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Abstract: In recent years, quercetin plays an increasingly important role in the medical field. How-
ever, the absorption and effect of quercetin as a drug in vivo are limited due to its extremely poor
solubility in water. In addition, chitosan nanoparticles can deliver poorly soluble drugs as drug
delivery carriers. Herein, chitosan nanoparticles were prepared by oxidative degradation and ionic
cross-linking technology to study the drug loading properties of quercetin. On the other hand,
the application of chitosan for fluorescent materials can improve the biocompatibility of fluores-
cent materials and increase the adsorption of fluorescent materials. Fluorescently labeled chitosan
nanoparticles, especially chitosan microsphere fluorescent probes prepared using the abundant amino
groups on chitosan chains to react with fluorescein isothiocyanate (FTIC), have been widely used as
fluorescent probes in biomarkers and medical diagnostics. Therefore, chitosan–quercetin (CS–QT)
drug-loaded nanoparticles are labeled with FITC, and the drug-loaded rate, encapsulation efficiency,
and antioxidant properties were investigated. The drug-loaded rate of the sample reaches 8.39%, the
encapsulation rate reaches 83.65%, and exhibits good antioxidant capacity. The fluorescence aperture
of the obtained sample was consistent with the inhibition zone, which could realize the visualization
of the antibacterial performance of the sample. The fluorescent-labeled nano-system exhibit superior
antibacterial properties, which provide a strategy for observing the release and function of drugs.

Keywords: fluorescence labeling; nanoparticle; chitosan; fluorescein isothiocyanate

1. Introduction

Nowadays, the use of natural biopolymers in science is on the rise [1]. As is known,
chitosan is widely applied in the field of biological clinical medicine due to its biological
properties, stable chemical properties, and non-toxicity [2]. The superiority of chitosan
not only has various properties such as adhesion, antibacterial and antioxidant, but also
exhibits great advantages in the transport of substances [3]. In addition, biomedicine, cos-
metics, and other industries require chitosan with a molecular weight of less than 100,000,
which is used for sustained release. The chitosan used as a carrier is mostly used in the
form of nano/microspheres [4]. For example, Taís Gratieri et al. evaluated the potential
of an in situ gel-forming delivery system comprised of poloxamer/chitosan as well as a
chitosan solution as vehicles for enhanced permeation and sustained release of drugs [5].
Both the gel and the chitosan solution exhibited an enhanced permeation of fluconazole,
in comparison with aqueous solution. Nuran Işıklan et al. developed stable temperature-
responsive chitosan/hydroxypropyl cellulose (CS/HPC) blend nanospheres that are able
to deliver the drug to the small intestine. The temperature-responsive CS/HPC blend
nanospheres open up exciting avenues for biomedical applications [6]. Abdurrahim et al.
prepared calcium/chitosan nanoparticles (Ca/CS NPs) and investigated their potential
as a new method for preserving paper documents. Antifungal and antibacterial assays
showed that calcium decoration increased the antibacterial activity of nanoparticles by
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reducing the required dose and increasing the inhibitory effect. This antimicrobial activity
also stabilizes the pH of the paper product [7]. Wang et al. developed chitosan nanopar-
ticles as a new controlled release system for natural biocides. Then, the antimicrobial
activities of thymol-loaded chitosan nanoparticles against microorganisms isolated from
the Feilaifeng limestone’s microbial community were studied, together with the kinetics
and mechanism of thymol released from chitosan nanoparticles in water [8]. Shinde et al.
synthesized the water-soluble chitosan derivative N-trimethyl chitosan (TMC) and pre-
pared flurbiprofen (FLU): hydroxypropyl-β-cyclodextrin (HP-β-CD) composite loaded
nanoparticles for the treatment of bacterial conjunctivitis. The developed TMC nanoparti-
cles provided extended-release potential for transmucosal ocular delivery of hydrophobic
flurbiprofen [9]. Zhao et al. prepared DNA vaccines encapsulating chitosan nanoparticles
by a complex coalescence method to enhance the efficacy of DNA vaccines against swine
influenza. Chitosan nanoparticles containing a conjugated DNA vaccine against swine
influenza were evaluated for triggering immune responses in BALB/c mice, laying the
groundwork for future work on a broad range of gene delivery systems including DNA
vaccines [10]. Ainali et al. prepared pure chitosan and its grafted derivatives of fluticasone
propionate (FLU) and salmeterol cetaphate (SX) drugs for chronic obstructive pulmonary
disease (COPD) by an ionic gel technique, improving their in vitro release properties and
bioavailability [11].

As a carrier, chitosan nanospheres (CSNP) can be loaded with insoluble drugs, such
as quercetin, which is 3,3’ 4’ 5,7-pentahydroxyflavone. Quercetin widely exists in natural
crops such as vegetables, fruits and olive oil [12]. It is easily soluble in organic solvents
such as chloroform and ethanol, but the solubility in water is extremely poor. Therefore,
the absorption and function of quercetin as a drug are limited in organisms. Quercetin
plays an important role in the medical field, including anti-tumor, anti-oxidation and cere-
bral vascular protection. For example, Smith et al. synthesized and evaluated four new
cocrystals of quercetin (QUE): quercetin:caffeine (QUECAF), quercetin:caffeine:methanol
(QUECAF·MeOH), quercetin:isonicotinamide (QUEINM), and quercetin:theobromine di-
hydrate (QUETBR·2H2O). Compared with QUE alone, the water solubility of the four
cocrystals was improved to varying degrees. The results of this study further implicate the
potential for co-crystallization in drug development [13]. Fan et al. showed that quercetin
may be a promising tyrosinase inhibitor and may have a potential application as a dietary
supplement for the treatment of pigmentation disorders [14]. Xu et al. concluded that
quercetin is effective in the treatment and prevention of human diseases since it influ-
ences glutathione, enzymes, signal transduction pathways, and reactive oxygen species
(ROS) production [15]. Kyuichi et al. introduced the effects of quercetin and its related
polyphenols on the brain, blood vessels, muscles and intestines, emphasizing that the
roles of quercetin and its related polyphenols in preventing neurodegenerative diseases,
mood disorders, atherosclerosis and metabolic syndrome and other diseases have certain
potential [16,17]. Tang et al. summarized the evidence for the pharmacological potential
and inhibition of quercetin on cancers. A large number of in vivo and in vitro experiments
have shown that quercetin has a strong role in promoting apoptosis, inhibiting metasta-
sis, and regulating cell cycle and tumor angiogenesis [18]. Andrea et al. concluded that
quercetin can also be used in the treatment of diabetes/obesity and circulatory dysfunction,
including inflammatory and mood disorders. In addition, drug metabolism and major
drug interactions, as well as potential toxicity, will be also spotlighted [19]. Li et al. used
maize alcohol soluble protein/soluble soybean polysaccharide (SSPS) nanoparticles to
encapsulate hydrophobic quercetin, resulting in the significantly enhanced photochemi-
cal stability and scavenging ability of quercetin. This study shows that these composite
nanoparticles can be used as an all-natural delivery system for bioactive molecules in food
and pharmaceutical preparations [20]. Chitosan is the only alkaline polysaccharide in na-
ture, with good biocompatibility, non-toxicity, and is degradable to organisms. Wang et al.
synthesized a new type of amphiphilic chitosan (ACS) with deoxycholic acid (DA) as the
hydrophobic group and N-acetyl-L-cysteine (NAC) as the hydrophilic group. Quercetin
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was encapsulated by ultrasonic self-assembly to prepare amphiphilic chitosan quercetin
nanomicelles (ACS-QNMs). Studies have shown that after quercetin is encapsulated by
amphoteric chitosan, it can be slowly released at the human body temperature of 37 ◦C and
stored stably at room temperature [21]. Aluani et al. found that chitosan/sodium alginate
as antioxidant activity of carrier-loaded quercetin was enhanced, and quercetin nanopar-
ticles had no significant cytotoxicity in vitro [22]. Therefore, we believe that combining
biocompatibility and improved protective activity of encapsulated antioxidants, chitosan
nanoparticles can be considered quercetin suitable carriers.

Fluorescein isothiocyanate (FITC) is widely used in fluorescent labeling with enhanced
quantum yield, stable optical properties and good biological properties [23]. For example,
Tatiana et al. proposed a new approach for visualization of the intracellular distribution
of triterpene acids, based on fluorescent labeling by FITC. Experimental tracing of the
dynamics of penetration and distribution of the labeled ursolic acid has shown that when
the acid enters the cell, it initially localizes on the inner membranes where the predicted
target Akt1/protein kinase B is located [24].

In this work, we prepared CSNPs following previous work and used them to study
the drug-loaded performance of quercetin, optimized the performance with drug-loaded
rate and encapsulation rate, and explored its antibacterial performance [25]. The schematic
diagram of the experimental principle was shown in Figure 1. It was proved that the
fluorescein was successfully labeled and that the nanomedicine had a certain inhibitory
effect on Escherichia coli through structural characterization, spectral characterization, and
other means.
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Figure 1. Schematic diagram of the experimental process.

2. Materials and Methods
2.1. Materials

Chitosan (CS, deacetylation degree ≥95%), hydrochloric acid (HCl), sodium hydrox-
ide (NaOH), isothiocyanate, fluorescein, acetic acid (HAc), hydrogen peroxide (H2O2),
sodium tripolyphosphate (TPP), dimethyl sulfoxide (DMSO), quercetin (QT), sodium ac-
etate trihydrate (C2H3O2Na·3H2O), sodium bicarbonate (NaHCO3), sodium carbonate
(Na2CO3), dibasic hydrogen phosphate Sodium dihydrate (Na2HPO4·2H2O), sodium dihy-
drogen phosphate dihydrate (NaH2PO4·2H2O), ferrous sulfate heptahydrate (FeSO4·7H2O),
salicylic acid (C7H6O3), pyrogallol (C6H6O3), tris (hydroxymethyl) aminomethane salt
(C4H12ClNO3, Tris-HCl) and other medicines were purchased from Shanghai Aladdin
Co., Ltd. (Shanghai, China). Absolute ethanol and agar were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Beijing, China). Yeast extract peptone was purchased from
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Beijing Obosing Biotechnology Co., Ltd. (Beijing, China). Deionized water was obtained
using a Milli-Q ultrapure water purification system.

2.2. Preparation of Chitosan-Quercetin Drug-Loaded Nanoparticles

The CSNP was synthesized based on our previous work [25]. Then, appropriate
quercetin–absolute ethanol solution was added into the CSNP-acetic acid solution to make
uniform CS-QT drug-loaded nanoparticles. First, 10 mg of quercetin was added into
absolute ethyl alcohol (10 mL), and the solution was mixed evenly to prepare 1 mg/mL of
absolute ethyl alcohol solution of quercetin. Then, the solution was diluted to 100, 10, 5,
2.5 and 1 µg/mL with absolute ethanol to determine the standard solution curve. 160 mg
of CSNP powder was dissolved in an acetic acid solution (80 mL, 1%), and the pH value
was adjusted to 5.5 with 5 mol/L of NaOH solution. The 2 mg/mL chitosan solution was
mixed with 1 mg/mL of quercetin–absolute ethanol solution in the volume ratio of 8:1,
7:1, 6:1, 5:1, 4:1, 3:1, 2:1, and 1:1, and the sodium tripolyphosphate (TPP) solution with
the mass volume percent concentration of 0.2% was added for crosslinking while stirring
under dark conditions. That is, the mass ratio of chitosan carrier to quercetin was 16:1,
14:1, 12:1, 10:1, 8:1, 6:1, 4:1, and 2:1. As shown in Figure 2, the TEM images showed that
the drug-loaded nanoparticles with the mass ratio of chitosan carrier to quercetin of 10:1
(volume ratio of 5:1) were the best. The drug-loaded microspheres were denoted as QC.
Anhydrous ethanol solution of quercetin (1 mg/mL) was prepared and diluted with solvent
to 1, 5, 10, 25, 50, 75, and 100 µg/mL, respectively, and the standard solution curve was
determined by testing the UV absorption value. The ultraviolet absorption spectrum of
quercetin anhydrous ethanol solution is at 374 nm, which can be used as the basis for the
content determination.
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Figure 2. TEM images of QC with the volume ratios of (a–h) 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, and 1:1 of
chitosan carrier to quercetin.

2.3. Preparation of Fluorescence-Labeled Chitosan-Quercetin Drug-Loaded Nanoparticles

First, 1 mL of quercetin–ethanol solution, fluorescein isothiocyanate-dimethyl sul-
foxide solution (200 µL, 10 mg/mL) and 1.66 mL of TPP solution with a mass volume
concentration of 0.2% were added to the chitosan–acetic acid solution (5 mL, 2 mg/mL),
and the reaction was carried out the dark conditions for 3 h under magnetic stirring.
The complex of quercetin–chitosan–fluorescein isothiocyanate (QT-CS-FITC) was denoted
as QCF.
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2.4. The Rate of Drug-Loaded and Encapsulation Testing

The chitosan carrier and quercetin were mixed in the ratio of 8:1, 7:1, 6:1, 5:1, 4:1, 3:1,
2:1, and 1:1, respectively, under light-proof conditions, and TPP solution of 0.2% by mass
was added while stirring, and then the absorbance of the supernatant was measured by
centrifugation, the volume of the supernatant was measured to calculate the content of
quercetin in the supernatant. The material was weighed three times after centrifugation,
washing and precipitation of the dried material

2.5. Antioxidant Performance of QC

The clearance rate test of O2-·: First, HCl solution, Tris-HCl solution, and o-triphenol
solution were prepared at concentrations of 8 mmol/L, 50 mmol/L, and 3.5 mmol/L,
respectively. Next, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 mL of 0.5 mg/mL of QC solution were added
to 3.5 mL of Tris-HCl solution, respectively, then samples were filled up to a 4.0 mL final
volume with ultrapure water and mixed evenly. After heating at 37 ◦C for 10 min, 0.5 mL
of 3.5 mmol/L o-triphenol solution was added to the solution. The reaction of the control
group without QC solution and the other six experimental groups was carried out for
6 min under the same hydrothermal conditions, and the reaction was stopped after adding
0.5 mL of HCl solution rapidly. Then, the UV absorption values at 300 nm were tested after
the experiment was completed.

The clearance rate test of OH·: First, H2O2 solution, FeSO4 solution and salicylic
acid-anhydrous ethanol solution (SA) were prepared at concentrations of 0.1%, 6 mmol/L
and 6 mmol/L, respectively. Then, 2 mL of different concentrations of QC solution were
measured and 1 mL each of FeSO4 solution, SA solution, and H2O2 solution was added
sequentially. Ultrapure water was added to make up the volume to 10 mL and then mixed
well, then the samples were heated in 37 ◦C water bath for 30 min. The samples were
replaced with 2 mL of anhydrous ethanol in the control group and 1 mL of 0.1% H2O2
solution was replaced with 1 mL of ultrapure water in the reference group. The clearance
ability of OH· was investigated according to the change of UV absorption value at 510 nm.

2.6. Antimicrobial Resistance Testing

The experiments were performed under aseptic conditions. First, the sterilized Petri
dishes and solid medium were preheated in a drying oven at 50 ◦C. The bacterial solution
(1mL, and 1 mL of sterile distilled water for the negative control group) was gently poured
into Petri dishes, and the Petri dishes immediately shaken gently to mix them well, ensuring
that each has basically the same amount of the bacteria. The Oxford Cup method was
further used to test the antimicrobial properties of QCF. The Oxford cup was a 6.0 mm high
stainless steel tube with an outer diameter of 8.0 mm. The Oxford cup was then placed
in the center of the Petri dish filled with solid medium, and 200 µL of the sample (200 µL
of sterile distilled water for the negative control) was aspirated into the Oxford cup and
incubated for 24 h at 37 ◦C.

2.7. Characterization

UV-vis spectra and fluorescence spectra of the liquid samples were obtained using a
Shimadzu UV-2550 system (Shimadzu Corporation, Kyoto, Japan). Infrared spectra mea-
sured using a Fourier infrared spectrometer (Thermo Nicolet Corporation, Waltham, MA,
USA) were used to analyze the structure and composition of the samples. Field emission
scanning electron microscopy (FE-SEM) (S-4800II, Hitachi, Tokyo, Japan) and inverted
fluorescence microscopy (TS100, Nikon Instruments (Shanghai) Co., Ltd., Shanghai, China)
were used to observe the surface morphology of the samples.
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3. Results and Discussion
3.1. Performance Analysis of Chitosan-Quercetin Drug-Loaded Microspheres (QC)

As shown in Table 1, the pH, supernatant UV absorbance (Ab), drug-loaded rate
(DL) and encapsulation rate (EE) of the solution are calculated according to Equation (2),
where W1 is the mass of supernatant quercetin, W2 is the sample mass after three times of
centrifugation, washing, precipitation and drying, W3 is the mass of quercetin added in the
preparation of nanoparticles.

DL = (W3 − W1)/W2 × 100% (1)

Table 1. Drug-loaded rate and encapsulation rate of different ratios of samples.

Volume Ratio pH Ab DL (%) EE (%)

1:1 6.20 3.33 6.79 73.1
2:1 5.78 1.49 7.26 81.9
3:1 5.65 1.06 7.92 82.3
4:1 5.46 0.629 8.15 82.4
5:1 5.45 0.618 8.39 83.7
6:1 5.43 0.555 8.04 82.4
7:1 5.40 0.527 7.89 82.6
8:1 5.37 0.502 7.01 82.1

The drug-loaded rate and encapsulation rate are very important criteria to judge the
drug-loaded performance. Under the present experimental conditions, the drug-loaded rate
reached 8.39% and the encapsulation rate reached 83.65% when the volume ratio of chitosan
carrier to quercetin was 5:1. Consequently, the system with a volume ratio of chitosan
carrier: quercetin = 5:1 was selected as the optimized formulation to the drug-loaded
performance of the particles.

The pyrogallol auto-oxidation is performed when it is in a weak alkaline environment,
during which the O2

−· and colored products are produced, and substances with antioxidant
effect can inhibit the pyrogallol auto-oxidation [26,27]. Therefore, the UV absorption value
is tested at 300 nm. According to pyrogallol autoxidation method, the scavenging rate of
superoxide anion is tested by QC. The clearance rate of O2

−· is calculated by Equation (3),
where R1 is the clearance of O2

−· by the QC complex, B0 is UV absorbance of the control
groups at 300 nm, and B1 is UV absorbance of samples at 300 nm.

R1 =
B0 − B1

B0
× 100% (2)

The experimental results are shown in Figure 3a, indicating that the superoxide
anion scavenging ability of QC increases with the increase of concentration. When the
concentration of nanomedicine reaches 48.4 µg/L, the superoxide anion scavenging rate is
45.9%, but when the concentration of nanomedicine increases continuously, the superoxide
anion clearance rate does not increase. Therefore, under the experimental condition, the
superoxide anion scavenging rate of CS–QT nanomedicine can reach 45.9%.

The clearance rate of QC to OH· is tested based on Fenton reaction. The colored
substances can be produced by salicylic acid and OH· with characteristic UV absorption
at 510 nm. The antioxidant substances present in the solution react preferentially with
OH· and the colored substances are reduced [28,29]. The OH· scavenging ability of the
nanoparticles was investigated according to the change of UV absorption value at 510 nm.
It is calculated by Equation (3), where R2 is the clearance of OH· by the QC complex, C0 is
UV absorbance of the control group at 510 nm, C1 is UV absorbance of samples at 510 nm,
and C2 is the UV absorbance of the reference group at 510 nm.

R2 =

[
1 − C1 − C2

C0

]
× 100% (3)
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Figure 3b was obtained by detecting the UV absorbance of the solution at 510 nm.
The data shows that within a certain range, the hydroxyl radical scavenging ability of
nanomedicine increases with the increase of concentration. When the concentration of
nanomedicine reaches 70.7 µg/L, the hydroxyl radical scavenging rate is 49.2%, and then
the scavenging rate does not increase continuously with the increase of nanomedicine
concentration. Therefore, under the experimental condition, the highest scavenging rate of
QC on the hydroxyl radical is 49.2%.
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3.2. Performance Analysis of Quercetin-Chitosan-Fluorescein Isothiocyanate (QCF)

As shown in Figure 4a–e, there are few particles in the SEM images, and most of
the particles are agglomerated. Compared with chitosan alone, the element distribution
diagram has an S element, which is a characteristic element of fluorescein. Therefore, SEM
images can prove that fluorescein is successfully crosslinked with chitosan and quercetin.
As shown in the TEM image of Figure 4f, the surface of the nanoparticles is regular and the
shape is approximately spherical, and the experimental effect is great. The diameter of the
particles is around 500 nm.
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The infrared spectra of CSNP, quercetin, FITC and QCF are shown in Figure 5a.
Compared with chitosan, the -OH and -NH stretching vibration peaks of QCF at 3640 cm−1

are weaker, and the -NH bending vibration at 1650 cm−1 is weaker. Compared with FITC,
the characteristic peak at 800 cm−1 of fingerprint area is disappeared, which proves the
successful crosslinking of fluorescein. In UV-vis spectrum (Figure 5b), QCF has a broad
absorption at 350–400 nm, and the absorption peak is at 375 nm. The excitation wavelength
of the fluorescence spectrum is set to 375 nm according to the absorbance of the ultraviolet-
visible spectrum. The fluorescence spectra of supernatant (LS) after washing repeatedly
and QCF are shown in Figure 5c. The fluorescence peak at 550 nm is the characteristic
fluorescence emission peak of fluorescein. After washing repeatedly, the free fluorescein is
washed. There is no characteristic emission peak at 550 nm, but the fluorescence peak of
QCF is obvious, which proves that fluorescein is successfully cross-linked.
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Figure 5. (a) FT-IR spectra of CSNP, quercetin, FITC and QCF; (b) UV-vis spectrum of QCF; and
(c) fluorescence spectra of LS and QCF.

Microscope images of QCF solution are shown in Figure 6a,b under visible light and
ultraviolet light. The solution emits blue and green light under the excitation of ultraviolet
light, and the characteristics are shown by the fluorescence spectrum of Figure 5c, in which
the peaks are consistent.
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Chitosan is widely used as an antibacterial agent because of its broad antimicrobial
action and its non-toxicity and good biodegradability. A large number of chitosan deriva-
tives with significant bacterial inhibitory effects have been widely reported [30,31]. It has
been reported that low relative molecular mass chitosan and its derivatives exhibit good
inhibitory activity against E. coli, fungi and yeasts [32,33]. For example, Li et al. loaded
chitosan/xylosulfonate complexes onto cellulose surfaces by stack deposition and showed
good inhibition activity against E. coli [34]. The Oxford cup method is a common method
used to conduct bacteriostatic tests [35–38]. The Oxford cup method is used to test the
ability of QCF to inhibit E. coli for the antibacterial properties of nanomedicine, the cur-
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rently generally accepted mechanism is that chitosan will penetrate into microorganisms,
and it will combine with DNA in bacterial cells to prevent mRNA and protein synthesis,
causing metabolic disorders. Therefore, activities such as growth and reproduction will be
restricted [39–42]. The antibacterial mechanism of quercetin is still under study, and the
generally accepted mechanism is that quercetin can remove reactive oxygen species, pro-
mote electron transfer, regulate nuclear transcription factors, and inhibit bacterial growth
and reproduction [43]. In this experiment, NaCl negative control (NC) and cephalexin
positive control (PC) are set up. Test samples include high molecular weight chitosan
(H-CS) solution, prepared chitosan microsphere (L-CS) solution, quercetin (QT) solution,
chitosan nanospheres–fluorescein isothiocyanate (CS-FITC) solution, chitosan nanospheres–
quercetin (CS-QT) solution, and quercetin–chitosan–fluorescein isothiocyanate (QCF) solu-
tion. The inoculation and activation of E. coli are carried out under aseptic conditions. Tools
such as culture medium, Petri dishes, Erlenmeyer flasks, pipettes, pipette tips, etc., need to
be autoclaved. The sample solution penetrates from the Oxford cup into the solid medium,
then the antibacterial ingredient of the sample decreases with decreasing the concentration
of diffusion, creating a concentration gradient at the medium. The multiplication of the
bacteria is hindered where the antimicrobial component works, followed by the appearance
of highly visible circles known as inhibition circles. The diameter of the inhibition circle
reflects the strength of the antibacterial ability of the sample. The culture of E. coli is shown
in Figure 7, and the criteria for determining the degree of antibacterial sensitivity in the
experiment are shown in Table 2 [44–46]. The diameter data and sensitivity of the inhibition
zone are shown in Table 3. The medium of No. 1 is NC, and there is no bacterial growth in
the medium, which proves that the entire experimental operation is aseptic. The medium
of No. 2 is covered with E. coli and there is no inhibition zone. The mediums of No. 3,
4, 5, 6, 7, 8 are full of E. coli and the diameters of the inhibition zone are 12 mm, 14 mm,
12 mm, 8 mm, 12 mm, and 17 mm. The sensitivity of the samples to E. coli are moderately
sensitive, moderately sensitive, moderately sensitive, not sensitive, moderately sensitive,
and highly sensitive, respectively. The PC proved that the culture medium has no other
bacteria growth.
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Figure 7. Diagram of E. coli culture. The medium of No. 1 to No. 8 is NaCl negative control (NC),
high molecular weight chitosan (H-CS) solution, the prepared chitosan microsphere (L-CS) solution,
quercetin (QT) solution, chitosan nanospheres–quercetin (CS-QT) solution, chitosan nanospheres–
fluorescein isothiocyanate (CS-FITC) solution, quercetin–chitosan–fluorescein isothiocyanate (QCF)
solution, and cephalexin positive control (PC), respectively.
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Table 2. Criteria for judging antimicrobial sensitivity.

Diameter o Bacteriostatic Circle (mm) Experimental Result

≤8 not sensitive
8 < d < 10 low sensitivity

10 ≤ d < 15 moderately sensitive
15 ≤ d < 20 highly sensitive

≥20 extremely sensitive

Table 3. Antibacterial sensitivity analysis table.

Sample Diameter of Bacteriostatic Circle (mm) Sensitivity

1 8 not sensitive
2 8 not sensitive
3 12 moderately sensitive
4 14 moderately sensitive
5 12 moderately sensitive
6 8 not sensitive
7 12 moderately sensitive
8 17 highly sensitive

Figure 8 shows the images of the medium of No. 6, 7 and 8 under the gel imaging
system. The medium without fluorescein (No. 8) has no fluorescence under blue light
excitation; the sample of No. 6 medium has a widespread range, and the fluorescence
aperture diameter in the gel imaging system is large, but the inhibition zone and the
fluorescence aperture are not matched, thus the antibacterial performance is poor; the
fluorescence aperture of No. 7 medium in the gel imaging system matches the antibacterial
circle so that the antibacterial performance of QCF can be visualized through the gel
imaging system. Here, comparing the work of other chitosan-based drug-loaded particles,
the advantages of our work are reflected (Table 4).
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Table 4. Comparison of fluorescent probe technology with other previously reported work.

Loaded Nanoparticles Fluorescent Probes Bacteria Ref.

Chitosan-quercetin fluorescein isothiocyanate E. coli This work

polycaprolactone/quaternized chitosan - E. coli [47]

chitosan/pectin-based silver nanoparticle films - E. coli [48]

CS–Cu2+ nanoparticle - E. coli, Staphylococcus aureus,
Candida albicans [49]

chitosan/protamine hybrid nanoparticles - E. coli [50]

chitosan–lysozyme nanoparticles - E. coli [51]

Curcumin-loaded Chitosan Tripolyphosphate Nanoparticles - Staphylococcus aureus [52]
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4. Conclusions

In summary, chitosan–quercetin (CS-QT) drug-loaded nanoparticles have been success-
fully labeled by FITC. The SEM and FTIR images demonstrate the successful cross-linking
of fluorescein with chitosan and quercetin, and TEM image indicates that the diameter of
QCF is about 500 nm. Furthermore, the effect of drug-loading efficiency, encapsulation effi-
ciency, and antioxidant properties have been discussed. When the volume ratio of chitosan
(2 mg/mL) to quercetin (1 mg/mL) is 5:1, the drug-loaded rate of the sample reaches 8.39%,
and the encapsulation rate reaches 83.65% and exhibits good antioxidant capacity. In our
experiments, FITC is used for labeling, which makes the experimental results visualized.
The sample has an antibacterial effect on E. coli, and the fluorescence aperture of the sample
is consistent with the antibacterial circle, so the antibacterial performance of the sample can
be visualized. The fluorescent-labeled nanomedicine prepared simply in this experiment
exhibits antibacterial properties, which provides a strategy for observing the release and
action of the drugs. The design of this novel encapsulation structure based on chitosan
nanoparticles will facilitate the development of novel smart drug-loading materials with
potential applications in chemotherapy and physical therapy.
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