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Abstract: A carbonate-hydroxyapatite-based antibacterial implant material with low cytotoxicity was
synthesized. The silver ion (Ag+) was incorporated into CHA material, resulting in silver-doped
carbonate hydroxyapatite (CHA-Ag). The microwave-assisted precipitation method was used to
synthesize the CHA-Ag material. The amount of Ag+ was varied at 0.005, 0.010, and 0.015 mol
fractions (χAg). The XRD results showed that the diffractograms corresponded with hydroxyapatite
(ICSD 98-05-1414), without any additional phase. The presence of carbonate ions was indicated by
vibrations at wavenumber of 871, 1411, and 1466 cm−1 in the infrared spectra. The CHA-Ag materials
were agglomerates of nanosized particles with low crystallinity. The particle size and crystallinity
of the materials decreased due to the incorporation of CO3

2− and Ag+. The incorporated Ag+

successfully inhibited peri-implant-associated bacterial growth. The antibacterial ability increased
alongside the increase in the Ag+ amount. The pre-osteoblast MC3T3E1 cell could grow up to >70%
in the MTT assay, despite the use of Ag+ as a dopant. The cell viability was higher in the CHA-Ag-
containing media than in the CHA-containing media. The MTT assay also revealed that the CHA-Ag
cytotoxicity decreased even though the Ag+ amount increased. The CHA-Ag-15 had the lowest
cytotoxicity and highest antibacterial activity. Therefore, the optimal amount of Ag+ in the CHA-Ag
formulation was χAg = 0.015.

Keywords: antibacterial; biocompatible; hydroxyapatite; peri-implantitis; silver

1. Introduction

Hydroxyapatite is widely used as a dental implant coating material due to its os-
seointegration ability [1,2]. The dental implant appears to be a safe treatment method.
However, dental implant materials’ lack of antibacterial properties triggers peri-implantitis
infection [3]. Peri-implantitis is an implant-related bacterial infection around the dental
implant [4–6]. This bacterial infection causes bone resorption and implant loss, possibly
requiring implant removal [7–10]. Mechanical decontamination, laser treatment, or either
treatment in combination with antiseptics and antibiotics is used for peri-implantitis treat-
ment. Achieving the therapeutic concentration at the target site requires a high antibiotic
dosage [11]. However, antibiotic use causes resistance that renders one more susceptible to
peri-implantitis in the future [12]. There are three stages in the bacterial infection processes:

J. Funct. Biomater. 2023, 14, 385. https://doi.org/10.3390/jfb14070385 https://www.mdpi.com/journal/jfb

https://doi.org/10.3390/jfb14070385
https://doi.org/10.3390/jfb14070385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jfb
https://www.mdpi.com
https://orcid.org/0000-0001-9957-4247
https://orcid.org/0000-0001-9104-9333
https://doi.org/10.3390/jfb14070385
https://www.mdpi.com/journal/jfb
https://www.mdpi.com/article/10.3390/jfb14070385?type=check_update&version=1


J. Funct. Biomater. 2023, 14, 385 2 of 14

adhesion, biofilm formation, and maturation [13]. The adhesion and biofilm stages have
important roles in the bacterial infection process. Bacterial adhesion is the initial stage of
bacterial infection [14]. Then, in the biofilm stage, the bacteria are resistant to antibodies,
phagocytes, and antibacterial drugs [4]. Therefore, inhibition of the bacterial adhesion
process is necessary to reduce the potential for peri-implantitis.

Metal ions are an ideal choice for inhibiting bacterial adhesion due to their broad-
spectrum and long-term antibacterial effect [4,13]. Ag+ is the metal ion most frequently
used as an antibacterial agent [15]. In the hydroxyapatite (HA) implant material, Ag+

can be incorporated via Ca2+ substitution [16]. However, Ag+ has a cytotoxicity effect in
addition to its antibacterial properties. The use of Ag+ with a mol fraction (χAg) > 0.03 in
hydroxyapatite inhibited fibroblast cell growth [12]. Therefore, it should be restricted below
a 0.03 mol fraction to minimize the cytotoxicity effect. Previously, researchers have shown
that using a Ag+ < 0.03 mol fraction can inhibit bacterial growth with a low cytotoxicity
effect [17,18]. However, this has never been attempted for peri-implant-associated bacteria.

While researchers have succeeded in minimizing the toxicity of metal-ion-doped
implants, improving their biocompatibility remains challenging. The implant material
becomes meaningless if it has antibacterial activity but a low tissue integration ability [4].
Material–tissue integration capabilities also play important roles in implant-associated
bacterial infection. For an implant’s success, material–tissue integration must occur before
bacterial adhesion [13]. The osseointegration ability of hydroxyapatite should be improved
to obtain faster material–tissue integration. Carbonate (CO3

2−)-doped hydroxyapatite
(CHA) has better in vivo osseointegration than HA due to its lower crystallinity [19].
Another way to improve the osseointegration of HA is nanometer-size formation [20].

The HA nanoparticle can be synthesized through wet chemical precipitation by mixing
a calcium- and phosphate-containing solution at pH > 7. However, the wet precipitation
method requires a long synthesis time. Zuo et al. [21] and Xu et al. [22] applied the wet
chemical precipitation method for hydroxyapatite nanoparticle synthesis, requiring 1 and
1.5 h of stirring, and then continued with the aging process. Kolmas et al. [23] used a 48 h
aging time to obtain CHA-Ag material using wet chemical precipitation. Wet chemical
precipitation can be combined with a microwave heating system to overcome the long
synthesis process.

This work aimed to produce a hydroxyapatite-based antibacterial implant material
with minimal toxicity and enhanced bioactivity. The silver-doped carbonate hydroxyapatite
(CHA-Ag) nanoparticle was synthesized with Ag+ below a 0.03 mol fraction. The CHA-Ag
was synthesized using a microwave-assisted precipitation method to obtain a nanosized
particle. The nanosized carbonate hydroxyapatite was chosen due to its improved bioac-
tivity. The Ag+ below a 0.03 mol fraction and carbonate hydroxyapatite were expected to
provide antibacterial properties to a hydroxyapatite-based implant material with minimal
cytotoxicity that can inhibit peri-implant-associated bacterial growth.

2. Materials and Methods
2.1. Materials

The precursors used for synthesis—CaNO3·4H2O, (NH4)2HPO4, Na2CO3, and AgNO3—
were purchased from Merck (USA). The peri-implant-associated bacteria for the antibacte-
rial test were Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas
gingivalis, Prevotella intermedia, and Staphylococcus aureus, which were obtained from the
Research Center of the Faculty of Dentistry, Universitas Airlangga, Surabaya, Indonesia.
The bacteria culture and antibacterial test media were Brain Heart Infusion (Oxoid, UK)
broth and Muller–Hinton media. The cells for the MTT assay were pre-osteoblast MC3T3E1
cells from the European Collection of Authenticated Cell Cultures (ECACC). The media
for the cell culture was MEM-α media, supplemented with 10% Fetal Bovine Serum, 2%
Penicillin–Streptomycin, and 0.5% Fungizone (Gibco™). Trypsin EDTA 0.25% (Gibco™)
was also used in the MTT assay.
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2.2. Methods
2.2.1. Materials Synthesis

The synthesis process was conducted using the microwave-assisted precipitation
method in the Biomaterials Laboratory, Department of Physics, Universitas Gadjah Mada,
Indonesia. The stoichiometry method of Singh et al. [12] and Safarzadeh et al. [24] was used
in this synthesis process, shown in Table 1. The CaNO3.4H2O and AgNO3 were dissolved
in distilled water with χAg of 0.005, 0.010, and 0.015. The (NH4)2HPO4 and Na2CO3 were
dissolved in another vessel with the P/(Ca + Ag) and C/P mol ratios of 0.6 and 1. Each
solution was adjusted to a 9.85 pH using NH4OH. The PO4

3−-CO3
2− solutions were added

to the Ca2+-Ag+ solution and stirred for 10 min. Then, the suspensions were heated with a
microwave oven (Sharp R728 K, 900 watts) using 30% power for 9 min. After heating, the
CHA-Ag suspensions were filtered and dried at 100 ◦C for 6 h. The hydroxyapatite (HA)
was also synthesized to compare the physicochemical properties.

Table 1. The stoichiometry of CHA-Ag synthesis.

Materials (χAg)
Stoichiometry

Ca(NO3)2 AgNO3 (NH4)2HPO4 Na2CO3

HA - 10 - 6 -
CHA - 10 - 6 6

CHA-Ag-05 0.005 9.95 0.05 6 6
CHA-Ag-10 0.010 9.90 0.10 6 6
CHA-Ag-14 0.015 9.85 0.15 6 6

2.2.2. Material Characterizations

The synthesized materials were characterized using a Fourier transform infrared
spectrophotometer (FT-IR), X-ray diffractometer (XRD), and electron microscope. The
FT-IR (Shimadzu Prestige 21) was used to record the functional group vibrations of the
synthesized materials. The XRD (Bruker D8 ADVANCE ECO) with Cu Kα radiation was
used to record the X-ray diffraction patterns. The diffractograms were processed using
HighScore Plus software to determine the profile-fitted peak position and its full width at
half maximum (FWHM). The crystallinity and crystallite size of the material were evaluated
using the crystallinity index (CI) and Scherrer equation:

CI =
(

0.24
β002

)3
and L =

K × λ

β002 × cos θ
(1)

where β002 is the FWHM of the 002-lattice plane, K is the Scherrer constant with a value of
0.89, and λ is 1.5406 Å for the Cu Kα [25]. The lattice parameters were estimated using the
following equation [26]:

1
d2 =

4
(
h2 + hk + k2)

3a2 +
l2

c2 (2)

The morphology and atomic composition of the materials were analyzed using a
transmission electron microscope (TEM, JEOL JEM-1400) and scanning electron microscope
(SEM, JEOL JSM-6510LA).

2.2.3. In Vitro Studies for Antibacterial Properties and Cytotoxicity

The in vitro antibacterial studies were conducted at the Research Center of the Faculty
of Dentistry, Universitas Airlangga, Indonesia, using the agar well diffusion method.
Antibacterial tests were carried out for the CHA and CHA-Ag samples with four repetitions.
A total of 0.1 g of pelletized sample for each CHA and CHA-Ag material was sterilized
using ethylene oxide gas. On the other hand, the peri-implant-associated bacteria were
cultured in Brain Heart Infusion broth media and spread onto Muller–Hinton media. Then,
the CHA and CHA-Ag pellets were diffused in bacteria-containing Muller–Hinton media
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and incubated at 37 ◦C for 48 h. The antibacterial activity was assessed in terms of the
inhibition zone diameter.

The in vitro cytotoxicity test was conducted at the Integrated Research and Testing
Laboratory, Universitas Gadjah Mada, Indonesia, using the MTT assay. The MTT assay was
carried out for the CHA and CHA-Ag samples without repetition. At first, pre-osteoblast
MC3T3E1 cells were cultured in MEM-α media, supplemented with 10% Fetal Bovine
Serum, 2% Penicillin–Streptomycin, and 0.5% Fungizone. The cells were harvested after
80% of the cells were confluent. Then, the cells were removed from the flask using trypsin
EDTA 0.25% and transferred to a sterilized conical vessel containing 1 mL of supplemented
MEM-α media. Then, 10 µL of cell suspension was pipetted into a hemocytometer for cell
counting. The MTT assay was initiated by cultivating the pre-osteoblast MC3T3E1 cells in
the 96-well plate, followed by incubation for 24 h. Next, CHA and CHA-Ag suspensions
with 4000 µL/mL concentrations were added to each well, with the volume adjusted to form
a serial concentration of 23.44–3000 µL/mL, and then incubated for 48 h. Next, 100 µL/well
of 0.5 mg/mL MTT assay reagent (Biobasic, United States of America) was added to each
well and incubated for 4 h. DMSO was added 100 µL/well to dissolve the formazan salt.
The solution’s optical density (OD) was measured using a Tecan Spark® spectrophotometer
at 570 nm. The cell viability was calculated using the following equation:

Cell viability =
OD o f the treatment − OD control o f media
OD control o f cells − OD control o f media

× 100% (3)

The cell viability of each material concentration was plotted with the log [material] vs.
cell viability curve. Then, the curve was fitted with non-linear regression to calculate the
IC50 value.

2.2.4. Statistical Method

The statistical method used to help us to interpret the antibacterial test result was
one-way analysis of variance (ANOVA). The results of the inhibition zone diameter were
grouped based on the bacteria and material. First, ANOVA was carried out in the group
of bacteria and material. In the group of bacteria, ANOVA was performed to study the
effect of the Ag+ amounts on the bacteria. Then, ANOVA for the group of materials was
performed to examine the different bacteria’s responses to Ag+. The post hoc Tukey test
was also performed to study the significant differences between group members. Before
the ANOVA was conducted, the inhibition zone diameter results for the group of bacteria
and material were tested for their homogeneity and normality.

3. Results and Discussion
3.1. Material Characterization

The CHA and CHA-Ag were synthesized using the microwave-assisted precipitation
method. The material characterization was carried out to validate the CHA and CHA-
Ag materials’ formation and study their characteristics. The SEM images in Figure 1
show the appearance and surface morphology of the materials. The materials have the
appearance of solid micro-sized materials with a rough surface. The arrow in Figure 1
shows the rough surface of the materials. There were no differences in the morphology
or appearance of the synthesized materials. All materials were composed of Ca, P, and O
atoms, as shown in the EDX results in Table 2. However, the Na atom appeared in the CHA
and CHA-Ag materials due to the use of Na2CO3 as a CO3

2− source. The Ag atom was
undetected in the EDX analysis, because the amount was less than that of the Ca, P, and
Na. Figure 2 shows the vibrations of the functional groups in the materials. The vibrations
at 565 and 600 (v4; doubly degenerated bending mode), 964 (v1; symmetric stretching),
1057 cm−1 (v3; triply degenerated asymmetric stretching) confirmed the presence of the
PO4

3− group in the materials [19]. The appearance of 871 (v2; bending), 1411 (v1; stretching),
and 1466 cm−1 (v3; stretching) vibrations confirmed the existence of CO3

2− ions [23,24]. The
broad absorption peaks at 1600–1700 and 3200–3600 cm−1 belonged to the absorbed H2O
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molecules in the crystal structure [27]. The presence of the Ca atom and PO4
3− functional

group proved that the materials belonged to the calcium phosphate family. Figure 3
shows that the materials had the hydroxyapatite lattice structure, as their diffraction
patterns were well-matched with the hydroxyapatite (ICSD 98-05-1414) phase. However,
the Ca/P ratio ranged from 1.39 to 1.55. The calcium phosphate family, with a Ca/P
ratio range from 1.33–1.67, are categorized as calcium-deficient hydroxyapatite (CDHA) or
precipitated hydroxyapatite (PHA) [28–30]. The conformity of the diffraction pattern with
the hydroxyapatite phase and the presence of carbonate absorption peaks proved that the
materials were carbonate hydroxyapatite.
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Table 2. The elemental analysis results using EDX.

Materials
Element (%Mass)

Ca/P
Ca P O Na

HA 27.40 15.20 48.74 - 1.39
CHA 28.51 14.91 45.32 1.25 1.48

CHA-Ag-05 25.59 13.65 48.53 1.38 1.45
CHA-Ag-10 27.99 15.08 45.62 1.33 1.43
CHA-Ag-15 34.41 16.68 40.56 0.92 1.59

Table 3 shows the crystal parameters of the materials. The CHA and CHA-Ag materials
had almost the same lattice constant as HA. Changes in the value of the lattice constant
were due to the incorporation of Ag+ and CO3

2− into the HA lattice. The lattice constants of
the materials underwent varying changes. The Ag+ increased both the a- and c-axes of the
hydroxyapatite lattice. Meanwhile, the CO3

2− decreased the a-axis and increased the c-axis
of the hydroxyapatite lattice. The decrease in the a-axis and increase in the c-axis due to the
incorporation of CO3

2− into the HA lattice are characteristic of the type-B CHA [31]. This
change in the lattice constant was due to the larger PO4

3− (2.38 Å) being replaced by the
smaller CO3

2− (1.76 Å) [24]. The shape and orientation of the CO3
2− also affected the lattice

constant of the HA. Kubota et al. [32] revealed that the trigonal planar CO3
2− occupied

the side of the tetragonal PO4
3− parallel to the c-axis. With this shape and orientation, the

incorporated CO3
2− would enlarge the c-axis and reduce the a-axis of the HA lattice. The

lattice constant of the materials increased when the Ag+ was incorporated into the HA
lattice. Comparing the radii of the Ag+ and Ca2+, the Ag+ (1.28 Å) was larger than the Ca2+

(0.99 Å). Therefore, the HA lattice expanded as Ag+ replaced Ca2+ [33–36].
The crystallinity, crystallite, and particle size of the materials in Table 3 also changed

due to the incorporation of Ag+ and CO3
2−. The HA material had the highest crystallinity.

The crystallinity decreased when the Ag+ and CO3
2− were incorporated into HA lattice.

The crystallite size of the materials was 17–28 nm and categorized as nanocrystalline
materials [37,38]. The crystallite size calculation results were similar to the particle size
measurement results using TEM. The TEM images in Figure 4 show that the materials had
elongated shapes with an irregular surface morphology [39]. The lengths of HA, CHA,
CHA-Ag-05, CHA-Ag-10, and CHA-Ag-15 particles based on the TEM images were 24.88,
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16.48, 16.55, 18.90, and 15.82, respectively. Both the crystallite and particle sizes decreased as
Ag+ and CO3

2− were incorporated into the hydroxyapatite lattice; however, the crystallite
and particle sizes increased as the amount of Ag+ increased.

Table 3. Crystal parameters and particle size of the materials.

Materials
Lattice Constant

Crystallinity (%) Crystallite Size
(nm)

Particle Size
(nm) 1

a c

HA 9.358 6.837 63.3 28.29 23.47
CHA 9.339 6.854 43.6 25.00 21.42

CHA-Ag-05 9.344 6.866 15.0 17.49 16.98
CHA-Ag-10 9.350 6.867 15.9 17.86 16.55
CHA-Ag-15 9.349 6.864 16.4 18.02 16.72

1 TEM images measurement.
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These results follow those of previous studies related to Ag+- and CO3
2−-doped

hydroxyapatite [40–44]. Both Ag+ and CO3
2− could inhibit the growth of HA crystals [42,44].

The substitution of the larger tetragonal PO4
3− with the smaller planar CO3

2− led to a
decrease in the crystallite size of the HA [45]. The presence of CO3

2− ions in the HA lattice
also decreased the surface energy [46]. Deymier et al. [46] revealed that the change in the
crystal energetics controlled the crystallite size, i.e., the more CO3

2− was incorporated, the
smaller the crystal was. Meanwhile, there were two perspectives regarding the effect of the
Ag+ ion on the HA. The presence of Ag+ could increase the crystallite size of the HA due
to the higher Ag+ radius (1.28 Å) compared to that of the Ca2+ (0.99 Å) [33–35,47]. Other
studies reported that incorporating Ag+ into the HA lattice decreased the crystallite size
due to the distortion of the HA lattice [43,44,48]. Substituting Ca2+ with Ag+ introduced
different ionic radii into the HA lattice, resulting in the HA lattice’s distortion and crystal
growth inhibition [44]. Karunakaran et al. [26] also stated that HA crystal growth inhibition
was due to the potent electrostatic interaction between Ag+ and PO4

3−. In this work,
both perspectives can be observed in Table 3. The smaller crystallite size of CHA-Ag, as
compared to CHA, indicated that Ag+ inhibited crystal growth. At the same time, the
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crystallite size of the CHA-Ag increased with the increase inf Ag+ due to the higher Ag+

radius as compared to that of the Ca2+.

3.2. Antibacterial Activity

In this work, Ag+ was used as a dopant in the CHA materials to provide antibacterial
properties. The usage of Ag+ was limited to below a 0.03 mol fraction. An antibacterial
test was conducted to determine whether Ag+ below a 0.03 mol fraction had antibacterial
properties. Figure 5 shows that the synthesized materials had antibacterial activity. The
synthesized materials could inhibit the growth of peri-implantitis bacteria and produce
an inhibition zone. The diameter of the inhibition zone indicated the strength of the
antibacterial properties of the material. The CHA-Ag materials had significantly different
inhibition zone diameters compared to the CHA. Due to the oligodynamic effect, a small
number of Ag+ ions in the CHA-Ag materials could inhibit peri-implant-associated bacteria
growth [49,50]. Ag+ also offered more remarkable antibacterial ability than that observed
in our previous studies using egg-white-modified CHA with an inhibition zone diameter
of only 10.01–13.33 mm [51].
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The inhibition zone diameter data were analyzed for variance in the groups of bacteria
and materials. The ANOVA and post hoc Tukey test results are shown in Table 4 and Figure 6,
respectively. The ANOVA results for the bacterial groups had a significant p < 0.05, with
CHA-Ag-15 being the highest subset in the post hoc test. The results showed a difference in
the inhibition zone diameter for the different amounts of Ag+, and the CHA-Ag-15 had the
most increased antibacterial activity. In the group of materials, the ANOVA result also had
a significant value of p < 0.05. This result indicated that the different bacteria responded
differently to the same material. The post hoc Tukey results showed that the inhibition zone
diameter of Staphylococcus aureus was the widest among all the bacteria. It was concluded
that Staphylococcus aureus was the bacteria most affected by Ag+. Staphylococcus aureus ps
a Gram-positive bacterium, while the others are Gram-negative. Gram-positive bacteria
only have a thick peptidoglycan in the cell wall [52]. Meanwhile, Gram-negative bacteria
have a lower permeability outer membrane that serves as a solid barrier for the cell [53,54].
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The low permeability of the outer membrane makes Gram-negative bacteria more difficult
for Ag+ to penetrate than Gram-positive bacteria [54].

Table 4. The results of ANOVA for the groups of bacteria and materials.

In the Group of
Significance

Normality Test Homogeneity Test ANOVA

Bacteria >0.05 >0.05 0.00
Materials >0.05 >0.05 0.00
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3.3. Cytotoxicity Evaluation

Ag+ is a broad-spectrum antibacterial agent and a toxic material for mammalian cells,
including fibroblast and osteoblast cells [9,21,22,55]. In addition, the incorporated Ag+

contributes to hydroxyapatite toxicity. Therefore, a cytotoxicity test for CHA-Ag materials
was necessary. The pre-osteoblast cell was selected for the CHA-Ag toxicity test because of
its role in bone formation [56]. The cytotoxicity of the CHA-Ag materials was determined
using the MTT method. The pre-osteoblast cells were incubated for 48 h with various
concentrations of CHA and CHA-Ag ranging from 23.44 to 3000 µg/mL. The living cells
reduced the MTT reagent to purple formazan salt. The amount of formazan equaled the
number of living cells and was expressed as cell viability [57].

The microscopic image in Figure 7 shows pre-osteoblast MC3T3E1 cells grown in
media-containing materials. The white circles were the pre-osteoblast MC3T3E1 cells,
while the black patches were material particles. The pre-osteoblast cell viabilities shown
in Figure 8 were above 50%, but the cell viabilities reduced as the concentration of the
materials increased. The decrease in cell viability occurred in all the CHA materials. This
proved that the presence of Ag+ did not cause reductions in cell viability. These results
differ from the antibacterial activity shown in Figure 6, which was affected by the amount
of Ag+. As shown in Figure 7, increasing the material concentration showed an increase
in the undissolved particles in the cell growth medium. The increase in the undissolved
particles was accompanied by a decrease in cell viability, as shown in Figure 8. The
presence of undissolved materials was also supported by the fact that the solubility of HA
was 43.56 µg/mL [58]. The materials were undissolved when the concentration exceeded
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43.56 µg/mL. Therefore, it was concluded that the undissolved particles of the synthesized
materials reduced cell viability.
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Then, the cell viability data were used to calculate the IC50 value. The IC50 in Figure 9
shows that the IC50 of the CHA-Ag materials was higher than that of the CHA. This result
means the CHA-Ag materials were less toxic or more biocompatible than the CHA. In
Figure 8, the CHA-Ag materials had better cell viability than the CHA. The cell viability of
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CHA-Ag was higher than that of CHA. The viability of the pre-osteoblast MC3T3E1 cells
in this work was not affected by the presence of Ag+. However, the cell viability of the
pre-osteoblast MC3T3E1 was affected by the undissolved particles of the materials. The
increase in the number of undissolved particles due to the increased material concentration
decreased cell viability. Because cell viability was not affected by the presence of Ag+, a
comparison of the physical properties of CHA and CHA-Ag was necessary. The physical
properties of the materials are shown in Table 3. The CHA-Ag materials had lower crys-
tallinity and smaller crystallite and particle sizes than the CHA. Table 3 and Figure 9 show
that CHA-Ag had a smaller size and lower crystallinity than CHA, but the cell viability of
CHA-Ag was higher than that of CHA. Therefore, the smaller and less crystalline CHA-Ag
was less cytotoxic or more biocompatible than the larger and more crystalline CHA.
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Webster et al. [59] and Shi et al. [60] had similar results. Webster et al. [59] found that
metal-doped HA had higher cell viability than non-doped HA. The higher cell viability in
the metal-doped HA was related to the grain size of the materials. The metal-doped HA had
a smaller grain size than the non-doped HA. The smaller grain size of the metal-doped HA
might contribute to cell adhesion enhancement. Shi et al. [60] compared the osteoblast-like
cell activity with different sizes of hydroxyapatite materials. The osteoblast-like cell had
better proliferation activity towards low crystalline hydroxyapatite with a 20 nm particle
size than the highly crystalline 80 and 200–500 nm material, because the smaller, low
crystalline HA could more easily to penetrate into cells and stimulate cell growth. Since
this work only involved in vitro studies, it will be necessary to conduct in vivo studies on
the effects of particle size or the low amount of silver-doped CHA in future studies.

4. Conclusions

Carbonate hydroxyapatite (CHA-Ag) nanoparticles were successfully synthesized us-
ing microwave-assisted precipitation. The materials were agglomerates of 16.72–23.47 nm
nanoparticles. The incorporated Ag+ and CO3

2− decreased the materials’ crystallinity, as
well as the crystallite and particle sizes. The presence of Ag+ in the CHA-Ag successfully
inhibited peri-implant-associated bacterial growth. The antibacterial effect was directly
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proportional to the Ag+ amount. CHA-Ag with a 0.015 mol fraction of Ag+ (CHA-Ag-
15) had the highest antibacterial ability. Although doped with Ag+ at 0.005, 0.010, and
0.015 mol fractions (χAg), CHA-Ag had a pre-osteoblast MC3T3E1 cell viability > 70%.
The CHA-Ag materials also had lower cytotoxicity or better biocompatibility, as their IC50
value was higher than the IC50 of the CHA material. The highest IC50 value belonged to
CHA-Ag-15 material. Therefore, the optimal amount of Ag+ as a CHA dopant for obtaining
the highest antibacterial properties but the lowest cytotoxicity was a 0.015 mol fraction of
Ag+

(
Ag

Ca+Ag

)
.
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and Magnesium Ions into Synthetic Hydroxyapatite: The Effect on Physicochemical Properties. J. Mol. Struct. 2011, 987, 40–50.
[CrossRef]

https://doi.org/10.1038/s41579-018-0019-y
https://doi.org/10.1007/s00339-021-04739-8
https://doi.org/10.1016/j.msec.2011.04.015
https://doi.org/10.1186/1556-276X-6-613
https://doi.org/10.1155/2013/194854
https://doi.org/10.1007/s10856-005-4424-1
https://doi.org/10.1016/j.aanat.2021.151877
https://doi.org/10.1016/j.jallcom.2016.09.117
https://doi.org/10.1016/j.rinp.2020.102991
https://doi.org/10.1016/j.msec.2017.01.003
https://www.ncbi.nlm.nih.gov/pubmed/28254276
https://doi.org/10.1016/j.ceramint.2018.11.003
https://doi.org/10.1039/C7NJ00803A
https://doi.org/10.1021/acsabm.9b00239
https://doi.org/10.1080/21870764.2020.1865861
https://doi.org/10.1016/j.mattod.2015.10.008
https://doi.org/10.22203/eCM.v020a01
https://doi.org/10.1007/s40204-015-0045-z
https://doi.org/10.1016/j.ceramint.2018.04.128
https://doi.org/10.1016/j.actbio.2014.05.007
https://doi.org/10.1016/j.msec.2018.12.148
https://www.ncbi.nlm.nih.gov/pubmed/30813033
https://doi.org/10.1016/j.msec.2018.04.076
https://www.ncbi.nlm.nih.gov/pubmed/29853096
https://doi.org/10.1016/j.materresbull.2013.04.068
https://doi.org/10.1016/j.apsusc.2010.12.113
https://doi.org/10.1016/j.msec.2014.02.018
https://www.ncbi.nlm.nih.gov/pubmed/24863209
https://doi.org/10.1016/j.matpr.2019.09.128
https://doi.org/10.1016/j.jascer.2014.01.002
https://doi.org/10.1016/j.molstruc.2010.11.058


J. Funct. Biomater. 2023, 14, 385 14 of 14

41. Kumar, G.S.; Thamizhavel, A.; Yokogawa, Y.; Kalkura, S.N.; Girija, E.K. Synthesis, Characterization and in Vitro Studies of Zinc
and Carbonate Co-Substituted Nano-Hydroxyapatite for Biomedical Applications. Mater. Chem. Phys. 2012, 134, 1127–1135.
[CrossRef]

42. Kee, C.C.; Ismail, H.; Mohd Noor, A.F. Effect of Synthesis Technique and Carbonate Content on the Crystallinity and Morphology
of Carbonated Hydroxyapatite. J. Mater. Sci. Technol. 2013, 29, 761–764. [CrossRef]

43. Mirzaee, M.; Vaezi, M.; Palizdar, Y. Synthesis and Characterization of Silver Doped Hydroxyapatite Nanocomposite Coatings
and Evaluation of Their Antibacterial and Corrosion Resistance Properties in Simulated Body Fluid. Mater. Sci. Eng. C 2016, 69,
675–684. [CrossRef] [PubMed]

44. Yusoff, M.F.M.; Kasim, N.H.A.; Himratul-Aznita, W.H.; Saidin, S.; Genasan, K.; Kamarul, T.; Radzi, Z. Physicochemical,
Antibacterial and Biocompatibility Assessments of Silver Incorporated Nano-Hydroxyapatite Synthesized Using a Novel
Microwave-Assisted Wet Precipitation Technique. Mater. Charact. 2021, 178, 111169. [CrossRef]

45. Venkateswarlu, K.; Sandhyarani, M.; Nellaippan, T.A.; Rameshbabu, N. Estimation of Crystallite Size, Lattice Strain and
Dislocation Density of Nanocrystalline Carbonate Substituted Hydroxyapatite by X-Ray Peak Variance Analysis. Procedia Mater.
Sci. 2014, 5, 212–221. [CrossRef]

46. Deymier, A.C.; Nair, A.K.; Depalle, B.; Qin, Z.; Arcot, K.; Drouet, C.; Yoder, C.H.; Buehler, M.J.; Thomopoulos, S.; Genin, G.M.;
et al. Protein-Free Formation of Bone-like Apatite: New Insights into the Key Role of Carbonation. Biomaterials 2017, 127, 75–88.
[CrossRef]

47. Gottardo, B.; Lemes, T.H.; Byzynski, G.; Paziani, M.H.; Von-Zeska-Kress, M.R.; De Almeida, M.T.G.; Volanti, D.P. One-Pot
Synthesis and Antifungal Activity of Nontoxic Silver-Loaded Hydroxyapatite Nanocomposites against Candida Species. ACS
Appl. Nano Mater. 2019, 2, 2112–2120. [CrossRef]

48. Pajor, K.; Pajchel, Ł.; Zgadzaj, A.; Piotrowska, U.; Kolmas, J. Modifications of Hydroxyapatite by Gallium and Silver Ions—
Physicochemical Characterization, Cytotoxicity and Antibacterial Evaluation. Int. J. Mol. Sci. 2020, 21, 5006. [CrossRef]

49. Shen, J.; Jin, B.; Qi, Y.; Jiang, Q.; Gao, X. Carboxylated Chitosan/Silver-Hydroxyapatite Hybrid Microspheres with Improved
Antibacterial Activity and Cytocompatibility. Mater. Sci. Eng. C 2017, 78, 589–597. [CrossRef]
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