows that when
a magnet is pulled, the NPs are easily distributed by simple shaking. Figure 2B depicts
the separation of Fe3O4 NPs by placing an external magnet near the glass, demonstrating
that the Fe3O4 NPs have magnetic properties. Fe3O4 NPs coated with PEG (polyethylene
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glycol) are long polymer chains with many advantages, including non-antigenic, non-
immunogenic, and protein-resistant polymers [37]. Furthermore, when PEG was added,
it enhanced the compatibility between the nanoparticles and the aqueous solution and
reduced toxicity, preventing the surface particles from oxidizing and facilitating storage
or transportation. Then, the antibiotic Gen was loaded on synthesized nanoparticles and
mixed with the Fe3O4 NPs+PEG and evaluated for antibacterial activities [38].
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3.2. Characterization of Prepared Nanoparticles
3.2.1. FTIR Spectrometer

The FTIR spectra of Fe3O4 NPs, Fe3O4 NPs+PEG, Fe3O4 NPs+Gen, and Fe3O4 NPs+
PEG+Gen are shown in Figure 3 and in Table 1. FTIR analysis was carried out in the
wavenumber interval range of 4000–500 cm−1. The data plot transmits the wavenumber of
infrared light in the form of sharp absorption peaks at certain wavenumbers resulting from
the vibration of certain functional groups. In Fe3O4 NPs, stretching vibration of the Fe-O
functional group occurs for absorption of the infrared wavenumber at 667.43 cm−1, and the
occurrence of a bending vibration of H-O-H at 1633.94 cm−1 was identified. The vibration
of the O-H (hydroxyl) group is around 3435.24 cm−1; in addition, a weak peak recorded at
2921.06 cm−1 may be due to the bending vibration of de-ionized water adsorbed on the
surface of Fe3O4 [39]. In Fe3O4 NPs+PEG, the main absorbance of the ether stretch band is
seen at 1096.91 cm−1 and the vibration of the O-H group is around 3400.46 cm−1. Bending
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vibrations of -CH2 and -CH bands are seen at 1455.41, 1299.97, and 949.63 cm−1, respectively.
Furthermore, H-O-H bending is seen at around 1650.86 cm−1. Fe-O vibration appeared at
around 666.89 cm−1, while at 2919.92 cm−1 due to the OH stretching vibration band [40].
In Fe3O4 NPs+Gen, the peak at 3435.47 cm−1 is attributed to O-H stretching vibrations,
and H-O-H bending is seen at around 1633.84 cm−1. In addition to the Fe-O vibrating
around 667.13 cm−1, the C-N stretching of Gen is also visible at 1455.12 cm−1 [41]. In Fe3O4
NPs+PEG+Gen, the main absorbance of the ether stretch band is seen at 1095.48 cm−1.
Bending vibrations of -CH2 and -CH bands are seen at 1471.37, 1299.96, and 949.33 cm−1,
respectively. Furthermore, Fe-O vibration appears at around 666.98 cm−1, H-O-H bending
is seen at around 1644.44 cm−1, and the vibration of the O-H (hydroxyl) group is at around
3400.14 cm−1 [42]. In conclusion, the peaks at around 666 and 667 cm−1 are attributed to
the stretching vibration of the Fe-O bond, confirming the presence of crystalline Fe3O4
NPs for all. After coating with the polymer of PEG, new absorption bands at 1455.41
and 1471.37 cm−1 for Fe3O4 NPs+PEG and Fe3O4 NPs+PEG+Gen are prominent for the
stretching vibration of C-H but not for Fe3O4 NPs. This is ascribable to the absence of carbon
in bare Fe3O4 NPs. Moreover, the covalent grafting of PEG onto nanoparticles was also
confirmed by the distinct adsorption peaks around 2919.92 and 2918.98 cm−1, which are
due to the vibration of methylene of PEG for Fe3O4 NPs+PEG and Fe3O4 NPs+PEG+Gen.
In Fe3O4 NPs+Gen, the minor peak at 1455.12 cm−1 corresponds to the bending vibration
of C-H bonds from methyl groups in Gen [43]. In addition, there is a broadband around
3435.24, 3400.46, 3435.47, and 3400.14 cm−1 caused by the stretching vibration of hydroxyl
group O-H.
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Table 1. Functional group in Fe3O4 NPs.

Bond Type Functional
Group

Wavenumber (cm−1)

Fe3O4 NPs Fe3O4
NPs+PEG

Fe3O4
NPs+Gen

Fe3O4
NPs+PEG+Gen

O-H Hydroxyl 3435.24 3400.46 3435.47 3400.14

C-H Stretching - 1455.41 1455.12 1471.37

H-O-H Bending 1633.94 1650.86 1633.84 1644.44

Fe-O Ferrous Oxide 667.43 666.89 667.13 666.98
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3.2.2. X-ray Diffraction

The Fe3O4 NPs were examined by XRD, which was used to determine the crystal
structure and the average size of the particles. As shown in Figure 4, the agreement of the
main peaks obtained at (168), (160), (156), (172), (200), (308), (339), and (104) corresponds
to the crystalline distance. Bragg reflection was observed at 2θ (θ = diffraction angle)
values of 30.4◦, 40.44◦, 43.31◦, 52.91, 57.27◦, 58.43◦, 62.81◦, and 78.02◦, respectively. These
results confirm that the material examined indicates that the magnetic powders of black
color are Fe3O4 NPs and that they are of high purity. The strong peaks also indicate
that Fe3O4 NPs are pure and have an excellent crystallinity structure. The observed peak
amplitude corresponds to the small particle size [44]. The Fe3O4 NPs+PEG spectra were
reduced in intensity because of the addition of PEG, which has amorphous properties. It
was discovered that the Fe3O4 NPs+PEG crystal length was (133), (165), and (254) at 2θ
(θ = diffraction angle) values of 35.51◦, 57.08◦, and 62.77◦, respectively. This corresponds
with [44]. In the XRD spectra of Fe3O4 NPs+PEG+Gen, the diffraction peaks were (128),
(123), (136), (153), and (249) at 2θ (θ=diffraction angle) values of 30.09◦, 35.45◦, 43.18◦, 56.98◦,
and 62.61◦, respectively [45]. The mean grain size was calculated using the Debye–Scherrer
formula, as shown in Equation (2):

D = k λ /β Cos θ (2)

where D is the mean grain size, k is the Scherrer constant (0.89), λ is the X-ray diffraction
wavelength, θ is the Bragg diffraction angle in degrees, and β (in radians) is the full width at half-
maximum intensity. The mean grain sizes calculated using this equation for Fe3O4 NPs, Fe3O4
NPs+PEG, and Fe3O4 NPs+PEG+Gen were approximately 37.8, 44.3, and 48.3 nm, respectively.
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3.2.3. Scanning Electron Microscopy (SEM)

The morphology and size of iron oxide nanoparticles were examined by the SEM assay.
The image J software was utilized to determine the particle diameter size that is synthesized
on the nanometer scale. Micrographs taken at exceptional magnifications are provided in
Figure 5, left row. With the observation of particles and aggregation, Fe3O4 NPs showed
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a more structural arrangement with a size range of 21.88 to 51.11 nm [46], while Fe3O4
NPs+PEG showed a size range of 21.09 to 55.54 nm. There were clear differences between
Fe3O4 NPs and after adding PEG, whereby the Fe3O4 NPs appears to be dispersed, whereas
without PEG, the Fe3O4 NPs appears to be agglomerated [47]. For Fe3O4 NPs+PEG+Gen,
the SEM image size range between 20.51 and 36.23 nm shows that the level of agglomeration
decreased because of the Gen coating and the PEG surfactant may absorb selectively onto
preferred facets of the crystal. The reduction in particle size after PEG coating was caused
by the PEG chains bound to Fe3O4 NPs, inhibiting crystal growth. The average size of the
nanoparticles obtained was less than 100 nm. This is suitable for nano-fluid that must have
a size range of 1–100 nm [26].
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EDX analysis of the data weights shows that the EDX results of Fe3O4 NPs were: Fe:
72.9%, has peaks at 0.7, 6.4, and at 7.6 keV, and O: 27.1%, at 0.5 keV. The EDX indicates only Fe
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(iron) and O (oxygen) elements with no impurities; thus, the EDX evaluation states that the
as-synthesized Fe3O4 NPs are an ideal stoichiometry [48]. On the other hand, the EDX results
of Fe3O4 NPs+PEG were: C: 50.4%, with a peak at 0.7 keV, O: 31.0% at 0.6 keV, Fe: 6.2%, with
a peak at 0.9 keV, Si: 8.7%, with a peak at 0.3 keV, Na: 1.8%, with a peak at 0.2 keV, Ca: 1.3%,
with a peak at 0.3 keV, and Mg: 0.6%, with a peak at 0.1 keV. The addition of carbon in the
Fe3O4 NPs+PEG can be seen. The main elements in Fe3O4 NPs are iron and oxygen, whereas
when coated with PEG, the percentage of carbon increases [49,50]. The data weights of the EDX
results of Fe3O4 NPs+PEG+Gen were: C: 61.0% at 1.2 keV, O: 33.2% at 1.0 keV, and Fe: 5.7%,
with peaks at 1.4, 6.4, and 7.6 keV. The presence of a high-carbon atom in Fe3O4 NPs+PEG
and Fe3O4 NPs+PEG+Gen was noticed because carbon is an element of PEG and appeared
in a high percentage due to the successful coating of PEG with Fe3O4 NPs. This effect was
consistent with that reported by Quevedo et al. [51], as shown in Figure 5, right row.

3.2.4. Zeta Potential Analysis and Average Size Distribution

As shown in Figure 6 (top row), zeta analysis was performed to detect the surface charges
acquired by iron oxide nanoparticles (Fe3O4). This test was conducted to get an idea of the
stability of the obtained Fe3O4 nanoparticles. If the particles have a high negative or positive
value, the particles will repel each other, and there will be no agglomerating of nanoparticles.
On the other hand, if the particles have a small zeta value, no force prevents these particles
from aggregation. The value of Fe3O4 NPs was +28.30 mV due to the OH- ions related to the
surface of Fe3O4 NPs at pH 10, basic medium [52], but the zeta potential of Fe3O4 NPs+PEG
was +18.52 mV. These results revealed that the Fe3O4 NPs with polyethylene glycol (PEG)
could lead to extra pronounced electrostatic stabilization compared to Fe3O4 NPs [36]. In
addition, the zeta potential of Fe3O4 NPs+PEG+Gen was +24.60 mV, which indicates that the
Gen molecule was tightly bound on the Fe3O4 [53]. As seen in Figure 6 (bottom row), DLS data
showed that the average size distribution for Fe3O4 was 69.6 nm with a PDI (polydispersity) of
0.452, for Fe3O4 NPs+PEG it was 74.4 nm with a PDI of 0.303, while for Fe3O4 NPs+PEG+Gen
it was 92.3 nm and the PDI was 0.289. The data indicated that the particle sizes increased
with the coating polymer and antibiotic and PDI decreased and became monodisperse. This
could be due to the generation of a large number of Fe3O4 NPs coated with PEG, which is
an essential factor that can affect particle chemical stability [54].
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3.2.5. Transmission Electron Microscopy (TEM)

Figure 7 shows the TEM images and particle size distribution of Fe3O4 NPs, Fe3O4
NPs+PEG, and Fe3O4 NPs+PEG+Gen. The image J software was utilized to measure the
average mean size of nanoparticles. The obtained Fe3O4 nanoparticles have a clear and
spherical shape with an average size of 24.29 nm, as shown in Figure 7A. Figure 7B shows
the addition of PEG, which acts as a stability enhancer and dispersing agent. Moreover,
the addition of PEG decreased the agglomeration because PEG modified the surface of
Fe3O4 NPs so that the particle is more monodisperse and uniform, with an average size
of 31.09 nm, as seen in Figure 7B. Coating Fe3O4 nanoparticles with PEG reduced the
magnetic interaction between the particles due to their lower magnetism and prevented
agglomeration [55]. In addition, Figure 7C shows the TEM images of Gen loaded on the
Fe3O4 NPs+PEG, with an average size of 35.68 nm. The shrinkage in the size when the drug
(Gen) was loaded on the nanoparticles could be attributed to the lattice strain generated
due to the large Gen molecules, that prevented the nucleation and growth of the Fe3O4
during the reaction [56].
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3.3. Antibacterial Activity

As shown in Table 2 and Figure 8, the antibacterial activity of Fe3O4 NPs, Fe3O4
NPs+PEG, Fe3O4 NPs+Gen, Fe3O4 NPs+PEG+Gen, and only Gen at a concentration of
100 µg mL−1 was tested by the well-diffusion method against Gram-positive bacteria
(S. epidermidis) and Gram-negative bacteria (P. mirabilis and A baumannii). The inhibition
zone of Gen was 17.5 mm for P. mirabilis, 17.6 mm for A. baumannii, and 17.3 mm for
S. epidermidis, whereas the clear inhibition zone for Fe3O4 NPs+PEG Gen was 25.6 mm
for P. mirabilis, 26.3 mm for A. baumannii, and 23.6 mm for S. epidermidis bacteria, further
confirming that the Fe3O4 NPs+PEG+Gen possesses remarkable growth inhibition activity.
The results indicate that the Fe3O4 NPs+PEG+Gen presents noticeable antibacterial activity
via a contact-killing mechanism. The interaction between Fe3O4 NPs+PEG+Gen and
bacteria was higher. Iron oxide nanoparticles have both magnetic and paramagnetic
properties [57]. The use of an alternating magnetic field allows additional increases in
the bactericidal action of Fe3O4 NPs against S. epidermidis, P. mirabilis, and A. baumannii,
causing cell death and biofilm destruction due to the photocatalytic generation of ROS,
and local hyperthermia and vibration damage that occurs under the action of the magnetic
field. All the above-mentioned factors lead to the dissociation of bacteria from the biofilm,
damage of the bacterial cell wall, membrane rupture, the fusion of different cells with each
other, and death [58].

Table 2. The antibacterial activity of Gen, and the mixtures of Fe3O4 NPs, Fe3O4 NPs+PEG, Fe3O4

NPs+Gen, and Fe3O4 NPs+PEG+Gen.

Bacterial Isolates

Inhibition Zone Diameter (mm)

Gen Fe3O4 NPs Fe3O4 NPs+PEG Fe3O4 NPs+Gen Fe3O4
NPs+PEG+Gen

S. epidermidis 17.33 ± 0.57 17.66 ± 0.57 19.66 ± 0.57 21.33 ± 1.15 23.66 ± 0.57

P. mirabilis 17.51 ± 0.57 18.66 ± 0.57 21.66 ± 0.57 23.66 ± 0.57 25.66 ± 0.57

A. baumannii 17.66 ± 0.57 20.33 ± 0.57 22.00 ± 0.46 23.66 ± 0.57 26.33 ± 0.57
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NPs+Gen, and (F) Gen.

Antibacterial properties were improved when the Gen was coated with Fe3O4 NPs
because it is basically a complex made of closely related aminoglycosides. The main mech-
anism of action of this drug is the inhibition of protein biosynthesis or genetic translation.
When conjugated with iron, Gen forms phospholipids [56]. It forms a layer around the
nanoparticles, with the sulphate group forming a covalent bond with the iron [59]. Then
the conjugate takes part in the cell annihilation by mainly two mechanisms, namely, inter-
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ruption of protein synthesis and inducing damage of cell membranes. Thus, it gives rise to
a very effective drug carrier [60]. The inhibition zone diameter was 23.6 mm for P. mirabilis
and A. baumannii, whereas it was 21.3 mm for S. epidermidis.

Surface modification is also a key way to improve the antibacterial properties of Fe3O4
NPs. The coated Fe3O4 NPs with PEG enhanced the antibacterial activity of Fe3O4 NPs
against P. mirabilis and A. baumannii, with inhibition zones of 21.6 and 22 mm, respectively,
whereas 19.6 mm for S. epidermidis due to ROS generation [61]. The inhibition zone for
Fe3O4 NPs alone was 18.6 and 20.3 mm for P. mirabilis and A. baumannii, respectively, and
17.6 mm for S. epidermidis. The possible mechanism of the antibacterial activity of the Fe3O4
NPs can be affected by the occurrence of an electrostatic adsorption potential between
the magnetic iron oxide nanoparticles (positive charge) and pathogenic bacteria (negative
charge) [62]. This interaction leads to oxidation of the bacterial membrane upon release of
the iron ions by the NPs, which are able to interact with the thiol groups of the membrane
proteins. Therefore, this process can increase the potential of nanoparticles to induce
oxidative stress reactions and produce reactive oxygen species (ROS). The whole process
disrupts the function, permeability, and respiration of the cell membrane. Ultimately, it
causes cell breakdown and the death of microorganisms [63]. We noticed that the Fe3O4
NPs+PEG+Gen had the highest inhibition zone on bacterial isolates compared to other
types of Fe3O4 NPs, because when coating with PEG this prevents aggregation between
the particles, in addition to Gen that enhanced its antibacterial activity, as described above,
so it had the highest inhibition area and was more effective as compared to the other types
of Fe3O4 NPs [61].

3.4. Effect of Fe3O4 NPs on Bacterial Biofilm by Tube Method

The microbes used were developed in the tryptone soy broth medium, and then the
medium was removed and the tubes were dyed with crystal violet dye at a concentration
of 0.1%. The amount of dye that stained the tubes varied. If the biofilm formation was
weak, the result (+) was reported. If the biofilm formation was moderate, the result
(+ +) was reported. If the biofilm formation was dense, the result (+ + +) was reported.
A biofilm could not be formed in the negative control tube (−). The effect of iron oxide
nanoparticles on biofilm formation was studied by observing the binding of crystal violet
dye to adherent cells, which directly reflects the effective ability to inhibit biofilm (Table 3).
The results showed that a concentration of 100 µg mL−1 of Fe3O4 NPs reduced the biofilm
formation of bacterial isolates S. epidermidis, P. mirabilis, and A. baumannii. In addition, the
Fe3O4 NPs+PEG, Fe3O4 NPs+Gen, and Fe3O4 NPs+PEG+ Gen at 100 µg mL−1 exhibited
a significant reduction in biofilm formation of S. epidermidis, P. mirabilis, and A. baumannii.
The Fe3O4 NPs+PEG+Gen was more potent in this regard, as shown in Table 3. These
findings revealed a substantial difference in biofilm formation after treatment with Fe3O4
NPs, which inhibited bacterial attachment to the polystyrene surface, resulting in biofilm
detachment and lower biofilm absorbance values [64]. The Fe3O4 NPs+PEG+Gen adhered
to the surface of the negatively charged biofilm through electrostatic interactions and
disrupted biofilms, causing the death of bacteria within biofilms [61].

Table 3. Effect of prepared nanoparticles on biofilm formation.

Concentrations (µg mL−1)

Bacterial
Isolates

Fe3O4 NPs Fe3O4 NPs+PEG Fe3O4 NPs+Gen Fe3O4 NPs+PEG+Gen

100 50 25 12.5 100 50 25 12.5 100 50 25 12.5 100 50 25 12.5

S. epidermidis − + + + − + + + + + − − + + − − − −
P. mirabilis − + + + − + + + + − + + + − - + +

A. baumannii − + + + + + + − + + + + + + + − + + + + − + + +

Note: (+) = weak biofilm, (+ +) = moderate biofilm, (+ + +) = dense biofilm, and (−) = no biofilm.
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The antibacterial and anti-biofilm effects of these nanoparticles, as well as their phys-
ical and chemical properties, have been extensively studied. Nanoparticles with small
sizes allow to penetrate the biofilm matrix and have a high surface-to-volume ratio, which
promotes powerful interactions with microorganisms and allows them to make contact
with microbial cells, resulting in biofilm inhibition. Furthermore, the Fe3O4 nanoparticles
inhibited biofilm production via blocking the formation of exopolysaccharide [65].

3.5. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC) for Fe3O4 NPs

Table 4 and Supplementary Figure S1 show the MIC and MBC against S. epidermidis,
P. mirabilis, and A. baumannii. The results showed that the MIC of Fe3O4 NPs against S. epi-
dermidis was 25 µg mL−1, while for both P. mirabilis and A. baumannii it was 50 µg mL−1.
The MBC of Fe3O4 NPs was determined depending on the absence or presence of microbial
growth on solid media. The results showed that the MBC became higher than the MIC.
The MBC for S. epidermidis was 50 µg mL−1, whereas for P. mirabilis and A. baumannii it
was 100 µg mL−1. A similar effect was recorded for Fe3O4 NPs+PEG against S. epider-
midis, P. mirabilis, and A. baumannii. The MIC of Fe3O4 NPs+Gen for S. epidermidis and
A. baumannii was 50 µg mL−1 and for P. mirabilis was 25 µg mL−1, and the MBC of Fe3O4
NPs+Gen against S. epidermidis and A. baumannii was 100 µg mL−1 and for P. mirabilis it was
50 µg mL−1. Finally, the MIC of Fe3O4 NPs+PEG+Gen for S. epidermidis and A. baumannii
was 50 µg mL−1, while for P. mirabilis it was 25 µg mL−1, and the MBC of Fe3O4 NPs+Gen
for S. epidermidis and A. baumannii was 100 µg mL−1 and for P. mirabilis it was 50 µg mL−1.

Table 4. MIC and MBC of bacterial isolates.

Concentrations (µg mL−1)

Bacterial
Isolates

A B C D

MIC MBC MIC MBC MIC MBC MIC MBC

S. epidermidis 25 50 25 50 50 100 50 100

P. mirabilis 50 100 50 100 25 50 25 50

A. baumannii 50 100 50 100 50 100 50 100

(A) Fe3O4 NPs, (B) Fe3O4 NPs+PEG, (C) Fe3O4 NPs+Gen, (D) Fe3O4 NPs+PEG+Gen.

The nanoparticles (Fe3O4) generated in this work were found to be more efficient
against Gram-negative bacteria such as P. mirabilis and A. baumannii, but less effective
against Gram-positive bacteria such as S. epidermidis. In this regard, the findings are
more in line with those of Shahzadi and his colleagues [66]. This is due to the thick
peptidoglycan layer of Gram-positive bacteria [67]. This is also due to the negative charge
of the lipopolysaccharide layer on Gram-negative bacteria’s outer membrane. They can
interact more easily with nanoparticles that have a low positive charge since they have
a negative charge. Thereby, this interplay might also create a hollow inside the cellular wall
and inflict microorganism death. By injuring and breaking membranes and by penetrating
into the cytoplasmic membrane, they exhibit antibacterial activity [68].

3.6. Determination of Growth Curve

To assess different bacterial growth over time, the results showed that the time required
to inhibit the growth of the bacteria S. epidermidis, P. mirabilis, and A. baumannii by Fe3O4
NPs, Fe3O4 NPs+PEG, Fe3O4 NPs+Gen, and Fe3O4 NPs+PEG+Gen was 90 min. As shown
in Table 5 and Supplementary Figure S2, we noticed that at time zero, there was no effect
on bacterial growth, but after 30 min we noticed growth inhibition, and then at a time of
60 min the inhibition increased. At 90 min, little bacterial growth was observed, and this
may be attributed to the interaction between these particles and the groups of sulfur and
phosphorus found in the bacterial cell membrane because the proteins of the cell membrane
are the preferred sites for the work of these particles, which leads to the destruction of the
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cell and death [69]. NPs were seen to record some inhibition, showing that nanoparticles
were able to generate an amount of ROS in soy broth that led to inhibition of bacterial
growth. Given that the generation time and lag phase for the bacteria tested are functions
of each nanoparticle and the conditions required for bacterial growth and development,
there is evidence that time contributes to the inhibition and growth of bacteria when treated
with the aforementioned nanoparticles [70].

Table 5. Effect of time on bacterial growth.

Time (min)

Bacterial
Isolates

Fe3O4 NPs Fe3O4 NPs+PEG Fe3O4 NPs+Gen Fe3O4 NPs+PEG+Gen

Zero 30 60 90 Zero 30 60 90 Zero 30 60 90 Zero 30 60 90

S. epidermidis + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

P. mirabilis + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + +

A. baumannii + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + +

Note: (+ + + + +) very dense growth, (+ + +) dense growth, (+ +) medium growth, (+) little growth.

4. Conclusions

We synthesized magnetic iron oxide nanoparticles by the co-precipitation method,
coated them with PEG, and then loaded them with Gen antibiotic. These nanocomposites
showed a high antibacterial effect on Gram-negative and Gram-positive bacterial strains
S. epidermidis, P. mirabilis, and A. baumannii. The antibacterial efficacy of synthesized
Fe3O4 NPs is largely determined by their physicochemical characteristics (shape, size, and
chemical composition). Due to their simple diffusion through the bacterial cell wall, Fe3O4
NPs +PEG+Gen showed excellent antibacterial activity. This is due to the successful role
of polyethylene glycol and Gen resulting in enhanced stability of Fe3O4 NPs through the
electrostatic stabilization mechanism of this anionic capping agent. These findings could
help in the understanding of the mechanism of iron oxide nanocomposites (free Fe3O4 NPs,
PEG-coated Fe3O4 NPs, and Fe3O4 NPs) with PEG and antibiotic Gen against bacterial cell
viability and showed that the synthesized nanoparticles could suppress harmful bacterial
strains. These results further affirm the promising potential of these nanoparticles and
provide a substantial reason for developing this material as an efficient therapeutic option
for treating different infections.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jfb13030138/s1, Figure S1: Minimum inhibitory concentration
and minimum bactericidal concentrations for a bacterial isolates. (A) Fe3O4 NPs, (B) Fe3O4 NPs+PEG,
and (C) Fe3O4 NPs+PEG+Gen; Figure S2: Determination effect of nanoparticles on microbial growth
curve of bacterial isolates. (A) Fe3O4 NPs, (B) Fe3O4 NPs+PEG, and (C) Fe3O4 NPs+PEG+Gen.
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