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Abstract: Objective: Our aim was to evaluate the capacity of the human salivary histatin-1-
functionalized methacrylic gelatin scaffold to control osteochondral tissue regeneration and re-
pair in vivo in rabbits with major temporomandibular joint dimensional abnormalities. Materials and
Methods: In order to compare human salivary histatin-1-functionalized methacrylic gelatin scaffolds
to the Blank and Gel-MA hydrogel groups, scaffolds were implanted into osteochondral lesions of a
critical size (3 × 3 mm) in the anterior region of the condyle of the temporomandibular joint in New
Zealand white rabbits. At 4 weeks after implantation, the repair was evaluated using macroscopic
examination, histology, and micro-CT analysis. Results: In the comparison of the composite scaf-
fold group with the Blank and Gel-MA groups, analysis of the healed tissue revealed an improved
macroscopic appearance in the composite scaffold group. Regeneration was induced by host cell
migration in the Hst1/Gel-MA scaffold group. Conclusions: The current study offers a viable method
for in vivo cartilage repair that does not require cell transplantation. Future clinical applications of
this strategy’s optimization have many potential advantages.

Keywords: cartilage; osteochondral; tissue engineering; in vivo

1. Introduction

The mandibular condylar osteochondral complex in the temporomandibular joint
(TMJ) plays a paramount role in the growth and articulation of the mandibular bone,
contributing to oral movement functions such as chewing and speaking [1]. Osteochondral
flaws in the mandibular condyle, which may be caused by recent injuries, excessive amounts
of stress, or aberrant immunological reactions [2], may result in lifelong discomfort and
restricted jaw motion [3]. The repair of osteochondral defects is difficult due to a poor ability
to self-heal. Cartilages bear no vascular structure, which results in the absence of a classic
healing cascade and blood-borne multipotent mesenchymal stem cells (MSCs) in cartilage
defects [4]. Furthermore, in the surrounding cartilage tissue, the mature chondrocytes have
limited ability to migrate and repair [5]. The blood supply from bone tissues may, to some
extent, initiate traditional healing processes and attract MSCs [6], but this is not sufficient
to enable the full repair of osteochondral lesions and invariably results in the development
of fibrous scar tissue [7]. Meanwhile, the reduced area of the condylar head results in
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abnormal mechanical overloading, which may cause secondary mechanical damage [8].
Osteochondral defects can be managed in the clinic through a variety of autografts, such
as autologous chondrocyte implantation [8], mosaicplasty, and stem cells [9], in order to
provide regenerative cells. However, their usage is restricted by the scarcity of autografts,
donor site discomfort, and morbidity [10]. Consequently, the quantitative and qualitative
restoration of osteochondral tissues remains highly challenging. In recent years, tissue
engineering (TE) techniques have shown promising potential in applications to repair
osteochondral defects [11].

The native TMJ microstructure consists of three distinct structurally and functionally
heterogeneous and anisotropic regions: the fibrocartilage, the subchondral bone, and the
calcified cartilage. Therefore, in the field of TE, three components with distinct physic-
ochemical and biological properties have become increasingly used in the construction
of material scaffolds to aid in the regeneration of bone, cartilage, and the osteochondral
interface individually [12]. Such intricate designs are, however, less suited to industrial
manufacturing and medical applications. In our recent study, we developed a novel
TE construct in which methacrylate gelatin (Gel-MA) hydrogel acts as an osteochondral-
conductive scaffold [13] and human salivary histatin-1 (Hst1) functions to recruit and
activate regenerative cells [14–20]. In comparison with zonally structured TE constructs,
this Hst1/Gel-MA hydrogel is much less complicated; thus, it has greater application
potential. As indicated by the much higher ICRS (International Cartilage Repair Society)
score of the Hst1/Gel-MA group compared with the Gel-MA group and Blank group,
our data demonstrate that this scaffold helps to completely fill a lesion with a smooth
surface and good integration to surrounding tissues. Consistent with the macroscopic
observations, histological analysis reveals that Hst1/Gel-MA results in significantly higher
levels of collagen II, aggrecan, and collagen fiber expression than the Gel-MA group and
Blank group, as well as more newly created subchondral bone and cartilage. These results
indicate that Hst1/Gel-MA is efficacious in re-establishing the macroscopic structures and
basic compositions of osteochondral tissues [21], suggesting that Hst1/Gel-MA can be used
to treat osteochondral lesions in the TMJ, which is a very interesting potential application.
However, in order to confirm its application potential, the quality of the newly regenerated
osteochondral tissues, through bone microstructure, bone remodeling, neo-vasculation,
collagen types, and distributions, remains to be elucidated.

In this study, we adopted micro-computed tomography (micro-CT) analysis, a po-
larized light microscope, and immunohistochemical staining to analyze the quality of
the freshly formed osteochondral tissues induced by Hst1/Gel-MA compared with those
induced by the Blank control and Gel-MA.

2. Materials and Methods
2.1. Preparation of Hst1/Gel-MA Polymer Solution

Based on the previous study, we explored the optimal concentration of this scaffold
used in TMJ osteochondral defects in vivo [21]. Freeze-dried Gel-MA macromer (200 mg),
purchased from the Wenzhou Institute, was dissolved in 1 mL of phosphate-buffered
saline (PBS) containing 0.5% (w/v) Irgacure 2959 (2-hydroxy-1-(4-(hydroxyethyl)phenyl)-2-
methyl-1-propanone, CIBA Chemicals, Basel, Switzerland) at 80 ◦C. In a water bath that
was maintained at a consistent temperature, the prepolymer mixture was kept at 40 ◦C.

Preoperatively, a 500 µg sterile lyophilized linear Hst1 peptide sample, purchased from
the University of Amsterdam (Amsterdam, Holland) and stored at −20 ◦C, was dissolved
in 21.1 µL (equivalent to the volume of the defect) of Gel-MA prepolymer solution to obtain
a photopolymerized Hst1/Gel-MA polymer solution. Before use, the prepolymer solution
was filtered through a bacterial filter. Prior to surgery, it was freshly prepared and stored in
sterile bottles.
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2.2. Animal Surgery

Adult male New Zealand white rabbits (n = 18) were used to construct mandibular
condylar osteochondral defect models following a previously described protocol [21]. All
surgical procedures were approved by the Zhejiang Chinese Medical University Ethics
Committee. Briefly, after general anesthesia, a 3 mm diameter drill was used to create an
osteochondral defect, 3 mm in diameter and 3 mm in depth, in the anterior region of the
superior surface of the right condylar. Next, three treatments were assigned at random to fill
the osteochondral defects: (1) Blank group (n = 6): empty defect; (2) Gel-MA group (n = 6):
a pure Gel-MA polymer solution was embedded in the defect; (3) Hst1/Gel-MA group
(n = 6): an Hst1/Gel-MA scaffold polymer solution was embedded in the defect. The
polymer solution was crosslinked using ultraviolet radiation (365 nm, 90 s) in situ in the
Gel-MA group and Hst1/Gel-MA group. Each animal received unilateral surgery (Scheme 1).
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Scheme 1. Procedures of Hst1/Gel-MA scaffold implantation in rabbit mandibular condylar osteo-
chondral defect (3 mm × 3 mm).

2.3. Analysis of Micro-Computed Tomography (Micro-CT)

Rabbits were euthanized to collect samples 4 weeks after condyle surgery. The samples
(n = 18) were measured with a micro-CT (SkyScan1276, Brooke Company, Germany) scanner.
The following scan parameters were chosen: exposure duration was 400 ms, scaled image
pixel size was 9.03 µm, voltage was 85 kV, and current was 200 µA. Three-dimensional
reconstruction was conducted using NRecon software (V1.7.3.0). After calibration of the
scans with the standard body model, a cylindrical region of interest (ROI) (3 mm in diameter
and 3 mm in height) was selected in the defect region. By image processing, 2D pictures
were taken at the level of the biggest flaw in the coronal tomography scans. Following the
manufacturer’s instructions, CTAn software (V1.18.8.0) was used to measure a number of
microarchitecture parameters, including bone mineral density (BMD), bone volume/tissue
volume (BV/TV), trabecula thickness (Tb.Th), and trabecula spacing (Tb.Sp).

2.4. Histological Assessment

The formalin-fixed specimens (n = 18) were decalcified with 10% EDTA (ethylene di-
amine tetraacetic acid)-buffered saline solution for 2 months. The decalcified samples were
incised from the largest sagittal at the center of the defect, dehydrated, and embedded in
paraffin blocks. A microtome (Leica RM2265) was used to slice histological sections (6 µm).
The prepared sections were stained using hematoxylin and eosin (HE), Safranin-O/Fast
Green (SO/FG), Masson, Sirius Red, tartrate-resistant acid phosphatase (TRAP), and alka-
line phosphatase (ALP). For each staining, one section per sample was picked for analysis.

Sections were examined microscopically using scan images captured with a Digital
Pathology Slide Scanning System (Hamamatsu, Japan), polarized light microscopy, and
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digital images. The growth of new tissue, new cartilage, and new bone; the thickness of
new cartilage and bone; proteoglycan content; Type I collagen (Col I) fraction of defect;
Type II collagen (Col II) fraction of cartilage; and Type III collagen (Col III) fraction of bone
were detected and calculated with Image Pro Plus 6.0, a program for image analysis. The
areas of new cartilage, new bone, and collagen were selected by researchers.

Multinucleated cells that were TRAP-positive were used to define osteoclast activity,
and bone cells that were ALP-positive were used to describe osteoblast activity. According to
the method shown in Figure 1, four regions of subchondral bone (migration area, upper area,
middle area, lower area) were selected for analysis. A subregional count of the TRAP-positive
multinuclear cells and the ALP-positive cells in the subchondral bone was performed.
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Figure 1. Schematic diagram of subchondral bone division. The red frame is defined as the migration
area, located at the lower part of the cartilage at the edge of the defect. The green frame is defined
as the middle area, located in the center of the defect. The blue frame is defined as the upper area,
located in the upper part of the subchondral bone. The yellow box is defined as the lower area,
located at bottom of the subchondral bone defect.

2.5. Immunohistochemistry Analysis

For the purpose of finding possible proteins linked to differentiation, immunohisto-
chemistry was used. Col II, Aggrecan, Platelet endothelial cell adhesion molecule-1 (CD31),
and Vascular endothelial growth factor (VEGF) were detected using VEGF (JH121, diluted
1:100, 2 µg/mL), CD31 (c31.7, diluted 1:100, 2 µg/mL), Collagen-II (bs-10589R, diluted
1:100, 2 µg/mL), and Aggrecan (AB1031, diluted 1:100, 2 µg/mL) primary antibodies via
immunohistochemical staining, respectively. Integrated optical density, or IOD, was used
to express the collagen II and Aggrecan content, while the content of VEGF and CD31 were
expressed by positive cell number, measured using Image Pro Plus 6.0.

2.6. Statistical Analysis

The mean value and standard deviation (SD) of the results were presented; GraphPad
Prism 8 and SPSS 26 statistical software were used to perform statistical analyses. The
threshold of statistical significance was established at α = 0.05 (p < α). Statistical analysis
was carried out using one-way analysis of variance (ANOVA) and Tukey’s test for multiple
comparisons. Statistical significance was denoted by the following symbols: * p < 0.05,
** p < 0.01, and *** p < 0.001.
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3. Results
3.1. Clinical Observation and Micro-CT Analysis

At 4 weeks postoperative, all animals had healed successfully and ate sufficient food
to maintain their starting weight up to the time of sacrifice. Representative micro-CT
images of each group are shown in Figure 2A. Different patterns of new subchondral
bone development were seen in the three groups. Coronal tomography corroborated the
results found in the 3D reconstruction: the osteochondral defect of the Hst1/Gel-MA group
was almost filled with well-integrated new tissue. A quantitative morphometric analysis
(Figure 2B) showed that the BV/TV in the Hst1/Gel-MA group was markedly higher
than that in the Gel-MA group and the Blank group (p < 0.01, p < 0.001, respectively).
Additionally, the Hst1/Gel-MA group considerably outperformed the Blank group in
terms of Tb.Th and BMD (p < 0.001). Meanwhile, between the Gel-MA group and the
Hst1/Gel-MA group, there was no statistical difference. Furthermore, compared with the
Gel-MA group and the Blank group, the Tb.Sp of the Hst1/Gel-MA group was statistically
lower (p < 0.05).
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Figure 2. Representative micro-CT images and quantitative morphometric analysis of rabbit mandibu-
lar condylar osteochondral defects. (A) Three-dimensional reconstruction and representative coronal
images of the osteochondral defect model, in which yellow circles and boxes indicate the extent of
the original defect and red dashed lines show the extent of the defect at 4 weeks. (B) Metrological
analysis of bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), trabecular spacing (Tb.
Sp), and bone mineral density (BMD). Error bars are mean ± SD (n = 6, * p < 0.05, ** p < 0.01, and
*** p < 0.001).

3.2. Histological Assessment

A notable finding in the Hst1/Gel-MA group was the simultaneous regeneration of
articular cartilage and subchondral bone that was clearly detectable, as shown in Figure 3A.



J. Funct. Biomater. 2023, 14, 513 6 of 15

The proportion of new cartilage and subchondral bone as well as the mean thickness of
new cartilage and subchondral bone were significantly higher in the Hst1/Gel-MA group
than in the other two groups (Figure 4).

In the Hst1/Gel-MA group, the integrated reparative cartilage tissue showed typical
columnar aligned chondrocytes that were stratified into fibrous, proliferative, mature,
and hypertrophic zones (Figure 3A). The Hst1/Gel-MA group had a noticeably increased
amount of proteoglycan deposition (Figures 3B and 4D). The vascularized subchondral
bone had both osteoblasts and osteoclasts in significant numbers (Figure 3B). Evidence of a
good transition between the cartilage layer and the subchondral bone area was detected. In
comparison, sufficient osteochondral defect repair was not observed in the Gel-MA group.
Widespread fibrous tissues filled the defect without a fibrocartilage structure. Meanwhile,
the Blank group essentially remained in an unrepaired state, with irregular immature
cartilage negatively stained by SO/FG and exposed subchondral bone.

The prominent collagen matrix formed in the developing tissues was further seen
using polarized light Sirius red staining microscopy (Figure 5A). Most Col I organization
was observed in the repaired tissues in the Hst1/Gel-MA group. In the Hst1/Gel-MA
group, the neo-cartilage was rich in Col II, with a regular multicolored fiber network
arranged closely and a neo-bone with noticeably large amounts of Col III. A rough surface
and damaged, disorganized collagen fibers were present in the Blank group’s defects.
Additionally, the Hst1/Gel-MA group had considerably higher proportions of Col I in the
defect, Col II in the cartilage, and Col III in the bone than the other two groups (p < 0.001,
Figure 5B).
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Figure 3. HE, SO/FG, and Masson staining of rabbit mandibular condylar osteochondral defects.
(A) HE staining. Black dashed boxes show the extent of the original defects (3 mm × 3 mm), blue
solid boxes are magnified images of newly formed articular cartilage, and green solid boxes are
magnified images of newly formed subchondral bone. (B) SO/FG staining of new cartilage center,
Masson staining of newly formed subchondral bone.
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Figure 4. Histological evaluation of rabbit condylar osteochondral defects at 4 weeks postoperative.
(A) New tissue formation, (B) new cartilage formation, (C) new bone formation, (D) evaluation of
proteoglycans in the cartilage matrix, (E) thickness of new cartilage, (F) thickness of new bone. Error
bars are mean ± SD (n = 6, * p < 0.05, ** p < 0.01, and *** p < 0.001).
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Figure 5. Polarized light microscopy images of Sirius red-stained condylar osteochondral defects
at 4 weeks postoperative. (A) Polarized light Sirius red staining microscopy. The solid green box
shows the distribution of Col II (colorful reticular distribution) in the new cartilage and the solid
blue box shows the distribution of Col III (greenish) in the new subchondral bone. (B) Metrological
analysis of the Col I fraction of defect. (C) Metrological analysis of the Col II fraction of cartilage.
(D) Metrological analysis of the Col III fraction of the subchondral bone. Error bars are mean ± SD
(n = 6, * p < 0.05, and *** p < 0.001).
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3.3. IHC Analysis

In the Hst1/Gel-MA group, Col II and aggrecan deposition in cartilage tissue reached
that of normal cartilage, but minimal Col II and aggrecan staining was evident in the Gel-
MA group (p < 0.001, Figure 6). The cartilage layer in the Blank group had an unorganized
distribution of chondrocytes and little expression of Col II or aggrecan. The outcomes of
HE staining, SO/FG staining, and Sirius red staining agreed with those of IHC.
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Figure 6. Immunohistochemical micrographs and quantitative analysis of cartilage matrix markers
Col II and aggrecan were performed in the Gel-MA and Hst1/Gel-MA groups at 4 weeks postopera-
tive. (A) Immunohistochemical micrographs of collagen II. (B) Immunohistochemical micrographs of
aggrecan. (C) Expression of collagen II at 4 weeks. (D) Expression of aggrecan at 4 weeks. Error bars
are mean ± SD (n = 6, *** p < 0.001).

The expression of angiogenic markers including CD31 and VEGF was measured
using IHC to investigate the angiogenic effect of the Hst1/Gel-MA scaffold (Figure 7).
The subchondral bone of the Hst1/Gel-MA group had higher levels of CD31 and VEGF
expression than that of the Gel-MA group, and these findings were compatible with Masson
staining (p < 0.001).
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Figure 7. Immunohistochemical micrographs and quantitative analysis of angiogenic markers CD31
and VEGF were performed in the Gel-MA and Hst1/Gel-MA groups at 4 weeks postoperative.
Black arrows indicate positively stained vessels. (A) Immunohistochemical micrographs of CD31.
(B) Immunohistochemical micrographs of VEGF. (C) Expression of CD31 at 4 weeks. (D) Expression
of VEGF at 4 weeks. Error bars are mean ± SD (n = 6, and *** p < 0.001).

3.4. Assessment of Bone Metabolism Activity in Subchondral Bone

To more accurately evaluate the bone metabolism’s kinetics, we observed the migration
area, upper area, middle area, and lower area after TRAP/ALP staining (Figures 8 and 9).
The number of TRAP-positive multinuclear cells and ALP-position multinuclear cells in
each region was not uniform throughout the structure. In all four locations, the osteo-
clast count was considerably lower for the Hst1/Gel-MA group than for the Blank group
(p < 0.001), and in the migratory area and upper area, the Hst1/Gel-MA group had more
osteoblasts than the Blank group (p < 0.001). Meanwhile, the number of osteoclasts in the
migratory and upper area of the Hst1/Gel-MA group was much lower than in the Gel-MA
group (p < 0.01), and the quantity of osteoblasts was significantly larger than that of the
Gel-MA group (p < 0.05), despite intragroup variability in the middle and lower area.
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Figure 8. TRAP staining of micrographs and quantitative analysis of osteoclasts were performed
in mandibular condylar subchondral bone at 4 weeks postoperative. Red boxes represent areas of
cartilage migration. Blue boxes represent the upper part of the defect centre. Green boxes represent
the middle part of the defect centre. Yellow boxes represent the lower part of the defect centre. Black
arrows indicate positive staining areas. (A) TRAP staining of micrographs of the subchondral bone.
(B) Metrological analysis of osteoclasts. Error bars are mean ± SD (n = 6, * p < 0.05, ** p < 0.01, and
*** p < 0.001).
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Figure 9. ALP staining of micrographs and quantitative analysis of osteoblasts were per-
formed for mandibular condylar subchondral bone at 4 weeks postoperative. Red boxes
represent areas of cartilage migration. Blue boxes represent the upper part of the defect
centre. Green boxes represent the middle part of the defect centre. Yellow boxes rep-
resent the lower part of the defect centre. Black arrows indicate positive staining areas.
(A) ALP staining of micrographs of the subchondral bone. (B) Metrological analysis of osteoblasts.
Error bars are mean ± SD (n = 6, * p < 0.05, *** p < 0.001).
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4. Discussion

The remodeling of osteochondral defects is extremely difficult with self-healing due
to the continuous mechanical loading, inadequate avascularity of the cartilage tissue, as
well as deficiencies in MSC migration and proliferation [5]. In this study, we created a
nonlayered Hst1-functionalized Gel-MA scaffold and implanted it into critical-size, weight-
bearing osteochondral lesions in the rabbit mandibular condylar to provide a viable therapy
alternative. We found that the Hst1/Gel-MA group was an efficacious construct for simul-
taneously assisting in the regeneration of fibrocartilage and bone compared with the other
two groups.

The quality and quantity of freshly formed subchondral bone in the Hst1/Gel-MA
group were considerably superior to those of the other two groups. The 3D reconstruction
images in this study showed that the contours of the condylar surface gradually recovered;
however, poor bone healing was observed in the center of the defect. This demonstrated
that new bone formed gradually from the defect edge to the defect center as the scaffold
deteriorated. Histological observations of the sections showed that the Hst1/Gel-MA
scaffold promoted regeneration and extracellular matrix mineralization of the new bone.
The Micro-CT data demonstrated that the Tb.Sp, BV/TV, Tb.Th, and BMD values decreased
in the Hst1/Gel-MA group, along with improvements in bone structural characteristics.
Histological staining analysis confirmed the Hst1/Gel-MA scaffold boosted subchondral
bone repair, generating thicker bone. The images of Sirius red staining under polarized light
showed that Hst1/Gel-MA had the highest proportion of Col I in the newly formed tissue
and the highest proportion of Col III in the new subchondral bone, confirming that the bone
tissue was properly restored. Col I binds to the mineralized collagen fibrils already present
in the bone, controlling the creation of sacrificial bone and the nucleation and growth of
bone mineral crystals to further increase bone toughness [22], thus endowing the tissue
with load-bearing mechanical properties [23]. Col III is a crucial regulator of collagen fiber
structure and the biomechanics of articular cartilage [24], giving tissues tensile strength and
integrity [25]. Col III acts as a modifier of the fibrillar network during tissue healing [26],
promoting healing. Moreover, the new bone was integrated with the adjacent host tissue
well, without obvious cracks or empty cavities, indicating that the Hst1/Gel-MA scaffold’s
ability to promote bone healing was superior to that of the other two groups. However,
collagen type X is a marker of cartilage proliferation for the formation of calcified cartilage,
and the expression or non-expression of collagen type X in chondrocytes is an important
indicator of the biological traits of chondrocytes. We have conducted studies on collagen
types I, II, and III and need to refine our analysis of collagen type X.

Gel-MA scaffolds are a beneficial component for bone healing, providing support for
bone matrix formation and mineralization [27]. In this study, we evaluated the repair via
histology and micro-CT analysis, and we also need to perform SEM analysis of the calcium
phosphate deposits in the scaffolds to clarify the mineralization. Gel-MA gels rapidly in situ,
making it easily applicable to defects and confirming it can assist in the creation of three-
dimensional tissues and cell proliferation [28]. In our study, the Hst1/Gel-MA scaffold
polymer solution was photopolymerized using ultraviolet rays (365 nm, 90 s) in situ. UV
light has been widely used in light crosslinking. The concern about its biosafety is mainly
due to its phototoxicity to living cells, which does not affect the properties of Hst1 [29]. It
has also been shown that Hst1 can rapidly target and activate mitochondria after uptake,
and it has a protective effect on human epithelial cell damage induced by ultraviolet
rays [30]. Gel-MA has numerous benefits, including high biocompatibility, biodegradability,
physicochemical tailorability, and affordability [31]. Previously, due to its appropriate
biological features and adaptable physical characteristics, it has been employed as a flexible
matrix for bone tissue engineering scaffolds [27]. Liang Chen [32] demonstrated that
grafting mesoporous bioactive glass nanoparticles into Gel-MA increased the mechanical
qualities as well as improved angiogenesis and osteogenesis. Simultaneous mineralization
and angiogenesis was effectively achieved using a Gel-MA-based scaffold entrapped with
both osteogenic and angiogenic cells [33]. In our study, there was a dynamic balance



J. Funct. Biomater. 2023, 14, 513 12 of 15

between scaffold degradation and tissue formation in both the Gel-MA group and the
Hst1/Gel-MA group. Our findings revealed that the application of Gel-MA individually
resulted in better subchondral bone repair than the Blank group, with greater osteoblast
infiltration and a higher subchondral bone mineral content (p < 0.05).

The synergistic osteogenesis and angiogenesis of Hst1 is a potential mechanism for the
effective repair of subchondral bone. Hst1 is a salivary bioactive peptide that can stimulate
numerous cell activities [14], such as promoting cell adhesion [16] and migration [17],
including osteoblasts [18], fibroblasts [19], and adipocytes [20]. The intimate temporal
and spatial connection between osteogenesis and angiogenesis is called “angiogenesis–
osteogenesis coupling” [34]. Effective bone tissue repair requires a functional vascular
structure, which is a prerequisite for bone regeneration [35]. VEGF is a potent angiogenic
agent that may boost the migration, proliferation, and survival of vascular endothelial
cells [36]. It is necessary for the effective coupling of angiogenesis and osteogenesis during
the growth of the skeleton and the repair of broken bones [37]. CD31 exists in vascular
endothelial cells and has dual properties, promoting vascular protection and neovascu-
larization. It is believed to play a significant role in the improved regulation of bone
development. Immunohistochemical analysis of angiogenic markers in new bone showed
that the Hst1/Gel-MA scaffold could significantly enhance the expression of VEGF, which
could account for some of the improvement in the vascularized subchondral bone forma-
tion (p < 0.001). The pro-angiogenesis effect of Hst1 has been widely confirmed [30]. It was
recently shown to act as a proangiogenic factor that could activate Rac1 via a signaling
pathway, the so-called “RIN2/Rab5/Rac1” axis [15]. This pathway is relevant for angiogen-
esis and vascular morphogenesis. Other in vivo experiments have also demonstrated that
Hst1 alone can promote angiogenesis as required for skin wound healing [38]. Hst1 can sig-
nificantly promote the expression of a series of vascular markers and enhance the formation
of new bone [39]. In addition, Hst1 is a new osteogenic factor, and the uptake of Hst1 by
osteoblasts has also been demonstrated [14]. It promotes the cell adhesion, diffusion, and
migration of preosteoblasts in vitro, increasing the activity of ALP and encouraging miner-
alization by promoting the expression of osteogenic genes such as osteocalcin, osteopenia,
and Runx2 [40].

The Hst1/Gel-MA scaffold can provide a strong bone matrix frame for osteochondral
defect healing and provide the possibility for the enhanced proliferation and repair of
surface chondrocytes. It is well acknowledged that MSCs, which can move locally to sites
of the osteochondral defect and differentiate as needed to replace wounded tissue, are
responsible for osteochondral defect rehabilitation [41]. Further, the extent and outcome of
the repair and remodeling responses of osteochondral defects are critically dependent on
the reconstruction of subchondral tissue [6]. The condyle is supported by the subchondral
bone matrix, which also acts as a stent for cartilage healing. Subchondral bone dynamically
adjusts bone density patterns, mechanical properties, trabecular orientation, and propor-
tional parameters; thus, the articular bone contour is preserved, and articular chondrocytes
can grow and differentiate in a biomechanically favorable environment [42]. Moreover,
the subchondral bone’s vascular system offers limited regenerative capabilities, delivering
nutrients to the chondrocytes [43,44]. Studies have shown a linear relationship between
cartilage thickness and subchondral bone plate thickness, as well as between the cartilage
loss modulus and the BMD of the subchondral bone [45].

Based on the excellent subchondral bone healing, the Hst1/Gel-MA group led to
better regeneration of cartilage. The chondrocyte architecture and distribution in the new
cartilage in the Hst1/Gel-MA group resembled the cartilage tissue around it, including the
characteristic fibrous, proliferative, mature, and hypertrophic zones [46]. Chondrocytes
are layered and orderly, which helps the cartilage resist continuous pressure. The prolif-
erative zone is home to MSCs that repopulate fibroblasts and chondrocytes, the mature
and hypertrophic zones contain embedded mature chondrocytes, and the fibrous zone is
primarily composed of fibroblasts [47]. Consistent with our previous findings [21], the
cartilage matrix (Col I, Col II, aggrecan, and proteoglycan) was remodeled to the greatest
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extent in the Hst1/Gel-MA group. The normal functioning of load-bearing cartilage hinges
on the composition and structural integrity of the cartilage matrix [48]. The main struc-
tural protein in cartilage, Col II, is essential for controlling the mechanical transduction of
chondrocytes [49]. Col I, also known as the fibril-forming collagen [50], was found in high
concentrations in the fibrous and proliferative zones of TMJ fibrocartilage and subchondral
bone. More regular and vertically organized collagens were seen in the newly created
cartilage of the Hst1/Gel-MA group, which increased the compression resistance of the
cartilage and provided a favorable mechanical environment for chondrocyte proliferation
and differentiation. We believe that the Hst1/Gel-MA scaffold aids in the regeneration and
repair of the load-bearing osteochondral structure.

Overall, this study offers in vivo proof-of-concept for using this nonlayered scaffold
for the repair of mandibular condylar osteochondral defects. The findings convincingly
demonstrate the capabilities of this biomimetic scaffold to assist and guide the host to higher
quality healing. Complete tideline structures could not be observed at the osteochondral
interface of the three groups; this tideline indicates the limiting line for calcification and
vascularization, and plays a significant role in preventing the vascular invasion of the
cartilage and maintaining a non-mineralized avascular cartilage layer [51]. In such a
scenario, direct bone-on-cartilage contact between an opposing host articular surface and
an ossification within a dynamic joint may result in chondral injury and an early stage of
degenerative degeneration [52]. Hence, the follow-up time should be extended to observe
the recovery of the tideline.

5. Conclusions

In this study, we designed an unstratified scaffold by integrating Hst1 and Gel-MA
for the repair of condylar osteochondral defects. In an experiment in the rabbit condyle
with critical-sized osteochondral defects, we found that Hst1/Gel-MA was an efficacious
construct that facilitated osteochondral defect repair compared with the Gel-MA group and
the Blank group. It is suggested that the Hst1/Gel-MA scaffold might effectively promote
the formation of bone and fibrocartilage, both of which had structures similar to that of
the host tissue. From this study, it can be concluded that the Hst1/Gel-MA scaffold can be
used to repair condylar cartilage defects in vivo and is an attractive candidate scaffold for
potential use in clinical applications. To obtain improved osteochondral implants, future
research should focus on the scaffold’s fabrication procedure.
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