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Abstract: Green biosynthesis, one of the most dependable and cost-effective methods for producing
carbon nanotubes, was used to synthesize nonhazardous silver-functionalized multi-walled carbon
nanotubes (SFMWCNTs) successfully. It has been shown that the water-soluble organic materials
present in the olive oil plant play a vital role in converting silver ions into silver nanoparticles (Ag-
NPs). Olive-leaf extracts contain medicinal properties and combining these extracts with Ag-NPs is
often a viable option for enhancing drug delivery; thus, this possibility was employed for in vitro
treating cancer cells as a proof of concept. In this study, the green technique for preparing SFMWCNTs
composites using plant extracts was followed. This process yielded various compounds, the most
important of which were Hydroxytyrosol, Tyrosol, and Oleuropein. Subsequently, a thin film was
fabricated from the extract, resulting in a natural polymer. The obtained nanomaterials have an
absorption peak of 419 nm in their UV–Vis. spectra. SEM and EDS were also used to investigate the
SFMWCNT nanocomposites’ morphology simultaneously. Moreover, the MTT assay was used to
evaluate the ability of SFMWCNTs to suppress cancer cell viability on different cancer cell lines, MCF7
(human breast adenocarcinoma), HepG2 (human hepatocellular carcinoma), and SW620 (human
colorectal cancer). Using varying doses of SFMWCNT resulted in the most significant cell viability
inhibition, indicating the good sensitivity of SFMWCNTs for treating cancer cells. It was found that
performing olive-leaf extraction at a low temperature in an ice bath leads to superior results, and the
developed SFMWCNT nanocomposites could be potential treatment options for in vitro cancer cells.

Keywords: green biosynthesis; nanotechnology; silver nanoparticles; carbon nanotubes; Olea europaea;
olive extracts

1. Introduction

The current trend and approach by researchers in pharmaceutical biotechnology is
to produce nanoparticles and nanomaterials that are both eco-friendly and cost-effective.
The synthesis of eco-friendly metal nanoparticles (MNPs) is easier nowadays because of
effective green chemistry technologies that were developed in the previous decade. Plants
are ideal for making huge amounts of nanoparticles for biosynthesis. When in the case of
microbes, the nanoparticles degraded rapidly, but in the case of plant-derived nanoparticles,
they were far more stable and produced more quickly [1]. Furthermore, plants create a
greater variety of nanoparticles, including in the form or size of nanoparticles. The result
of many other works demonstrates that olive extract, which is produced in vitro, is capable
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of biosynthesizing silver nanoparticles (Ag-NPs). The combination of nanoparticles with
a length between 1 and 100 nm can produce large surface-to-volume ratios [2]. The
surface area to volume ratio increases, as well as the particles’ physical, chemical, and
biological characteristics.

Carbon nanotubes (CNTs) are carbon nanomaterials closed at both ends with a small,
thin, hollow, and concentric cylindrical structure; they were first introduced by Lijima in
1991 [3]. Carbon nanotubes are classified into single-walled carbon nanotubes (SWCNTs)
and multi-walled carbon nanotubes (MWCNTs). Single-walled carbon nanotubes consist
of a single layer of graphene wrapped in a seamless cylinder. Furthermore, MWCNTs
consist of several layers of graphene wrapped to form concentric tubes. CNTs have been
widely used for biocompatible nanoparticle production owing to their chemical stability,
their ability to adsorb or conjugate with a broad range of therapeutic molecules (such as
proteins, antibodies, DNA, enzymes, and drugs), and their functionality as drug-delivery
vehicles [3,4].

Decorating CNTs with metal, metal oxide, or metal sulfide nanoparticles has attracted
much attention owing to their unique catalysis as well as peculiar electrical, magnetic,
thermal, and optical properties. In particular, CNTs decorated with silver nanoparticles
(Ag-NPs) are cheap, eco-friendly, and have broad application prospects in the biomedical
industry, thus increasing their wider recognition [5,6]. The unique features of each material
may be combined, and the interactions between the two components may bring forth new
properties in order to fully use these types of nanomaterials. As a result, carbon-based Ag
composites have gotten a lot of attention and are now a hot topic in science [7]. CNTs may
be filled with metal using several processes, including in situ filling during arc discharge
development of the material, molten salt sorptive procedures, and other wet chemical
approaches [8]. Since silver nanoparticles (Ag-NPs) exhibit unique electrical, optical, and
biological characteristics, this new class of nanomaterials is growing quickly, such as the
one we made in this paper. As Ag-NPs readily aggregate in aqueous solution, their lifespan
in solution is usually limited [4]. Functionalized carbon nanotubes can attach nanoparticles
to overcome this issue [9–11]. SFMWCNT nanohybrids were synthesized using a variety of
chemical reagents, irradiations, and templates.

Nanomaterials, specifically particles (1–100 nm) with multiple organic or inorganic
layers, are promising candidates to improve the efficiency of cancer treatment. Over the
last decade, the ability of CNTs materials to treat cancer has been investigated for vari-
ous cancer types, especially breast cancer [12–15]. They have been used for delivering
chemotherapeutic drugs to a particular location. CNT have been used in many biomedical
applications as many studies indicated [16–18]. Different approaches, including function-
alization, as well as their critical functions in targeting distinct intracellular locations and
tumor microenvironments, have been explored to learn more about the development of
CNTs as prospective safe drug delivery vehicles in cancer treatment. Furthermore, CNT has
seen a lot of recent progress in the field of cancer detection and therapy. As a result, there
are several studies that summarize CNTs and their safety for medical applications, such as
the paper by Tang, L. [18], who comprehensively introduce the theranostic applications of
CNTs against many cancer types from the perspective of various therapeutic targets and
emphasize the combination therapeutic modalities based on the physiochemical features of
CNTs and compare it with other many reported literatures. The study concluded that CNT
was a safe and effective system.

In the present study, we aim to combine a comfortable, safe, and cheap method as the
water extraction of olive extracts and production of SFMWCNTs, which could be utilized
for further investigation on anticancer activities as a single agent or combined with other
modalities of treatment. The usage of olive-leaf has the added benefit that nanotechnology
processing industries may make use of this plant. It is possible to employ SFMWCNTs
nanoparticles produced in this work as anti-cancer agents, and also in the medical field
for other diseases. Results indicated the ability of SFMWCNTs to suppress cancer cell
expansion and spread was tested using the different cancer cell line. The current approach
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shows the ability of nanomaterials to enhance cancer growth inhibition and improves the
SFMWCNTs selectivity toward cancer cells.

2. Materials and Methods
2.1. Materials

The fresh green leaves of olive (Olea europaea L.) used in this study were harvested and
collected from the Al-Jouf area in Saudi Arabia. Taxonomy was identified in the Botanical
Department, College of Science, King Saud University, as previously published [19]. AgNO3
(99.80% Silver nitrate) and carbon nanotubes (CNTs) were purchased from Sigma Aldrich
Chemical Co., St. Louis, MO, USA.

2.2. Preparation of the Water Extract from Olive Leaves

The olives leaves were washed to remove any impurities and were then air-dried
for two days in an open room environment under standard temperature and pressure
conditions. Finally, they were ground into a fine powder. In order to obtain high-efficiency
products, a cold extraction process at a temperature of 0 ◦C was adopted using 100 mL
of distilled water as a solvent and a powder according to the ratio of 1:10. A schematic
representation of the process is shown in Figure 1.
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Figure 1. Preparation of the water extract from olive leaves and formulation process of nonhazardous
silver-functionalized multi-walled carbon nanotubes (SFMWCNTs).

2.3. Preparation and Characterization of SFMWCNTs
2.3.1. Preparation of SFMWCNTs Films

For preparing Ag functionalized MWCNTs (SFMWCNTs), 1 mL of the olive-leaf
aqueous extract was mixed with 10 mL of the 2 mol/L silver nitrate (AgNO3) solution in a
dark chamber at room temperature (20 ◦C). The formation of Ag-NPs in the solution was
confirmed via the color change of the mixture from colorless to dark brown [20]. After
addition of Ag-NPs, 15 mg of CNT powder was added and mixed for 1 h.

2.3.2. Characterization of SFMWCNTs Films

The synthesized Ag-NPs optical properties were characterized via UV–Visible spec-
troscopy in the wavelength range of 200–700 nm. Then, JOEL JSM 7600F scanning electron
microscopy (SEM) was used to study the morphology and know the size of the nanoparti-
cles. The surface morphology of produced SFMWCNTs film was characterized by SEM at
several magnifications after being placed on a glass substrate.

Average particles size and zeta potentials of biosynthesized silver NPs was determined
by Dynamic Light Scattering (DLS) technique using a Beckman Coulter Delsa Nano C DLS
Particle analyzer (Beckman Coulter, Inc., Fullerton, CA, USA) equipped with a 658-nm
He-Ne laser. Polydispersity index (PI) values were also measured. Electron dispersive
spectroscopy (EDS) was also studied to analyze the elemental compositions of the NPs
(SEM-EDC). In addition, powder-XRD analysis was executed on an X-ray diffractometer
(PAN analytical X-Pert PRO, UK) to determine the nanoparticles’ crystal density, purity,
and size. Additionally, in order to identify the chemical responsible for the creation of
Ag NPs, individual Fourier Transform Infrared spectroscopy (FTIR) measurements were
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performed for each procedure. Spectra were collected in the range of 400 to 4000 cm−1 and
analyzed by removing the spectrum of pure KBr (potassium bromide).

2.4. Cell Culture

Three cancer cell lines, MCF7 (human breast adenocarcinoma, ATCC-HTB22), HepG2
(human hepatocellular carcinoma, ATCC HB-8065), and SW620 (human colorectal cancer,
ATCC- CCL-227), were tested in this study. Two of the cell lines (MCF7 and SW620)
were maintained in Roswell Park Memorial Institute Medium (RPMI-1640, Gibco, Life
Technologies, Carlsbad, CA, USA), while the HepG2 cell line was cultured Dulbecco’s
Modified Eagle Media (DMEM, Gibco, Life Technologies, Carlsbad, CA, USA). All of the
cell lines were maintained at 37 ◦C in 5% CO2 and 100% relative humidity. All media
were supplemented with 10% heat-inactivated fetal bovine serum (FBS, Gibco) and 1%
penicillin–streptomycin antibiotic, consisting of 10,000 units of penicillin and 10,000 µg of
streptomycin (Gibco) per mL.

2.5. Determination of Cytotoxicity Using MTT Assay

The cytotoxicity of the extracts/formulation (The SFMWCNTs) was evaluated by MTT
assay, as previously reported [21]. The three cell lines were cultured separately in 96-well
plates (3 × 103 cells/well) and incubated at 37 ◦C overnight. The concentrations tested were
1, 50, 100, 500, 1000, and 5000 µM. Plates were incubated for different time points (24, 48,
and 72 h), after which MTT was added to each well, and the plates were incubated for a
further 3 h. The supernatant was removed, and the MTT product was solubilized by adding
DMSO to each well. Absorbance was read using a multi-plate reader (BIORAD, PR 4100,
Hercules, CA, USA). The optical density of the purple formazan A550 was proportional
to the number of viable cells. Doxorubicin (range between 0.001–10 µM) was used as a
positive control, and IC50 values were determined using GraphPad Prism (San Diego, CA,
USA), as listed in Table 1.

Table 1. Cytotoxicity of the studied extracts and formulation against three cancer cell lines (MTT 24,
48, 72 h, IC50 ± SD µM).

Sample
MCF7 HepG2 SW620

24 h 48 h 72 h 24 h 48 h 72 h 24 h 48 h 72 h

F1 169.35 ± 19 151.20 ± 18 93.97 ± 2.29 261.2 ± 26 142.55 ± 14 69.49 ± 7.55 126.30 ± 26 121.25 ± 15 2.74 ± 0.24

F2 1003.35 ± 126 1119 ± 103 375.10 ± 9.05 1091 ± 70 600.9 ± 15 54.27 ± 4.20 958.90 ± 162 922 ± 147 3.86 ± 0.04

F3 15.78 ± 0.45 7.04 ± 2.62 2.94 ± 0.54 18.75 ± 4.87 4.51 ± 0.88 1.85 ± 0.09 5.80 ± 0.49 4.97 ± 1.31 0.49 ± 0.01

Dox 0.11 ± 0.01 0.10 ± 0.01 0.09 ± 0.01 0.63 ± 0.07 0.26 ± 0.02 0.11 ± 0.02 0.13 ± 0.01 0.10 ± 0.01 0.08 ± 0.01

F1: plant extract; F2: CNTs (without drug); F3: Ag/SFMWCNTs with the extract; Dox: Doxyrubicin (chemothera-
peutic agent).

3. Results
3.1. Preparation and Characterization of SFMWCNTs

As shown in Figure 2A,B, the tubes showed the formation of Ag-NPs in the mixture
was confirmed via the change in color from yellowish to dark brown. This change occurs
due to the reduction of Ag ions to nanosized Ag particles, which in turn is caused by the
water-soluble organic materials present in the plant [22].

The UV–Vis absorption spectra of the SFMWCNTs obtained by mixing the olive-leaf
extract with the Ag-NPs is shown in Figure 2C. The peak at 419 nm indicates the change in
color to dark brown, thus confirming the formation of silver NPs. By contrast, the UV–Vis
spectra of the Ag/SFMWCNT nanocomposite exhibit an absorption peak at around 430 nm.
Additionally, the particle size for the prepared nanocomposite was 257 nm, and the zeta
potential was −24 mV, indicating its compatibility to be used for systemic treatment for
further in vivo testing.
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spectra of olive-leaf extract and Ag/SFMWCNT with olive-leaf extract. (D) Particle size (PS) of
SFMWCNTs. (E) Zeta potential (ZP) of SFMWCNTs.

Furthermore, Figure 3 shows the XRD patterns for the olive-leaf extract and the
synthesized SFMWCNTs. The peaks for the SFMWCNTs are comparable with those of the
standard card (JCPDS card No. 89-3722). In particular the 2θ diffraction peaks at 38.09◦,
44.17◦, 64.49◦, and 77.06◦ can be attributed to the (111), (200), (220), and (311) planes of Ag,
respectively. This figure indicates that the Ag-NPs have a crystalline nature, and the low
intensity of the Ag peaks shows that only a small amount of Ag has been used.
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3.2. Fourier Transform Infrared Spectroscopy (FTIR) Results

FTIR spectroscopy was used to discriminate and identify the biomolecules of olive leaf.
FTIR has been utilized by numerous researchers to analyze a variety of materials [23–25].
By looking at FTIR spectra based on stretching or bending vibration of specibonds, FTIR
spectroscopy can reveal information on intermolecular interaction [25,26]. In Figure 4, the
olive leaf’s FTIR spectrum is shown. An intense broad band was seen at 3384.58 cm−1,
which was caused by polyphenols O-H stretching modes. Phenolic compounds and
alcohols both contain the hydroxyl (OH) group, which has a broad absorption band at
3310.7 cm−1. The C=C stretch vibration in the aromatic ring and the C=O stretch vibration
in polyphenols may have also been responsible for another strong band at 1612.02 and
1386.23 cm−1. The C-H and O-H stretches in alkanes and carboxylic acids have been
observed to surface at 2935.37 cm−1, respectively. The C-O bond stretching in amino acids
has also resulted in the emergence of a band at 1078.55 cm−1. Previous research has shown
that the O-H/N-H, C=C, and C-O-C stretching vibrations are responsible for the FTIR
bands that developed at 3384.58 cm−1, 1612.02 and 1386.23 cm−1, and 1078.55 cm−1 [23,24].
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Figure 4. FTIR spectroscopy results of the olive-leaf extract and Ag/SFMWCNTs nanocomposite. It
can be seen from the FTIR spectrum of silver NPs that the wavenumber of the OH bending vibration
at 3359.29 cm−1 appeared to broaden and decrease, and that the peaks in the (1700–400) cm−1 region
almost underwent alteration.

3.3. Morphological Studies: SEM and EDS Measurements

The SEM and EDS images of the olive-leaf extract and SFMWCNT nanocomposite pre-
pared by green reduction method are shown in Figures 5 and 6, respectively. SEM images
were used to study the morphology of nanomaterials, as shown in Figure 5. The synthe-
sized material exhibits clusters with almost a circular shape, whereas the nanocomposite
has a tubular-channel structure. Thus, these images indicate amorphous and crystalline
structures, respectively. The current findings are compatible with our XRD results.
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nanocomposite. The synthesized material exhibits clusters with almost a circular shape, whereas
the nanocomposite has a tubular-channel structure. Thus, these images indicate amorphous and
crystalline structures, respectively.
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Figure 6. (A) EDS images of the olive-leaf extract. (B) EDS images of the Ag/SFMWCNT nanocom-
posite. The presence of Ag-NPs on the SFMWCNT sheets was also elementally identified via EDS
analysis. As shown, the weight percent of silver in the composite is 65.33%, whereas no silver element
is present in the extract.

In addition, based on our previous protocol for the extracted spherical olive leaf and
SFMWCNT nanocomposite, the presence of Ag-NPs on the SFMWCNT sheets was also
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elementally identified via EDS analysis (Figure 6). As shown, the weight percent of silver
in the composite is 65.33%, whereas no silver element is present in the extract [20].

3.4. Cytotoxicity Effects of SFMWCNT

During this study, the cytotoxicity of the extracts/formulation (SFMWCNTs) was
evaluated by MTT assay. The study was conducted to determine the SFMWCNT ability to
kill the cancer cells, MCF7 (human breast adenocarcinoma), HepG2 (human hepatocellular
carcinoma), and SW620 (human colorectal cancer) after 24, 48, and 72 h. F1: plant extract;
F2: CNTs (without drug); F3: Ag/SFMWCNTs with the extract; Dox: Doxorubicin (a
chemotherapeutic agent) as shown in Figures 7–9 (A, B, and C). The MTT cytotoxicity study
identified the IC50 of the three cell lines after treatment with a wide range of concentrations
from SFMWCNT (1–5000 µM), as shown in Table 1.
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The IC50 for MCF7 was found to be 169.35 µM for plant extract (F1) compared to
15.78 µM for Ag/SFMWCNTs (F3) after 24 h and a similar significance difference was
clearly noticed with 48 h and 72 h, respectively, as shown in Figure 7 and Table 1. Figure 8
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shows higher sensitivity for SFMWCNTs (F3) against HepG2 compared with the extract
and control, especially after 72 hr as the IC50 values were 69.49, 54.27, and 1.85 µM for (F1)
plant extract; (F2) CNTs; (F3) SFMWCNTs, respectively. Interestingly, the most cytotoxic
activity upon treatment with the SFMWCNTs was noticed against SW620 cells as shown in
Figure 9 and Table 1. It is indicated that SFMWCNTs have more effect on human colorectal
cancer with lower IC50 values which were 5.80, 4.97, and 0.49 µM for 24 h, 48 h, and 72 h,
respectively. The cytotoxic effect against all three cell lines was prominent with low IC50
values, especially after 72 h. It could indicate greater release with time for SFMWCNTs and
has shown promise as a therapy for cancer cells. This treatment may result in the strongest
suppression of cancer cells.

4. Discussion

Green silver nanoparticle production using plant extracts as reducing agents has been
reported in recent studies [27–29]. Other biological techniques have several benefits, in-
cluding being cost-effective, simple to use, and environmentally friendly. One-step metal
ion reduction using biomolecules found in plant extracts results in nanoparticles [30,31].
Chemical and physical techniques have been substituted by biosynthesis of nanoparti-
cles as a cost-effective and environmentally acceptable alternative [32]. Many secondary
metabolites and biomolecules are found in natural plant extracts, including flavonoids,
alkaloids, terpenoids, phenolic compounds, and enzymes. Flavonoids, for example, are
found in abundance. Metal ions can be reduced to NPs using secondary metabolites in
one-step synthesis methods that are favorable to the environment [33]. Green synthesis
generally eliminates the need for stabilizing and capping agents and produces biologically
active molecules that are shape- and size-dependent, which reduces the need for addi-
tional chemicals [34]. In our study, reduction of aqueous Ag+ with olive extracts at room
temperature yielded Ag-NPs. Electrochemical, chemical, and physical techniques have
been used to manufacture Ag-NPs coated on MWCNTs. In another study, water extract of
Satureja hortensis L was used as a reducing and stabilizing ingredient to green synthesize
and characterize the Ag/ FMWCNT nanocomposite at room temperature [35].

In previous works, it has been demonstrated that functionalizing CNTs is a viable
strategy to enhance breast cancer treatment’s biocompatibility and cytotoxicity effect [36].
The green synthesis represents a more reliable and price-efficient approach compared with
other decoration techniques. Thus, in this study, the green technique reproduced from
Pirtarighat et al. [37] for preparing Ag-NPs MWCNTs composites using plant extracts was
followed [38]. As for the extraction process, the olive leaves were dried and ground before
being extracted at 0 ◦C with distilled water. This process yielded various compounds, the
most important of which were Hydroxytyrosol, Tyrosol, and Oleuropein [39,40]. Subse-
quently, a thin film was fabricated from the extract, resulting in a natural polymer [40].
Olive-leaf extracts contain medicinal properties and combining these extracts with Ag-NPs
is often a viable option for targeted drug delivery [41]; thus, this possibility was employed
for cancer cells [42,43].

Silver nanoparticles derived from olive leaf extract demonstrated antitumor action
in our earlier studies [33] and were similar to our results [44,45]. It is possible to study
the effect of nanoparticles in vivo in the future to test their feasibility to be used in the
development of new nanomedicines. Polyphenol concentration in olive leaf extract was
high, indicating that it has powerful antitumorigenic effects as previously reported [46].
A natural anticancer drug may be made using an environmentally friendly process such
as Ag-NP green synthesis, as proven by the findings in this paper. Ag-NP green synthesis
has been shown to be effective on different cancer cell line types, as demonstrated in the
current study’s data. More research and therapeutic applications were in agreement with
our findings, which indicates it might be beneficial to present them as anticancer treatment
options [47–49].
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5. Conclusions

Sustainable methods for synthesizing metallic nanoparticles are essential in the field
of nanotechnology. There is a growing consensus that nanoparticles are the cornerstones
of nanotechnology. Due to their appealing physiochemical characteristics, silver nanopar-
ticles play an important role in biology and medicine. In the present study, it was found
that performing olive-leaf extraction at a low temperature in an ice bath leads to superior
results, as most organic compounds are destroyed at high temperatures. The olive-leaf
extract contains a large quantity of organic compounds, which have several applications in
medicine, condensates, and solar cells. Furthermore, it was found that when these organic
compounds are linked to CNTs, the efficiency is hugely increased. Toxic solvents and
waste are avoided by using olive leaf extracts as a natural, low-cost biological reducer to
create metal nanostructures using an efficient green nanochemistry approach. The obtained
materials were analyzed using Ultraviolet–Visible spectroscopy (UV–Vis), scanning elec-
tron microscopy (SEM), electron dispersive spectroscopy (EDS), and powder XRD. These
findings demonstrate a simple, quick, and cost-effective way to make silver nanoparticles.
The usage of olive-leaf has the added benefit that nanotechnology processing industries
may make use of this plant. It is possible to employ SFMWCNTs nanoparticles produced
in this work as anti-cancer agents, and also in the medical field for other diseases.
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