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Abstract: Bone tissue is one of the most transplanted tissues. The ageing population and bone diseases
are the main causes of the growing need for novel treatments offered by bone tissue engineering.
Three-dimensional (3D) scaffolds, as artificial structures that fulfil certain characteristics, can be used
as a temporary matrix for bone regeneration. In this study, we aimed to fabricate 3D porous polymer
scaffolds functionalized with tricalcium phosphate (TCP) particles for applications in bone tissue
regeneration. Different combinations of poly(lactic acid) (PLA), poly(ethylene glycol) (PEG with
molecular weight of 600 or 2000 Da) and poly(ε-caprolactone) (PCL) with TCP were blended by a
gel-casting method combined with rapid heating. Porous composite scaffolds with pore sizes from
100 to 1500 µm were obtained. ATR-FTIR, DSC, and wettability tests were performed to study scaffold
composition, thermal properties, and hydrophilicity, respectively. The samples were observed with
the use of optical and scanning electron microscopes. The addition of PCL to PLA increased the
hydrophobicity of the composite scaffolds and reduced their susceptibility to degradation, whereas
the addition of PEG increased the hydrophilicity and degradation rates but concomitantly resulted
in enhanced creation of rounded mineral deposits. The scaffolds were not cytotoxic according to
an indirect test in L929 fibroblasts, and they supported adhesion and growth of MG-63 cells when
cultured in direct contact.

Keywords: PLA; polymer scaffolds; porous scaffolds; polymer blends; TCP; polymer functionalization

1. Introduction

In recent years, bone tissue was the second most transplanted tissue after blood [1,2].
This growing demand for new solutions provided by bone tissue engineering is caused
by common trauma or pathologies, different diseases, and the ageing population [3].
The aim of bone tissue engineering is to design biomaterials that temporarily mimic the
three-dimensional structure and functions of bone to promote cell adhesion, proliferation,
and differentiation [4].

Bone tissue has a very complex and highly organized structure. When it comes to
its chemical composition, it consists of from 50% to 70% inorganic constituents (mainly
hydroxyapatite), 20% to 30% organic constituents (type I collagen), 5% to 10% water, and
3% lipids. While if its architecture is taken into account, bone tissue can be classified
as hard cortical bone (with a porosity of 10–30%) or spongy cancellous bone (with a
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porosity of 30–90%) [1,5]. Another important characteristic of cancellous bone tissue is its
interconnected porous network with a high ratio of bone surface to bone volume [4].

Scaffolds are three-dimensional artificial structures that act as a temporary matrix
providing an environment for bone regeneration and development [2]. First, scaffolds
should be biocompatible, which means that they are supposed to perform their functions
while maintaining a suitable host response. Nontoxicity is another important requirement,
as they should not cause necrosis of cells. Second, scaffolds should have the ability to be
actively degraded at a reasonable rate by hydrolysis or enzymatic activity throughout the
regeneration process [6]. Degradation products should also not be toxic to cells. Lastly,
porosity is a very important key factor, as it provides better fixation and osteointegration
with the host tissues. The ideal scaffold for bone engineering would have interconnected
porosity. The minimum requirement for the pore size is about 100 µm but ideally its size
should fit in the range of 250–400 µm [7]. Although the size of osteoblasts ranges from
10 µm to 50 µm, they prefer larger pores (100–200 µm) as they allow macrophages to
infiltrate and eliminate current pathogens. On the other hand, smaller pores (<100 µm)
promote the formation of fibrous tissue and non-mineralized osteoid. Furthermore, pores
smaller than 10 µm create a high surface-to-volume ratio and thus facilitate better ion
exchange and bone protein adsorption [8]. At the same time, large pores promote blood
supply and bone ingrowth [9]. In general, to achieve the best mimic of the bone tissue
environment, both microporosity and macroporosity must be obtained.

Poly(lactic acid) (PLA) is considered to be one of the most versatile aliphatic polyesters.
It has two chiral configurations, poly-L-lactic acid and poly-D-lactic acid, and their ratio
allows one to optimize the degradation rate. PLA is considered a biodegradable mate-
rial with a low rate of degradation, which means that it can remain in vivo for up to
5 years. Its breakdown occurs through a hydrolysis reaction and the rate of this process
is determined by molecular weight and crystallinity [10]. In addition, PLA is considered
to be a thermally stable, biocompatible, and non-inflammatory material with nontoxic
degradation products [1]. However, due to features such as low heat resistance or low
strength, its applications are restricted [11]. To overcome the limitations mentioned, it is
possible to combine PLA with different materials, such as ceramics, or to blend it with
other polymers [12,13]. Poly(ε-caprolactone) (PCL) belongs to the group of semicrystalline
linear aliphatic polyesters. Because of its biocompatibility, biodegradability, and structural
stability, it is commonly used in tissue engineering. However, low bioactivity and low
surface energy lead to reduced cell affinity. Blending PLA with PCL allows adjustment of
the degradation rate and mechanical properties and the obtainment of less hydrophobic
materials [14,15]. Another example of a widely used polymer is poly(ethylene glycol) (PEG).
It is a semicrystalline hydrophilic polyether, which is also considered to be a biocompatible,
biodegradable, and nontoxic material. As it has fairly low glass-transition and melting
temperatures, which increase with the molecular weight of PEG, it is commonly mixed
with PLA [16]. The addition of PEG to PLA enhances flexibility and polarity, increases
hydrophilicity, and allows the degradation of the materials to be better controlled [17].
Different methods are being used to create scaffolds from polymer blends, such as solvent
casting, particle leaching, freeze drying, electrospinning, thermal-induced phase separation
(TIPS) and 3D printing [18–21]. However, the method of gel-foam casting that we present is
a simple, affordable, and effective technique that allows us to obtain scaffolds with different
pore sizes and a porosity of approximately 60%.

The most biomimetic scaffolds are polymer-ceramic composites, as they can replicate
the composition and architecture of the extracellular matrix of bone tissue [1,22]. Especially
interesting nowadays are bioactive ceramics such as tricalcium phosphate (TCP). TCP has
two crystalline forms: α-TCP and β-TCP [23,24]. The latter is more favored because of its
closest similarity to bone tissue in terms of chemical composition and crystallinity. Fillers
in the form of microparticles can be osteoconductive, which eventually leads to improved
cell proliferation. Furthermore, TCP exhibits a rate of degradation similar to the rate of new
bone formation [25,26]. The goal of this study was to obtain PLA–TCP composites with or
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without additives such as PEG 600, PEG2000, and PCL and to assess their physicochemical
and biological properties. In this research, we aimed to fabricate different polymer blends
that exhibit great cytocompatibility with improved osteointegration and are characterized
by different degradation rates. Blending PLA with different polymers can change the
susceptibility to degradation, as well as changing wettability, which affects cell adhesion.
Many researchers have studied PLA/TCP composites [23,27–29], as well as PCL/TCP com-
posites [30–34]. Senatov et al. evaluated PLA/PCL scaffolds enriched with hydroxyapatite,
showing their potential in regenerative medicine [35]. Furthermore, Liu et al. proposed
PLA/TCP scaffolds containing PEG as an alternative for bone defect repair [36]. However,
to the best of our knowledge the blends fabricated with the use of the method we provide
have not been previously investigated or compared. We present five different compositions
of polymer blends that are characterized by different degradation rates without significant
changes in wettability. The scaffolds were fabricated with the use of a gel-foam casting
method combined with rapid heating, and their properties were characterized. To do so,
microscopy observations (scanning electron microscopy and optical microscopy), differ-
ential scanning calorimetry (DCS), and Fourier transformed infrared spectroscopy (FTIR)
were performed, as well as measurement of water contact angle and cell culture tests. Based
on the gathered information, it was possible to assess which composites are more suited to
bone tissue-engineering applications while considering microstructure, cytocompatibility,
and susceptibility to degradation.

2. Materials and Methods
2.1. Materials

Poly(lactic acid) (PLA, Ingeo Biopolymer 3052 D, Mn = 180,000) was obtained from
Nature Works LLC, courtesy of Natur Tec Pvt Ltd., Chennai, Tamil Nadu, India. Poly(ε-
caprolactone) (PCL, Mn = 80,000) and poly(ethylene glycol) (PEG, Mn = 600 and Mn = 2000)
were purchased from Sigma-Aldrich, Steinheim, Germany. Beta-tricalcium phosphate
(TCP, analytical reagent grade, particle size < 500 µm) was provided by Sisco Research
Laboratories Pvt. Ltd (Sisco Labs, Mumbai, India). Dichloromethane and chloroform
were purchased from Merck KGaA, Darmstadt, Germany. Phosphate buffered saline (PBS)
was obtained from VWR Life Science, Radnor, PA, USA. The L929 mouse fibroblast cell
line was provided by the American Type Culture Collections (Manassas, VA, USA) and
the osteoblast-like MG-63 cell line derived from an osteosarcoma was provided by the
European Collection of Cell Cultures (Salisbury, UK). Dulbecco’s modified eagle medium
(DMEM), minimum essential medium (MEM), fetal bovine serum (FBS), penicillin and
streptomycin mixture, amino acids, and sodium pyruvate for cell culture were purchased
from PAN Biotech, Aidenbach, Germany. Calcein AM, propidium iodide, and resazurin
were provided by Sigma-Aldrich, Steinheim, Germany.

2.2. Preparation of Scaffolds

Agel-foam-casting technique combined with rapid heating was used to fabricate scaf-
folds, as previously described [37]. First, predetermined quantities of all components
(Table 1) were mixed and diluted in dichloromethane, while stirring on a magnetic stirrer
at a speed of 300 rpm to achieve a homogeneous mixture. Subsequently, the solution was
poured onto a glass plate preheated to 70 ◦C, which led to a rapid evaporation process,
resulting in the creation of pores of different sizes. Since PLA is considered biocompatible
and biodegradable and has been extensively studied for application in bone tissue [1,10,38],
we used this semicrystalline polyester as a matrix for all evaluated blends. In order to
enhance the osteoinduction and osteointegration of PLA, particles of β-TCP were incor-
porated. Moreover, the addition of ceramic filler can be used to modify the mechanical
properties of manufactured scaffolds. Furthermore, the presence of PCL in the matrix
may reduce the brittle behavior of PLA [39,40]. Interestingly, PEG has been reported to
act as a plasticizer [41,42]. As β-TCP was the only inorganic filler used in this study, we
preserved its percentage at the same level in each blend. To determine the impact of the
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molecular weight of PEG, the same amount of each (600 or 2000) was used in samples 2
(PLA-TCP-PEG2000) and 3 (PLA-TCP-PEG600).

Table 1. Percentage composition of the produced scaffolds.

Sample Component [wt.%]
PLA TCP PEG600 PEG2000 PCL

1 PLA-TCP 72 28 - - -
2 PLA-TCP-PEG2000 60 28 - 12 -
3 PLA-TCP-PEG600 60 28 12 - -

4 PLA-TCP-PCL 60 28 - - 12
5 PLA-TCP-PCL-PEG600 50 28 10 - 12

2.3. Physicochemical Characterization of Composite Scaffolds
2.3.1. Fourier Transform Infrared Spectroscopy

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR, Ten-
sor 27, Bruker, Billerica, USA) in the 4000 to 500 cm−1 wavenumber range was used to
investigate the composition of prepared scaffolds. To do so, cylinders with 12 mm diameter
and 2 mm height were cut from the scaffolds and placed on the diamond crystal, and the
spectra were recorded. The spectra were acquired by averaging 16 scans with a resolution
of 1 cm−1. OPUS software (version 7.2, Bruker, Billerica, USA) was used to process the data.

2.3.2. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC, Mettler Toledo DSC1 calorimeter, Greifensee,
Switzerland) was used to analyze the thermal properties of the prepared scaffolds. The
samples (approx. 4 mg) were placed in pierced aluminum pans. The test was carried out in
a nitrogen atmosphere (30 mL/min) in heating/cooling/heating cycles in a temperature
range of −90 ◦C to 210 ◦C at a heating/cooling rate of 10 K/min.

2.3.3. Optical and Scanning Electron Microscopy

The microstructure and morphology of the scaffolds were studied using an optical
microscope (VHX-900F, Keyence, Mechelen, Belgium) and a scanning electron microscope
(SEM, Aero S, Thermo Fisher Scientific, Waltham, MA, USA). Cylinders 12 mm in diameter
and 1 mm in height were photographed with a digital camera and observed with the use
of an optical microscope. For SEM, scaffolds were glued onto holders with carbon tape
and sputter coated with a thin carbon layer to make them conductive, and observations of
microstructure were made.

2.3.4. Contact Angle Measurement

The water contact angle was measured to evaluate the wettability of the scaffolds.
The syringe was filled with deionized water and the material was placed on a table in the
camera’s field of view. Then, a 2 µL drop of MilliQ-water was placed on the surface of the
materials at room temperature using a drop shape analyzer (DSA 10, KRÜSS GmbH, Ham-
burg, Germany) and the contact angle was evaluated by averaging 10 individual droplets.

2.3.5. Degradation Studies

Degradation studies were conducted to evaluate the impacts of different additives on
the degradation rate. To do so, the samples were immersed in phosphate buffered saline
solution (PBS) in a ratio of 1:100 (1 g of sample per 100 mL of PBS) and incubated at 37 ◦C
for up to 4 weeks. In the predetermined periods of time (1, 2, 3, and 4 weeks), samples were
taken from the solution, rinsed with Milli-Q water, freeze dried and weighed to determine
weight loss (WL). The WL was calculated using following Formula (1)

WL =
M0 − Mi

M0
·100% (1)
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where
M0—initial mass of the sample [g];
Mi—mass of the sample after degradation [g].

2.4. Biological Evaluation
2.4.1. Studies on Extracts

To verify the cytotoxicity of the scaffolds obtained, a study of L929 fibroblasts in-
cubated with the extracts was carried out. Briefly, we immersed the samples in culture
medium (1 g of sample per 10 mL of medium) and the extraction process was carried out for
24 h at 37 ◦C. Cells, in amounts of 10,000 per well, were seeded in a 96-well plate (Sarstedt,
Nümbrecht, Germany) and cultured for 24 h at 37◦C in a 5.0% CO2 atmosphere in DMEM
supplemented with fetal bovine serum (FBS, 10%) and antibiotics (mixture of penicillin and
streptomycin, 1%). After 24 h, the medium was replaced with extracts obtained previously
and culturing was carried out for 1 and 4 days.

The AlamarBlue metabolic assay and live/dead staining were performed on days 1
and 4 after the addition of the extracts. To investigate metabolic activity, 150 µL of 10%
AlamarBlue solution in DMEM was added to each well and the plate was incubated for
4 h at 37 ◦C in a 5.0% CO2 atmosphere. Then, 100 µL of the solution was transferred to a
black 96-well plate (Thermo Fisher Scientific, Waltham, MA, USA) to measure fluorescence
(λex = 544 nm and λem = 590 nm, FluoStar Omega, BMG Labtech, Ortenberg, Germany).
The range used to calculate the reduction of resazurin was 0% for the reagent incubated
in an empty well and 100% for the reagent reduced in autoclave, and the values were
compared to the control sample, which was cells cultured in supplemented DMEM as
previously described [43,44].

Calcein AM and propidium iodide (0.1% v/v each) were mixed with PBS to prepare
the live/dead reagent. After removing the medium from the wells, 100 µL of the reagent
was added to each well and incubated for 20 min in darkness. Subsequently, with the
use of a fluorescent microscope (ZEISS Axiovert 40 CFL with metal halide illuminator,
Oberkochen, Germany), pictures of live and dead cells were taken.

2.4.2. In Vitro Cytocompatibility

Osteoblast-like MG-63 cells were used to assess the cellular response of scaffolds. To
do so, scaffolds of 12 mm diameter and 2 mm height were placed in a 24-well plate. Samples
were sterilized by immersing them in 70% ethanol for 2 h, followed by UV irradiation
on both sides for 20 min each. Then, on each scaffold we seeded 20,000 cells suspended
in 1 mL MEM supplemented with fetal bovine serum (FBS, 10%), antibiotics (mixture of
penicillin and streptomycin, 1%), amino acids (0.1%) and sodium pyruvate (0.1%). Cells
were cultured for 1, 3, or 7 days at 37 ◦C in a 5.0% CO2 atmosphere. At each time point,
the AlamarBlue assay and live/dead staining were performed as described in Section 2.4.1.
For AlamarBlue, 1 mL resazurin reagent was added to each well, and the cells were
incubated for 4 h. To measure fluorescence, 100 µL was transferred to each well of the black
96-well plates for fluorescence measurement. For live/dead staining, we used 0.5 mL of
the respective reagent per well. After incubation in darkness, the samples were taken from
the plate, placed on the microscope slide, and pictures were taken as described above.

2.5. Statistical Analysis

All data are expressed as the average values ± standard deviation (SD) of two inde-
pendent experiments performed in triplicate. Normal distribution was verified using the
Shapiro–Wilk test followed by a one-way analysis of variance (ANOVA) test with the LSD
Fisher post hoc test to determine statistical significance. Origin software (version 2022 SR1,
OriginLab Corporation, Northampton, MA, USA) was used and we considered a proba-
bility value of less than 0.05 as statistically significant: * represents p < 0.05, ** represents
p < 0.01, and *** represents p < 0.001.
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3. Results
3.1. ATR-FTIR Spectroscopy

ATR-FTIR was performed to identify the chemical bonds of the components of the
fabricated scaffolds. Figure 1 shows the spectra of all samples. Each spectrum has a band
around 1750 cm−1, resulting from the C=O stretching vibrations of PLA [45,46]. However,
the double peak in this range suggests the presence of a component other than PLA. It
is visible in samples containing PCL, which confirms that both polymers (PLA and PCL)
are blended [45,47]. Bands in the range 2800–3000 cm−1 originate from C-H stretching
vibrations of CH3 groups in PLA and from CH2 groups from PCL and PEG (both 600 and
2000) [45]. The presence of bending vibrations of the C-H groups is reflected by the bands
in the range 1500–1250 cm−1. Bands around 1450 and 1370 cm−1 are assigned to symmetric
and antisymmetric bending vibrations of the -CH3 groups, respectively, which originate
from PLA [46]. The bands located between 1200 and 1000 cm−1 are due to C-O stretching
vibrations derived from all polymer components of the investigated samples [45–47]. Bands
at around 600 cm−1 that are not present in the PLA spectrum correspond to the vibration
of PO4

3− groups derived from β-TCP [48,49]. All of the spectra have bands at similar
wavenumbers and intensities, which suggests that no new chemical bonds were formed
during the preparation of the blends.
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3.2. Differential Scanning Calorimetry

DSC analysis was performed to determine the thermal properties of the investigated
samples. It consisted of three cycles: first heating, cooling, and second heating. The results
for all samples are presented in Figure 2. The degree of crystallinity (Xc) of PLA was
calculated using Formula (2), where ∆Hm is the melting enthalpy of PLA, xa is the total
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mass fraction of additives (TCP, PEG and PCL) and ∆Ho
m is the theoretical melting enthalpy

of 100% crystalline PLA that is equal to 93 J/g [50].

XC =
∆Hm(

1 − xa)·H0
m

·100%. (2)
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The DSC results showed that the addition of TCP had an impact on the transformations
that occur in polymers. Comparing the curves of pure PLA and samples containing
TCP, it can be observed that all of the transitions were shifted and took place at lower
temperatures, which may suggest that the presence of TCP affects the structure and may
influence the polymer chain mobility. The degree of crystallinity also decreased, indicating
that the addition of TCP hinders the crystallization process of PLA. However, the degree
of crystallinity increased significantly in the presence of other polymers, although it is
still lower than that for pure PLA. For sample 1 (PLA-TCP), the typical transitions of PLA
take place during the heating process, such as glass transition, cold crystallization, and
melting at 41 ◦C, 109 ◦C, and 153 ◦C, respectively (Table 2). During the second heating
cycle, the glass transition with enthalpy relaxation is observed, while cold crystallization
does not occur. This may be caused by the presence of TCP particles that interfere with
the crystallization of PLA. The addition of PEG (both 600 and 2000) did not significantly
change the temperatures of transformations of PLA during the first heating cycle. For
sample 2 (PLA-TCP-PEG2000), we could observe the glass transition with relaxation at
51 ◦C, while during the second heating cycle it was shifted to lower temperatures and
occurred at 14 ◦C. On the other hand, no PEG transformations could be observed during
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the entire process. This suggests that PEG2000 in sample 2 (PLA-TCP-PEG2000) was
present only in the amorphous phase. Taking this into account, we can conclude that PLA
was plasticized with PEG2000. However, the endothermic peak that could be observed
in sample 2 (PLA-TCP-PEG2000) around 30 ◦C may indicate the melting of PEG. In the
case of sample 3 (PLA-TCP-PEG600), a peak at around 13 ◦C was visible. This indicates
that the melting of PEG600, although the baseline was significantly lowered, suggesting
that the glass transition of PLA also occurred. Interestingly, cold crystallization of PLA
could be observed in samples containing PCL, while this phenomenon was not visible
in sample 3 (PLA-TCP-PEG600), suggesting that PEG600 interfered with the PLA chain.
The temperature of glass transition with the relaxation enthalpy of PLA and the melting
temperature of PCL are in the same temperature range. That is why on the curves of sample
4 (PLA-TCP-PCL) and 5 (PLA-TCP-PCL-PEG600) we could observe the overlap of these
effects with the sharp endothermic peak and the change in baseline position, although cold
crystallization and melting of PLA occur without any significant changes.

Table 2. Glass temperature (Tg), cold crystallization temperature (Tcc), and melting temperature (Tm)
of PLA-based materials and degree of crystallinity (Xc) of PLA.

Sample
Tg [◦C] Tcc [◦C] Tm [◦C] Xc [%]

1st
Heating

2nd
Heating

1st
Heating

2nd
Heating

1st
Heating

2nd
Heating

1st
Heating

2nd
Heating

PLA 66 61 99 102 170 168 58 55
1 PLA-TCP 41 54 109 nd 154 146 27 3
2 PLA-TCP
-PEG2000 51 14 80 89 155 130 39 35

3 PLA-TCP
-PEG600 46 42 nd nd 152 143 39 17

4 PLA-TCP
-PCL

nd nd 97 124 56 (PCL)
153 (PLA)

57 (PCL)
153 (PLA) 26 22

5 PLA-TCP-PCL-PEG600 nd 35 nd 77 154 (PLA) 56 (PCL)
152 (PLA) 37 35

nd—not determined.

3.3. Morphology and Microstructure of Fabricated Scaffolds

In the camera images (Figure 3A) it can be observed that all samples had a porous
structure. This was even better displayed in the optical microscopy pictures (Figure 3B),
where, apart from the large open pores, there were many smaller ones to be seen. The
surface of the pore walls was rather rough, which could be caused by the addition of
TCP particles. To better visualize the microstructure of the samples, scanning electron
microscopy (SEM) images were taken (Figure 3C). In each sample, TCP particles embedded
in the polymer matrix were observed and their distribution was rather homogeneous. This
confirms that the method of preparation allows scaffolds with defined microstructures
to be obtained that are characterized by open porosity that varies between 58% and 65%.
Compared to sample 1 (PLA-TCP), the addition of different polymers made no statistically
significant differences in porosity. Such a hierarchical microstructure mimics the microstruc-
ture of spongy bone. The pore size varied between 100 and 1500 µm with a median of less
than 300 µm for all samples.

3.4. Water Contact Angle Measurement

To characterize the hydrophobic and hydrophilic properties of the scaffolds, we mea-
sured the water contact angle. The wettability of the surface of the scaffold is crucial for the
adhesion and behavior of the cells. Normally, mammalian cells adhere preferentially to
moderately hydrophilic surfaces [51,52]. All water contact angles were within the range
of 54.8–75.2◦ (Figure 4), which indicates that the samples were rather hydrophilic. The
lowest contact angle was observed for sample 3 (PLA-TCP-PEG600), while the highest
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was observed for sample 4 (PLA-TCP-PCL). This suggests that the addition of PEG600
can be used to increase the hydrophilicity of the samples, while the addition of highly
hydrophobic PCL can be used to increase the hydrophobicity. The addition of PEG2000 to
PLA-TCP-PCL (sample 2) did not appear to have any significant impact on the wettability
because the water contact angle was comparable to the value obtained for sample 1, i.e., that
containing only PLA and TCP. For sample 5, which consisted of both PEG600 and PCL, the
values of water contact angles were also the same as those for control sample number 1.
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3.5. Degradation Studies

To investigate the hydrolytic degradation of the fabricated samples, we exposed
them to conditions that mimic physiological fluids of the human body. Briefly, they were
immersed in PBS and kept at 37 ◦C. In a predetermined period of time, the mass of the
samples was measured to observe the degradation rate (Figure 5). In addition, SEM pictures
were taken before and after the degradation study (Figure 6).
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buffered saline.

Within the first seven days of the degradation study, the highest mass loss was ob-
served for all samples (Figure 5). For the next 28-day time periods, only slight changes
in mass were observed, which were found for each sample, except sample 5 (PLA-TCP-
PCL-PEG600). The largest total mass loss was detected for samples containing PEG,
i.e., 2 (PLA-TCP-PEG2000) and 3 (PLA-TCP-PEG600), while the lowest was detected for
samples 1 (PLA-TCP) and 4 (PLA-TCP-PCL). Based on these results, it can be concluded
that the addition of PEG600 or PEG2000 accelerates the degradation process, since the
most dynamic mass loss was found for all samples containing this polymer. However, the
addition of PCL inhibits the degradation process.

SEM observations (Figure 6, first column) showed that on the surface of the pristine
composite samples there were plenty of small bulges, which confirms the presence of
TCP particles covered with the polymer or polymer blends. On the SEM images taken of
the samples after 4 weeks of incubation in PBS (Figure 6, second column), the polymers
were partially degraded and the TCP particles were exposed. Interestingly, TCP particles
appeared to be reactive, as inorganic mineral deposits were formed on the surface of all
scaffolds, except sample 4 (PLA-TCP-PCL), presumably due to its more hydrophobic nature
and lower susceptibility to degradation. At higher magnification (Figure 6, third column)
for sample 1 (PLA-TCP), plate deposits were observed. However, on all samples con-
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taining PEG (2, PLA-TCP-PEG2000; 3, PLA-TCP-PEG600; and 5, PLA-TCP-PCL-PEG600)
round cauliflower deposits were visible. On sample 4 (PLA-TCP-PCL), deposits were
not observed.

3.6. Biological Performance
3.6.1. Cytotoxicity Tests with Extracts

As a first step to assessing whether the samples were cytotoxic, 10% extracts were
prepared and placed in contact with cells. After 24 h or 4 days, samples were stained
with calcein AM and propidium iodine (live/dead staining) and then observed with a
fluorescence microscope. Images of stained cells are shown in Figure 7A. As time passed,
the number of cells increased for each sample and only a few dead cells were observed,
which is a normal phenomenon. This indicates that the extracts studied cannot be classified
as cytotoxic. According to AlamarBlue results (Figure 7B), cells proliferated well in contact
with the extracts of all samples. There was no decrease greater than 70% compared to the
control sample consisting of DMEM (except for samples 3 and 4 on day 1), which, according
to ISO 10993-5, means there was no cytotoxicity [53]. On day 4, when compared to DMEM,
a statistically significant difference was visible only for sample 5 (PLA-TCP-PCL-PEG600).
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3.6.2. In Vitro Studies with MG-63 Cells

MG-63 osteoblast-like cells were cultured in direct contact with the investigated
scaffolds to evaluate their cellular responses. On days 1, 3 and 7, cells were stained with
calcein AM and propidium iodide (live/dead staining) and observed with a fluorescence
microscope (Figure 8A). It was visible that the number of cells was lower when cultured
on scaffolds. Furthermore, their morphology differed from the control sample, especially
on day 1 when the cells were more rounded, which means that they were poorly attached
to the surfaces. As time passed, the cells proliferated on each sample. On day 7, the
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morphology of the cells in the investigated samples was similar compared to the control flat
TCPS, and the number of cells increased. The AlamarBlue results (Figure 8B) showed that
the activity of the cells on the scaffolds was much lower and that the difference between all
of the evaluated samples and the control TCPS was statistically significant during the entire
culture. The greatest increase in activity was visible for samples 1 (PLA-TCP), 2 (PLA-TCP-
PEG2000), and 5 (PLA-TCP-PCL-PEG600); however, the activity increased for all scaffolds,
meaning that they are not cytotoxic.
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4. Discussion

PLA is a widely used biodegradable polymer that is approved by the U.S. Food
and Drug Administration (FDA). Many researchers have investigated this material, as
it exhibits great potential for use in bone tissue engineering [54]. Different forms of this
biocompatible polymer are being used, such as microspheres [55–57], membranes [58–60]
or scaffolds [54,61–63]. One of the methods used to fabricate porous polymer scaffolds is the
gel-casting method [37], which is a simple and effective way to obtain samples with random
porosity with a pore size in a range from100 to 1500 µm. The movement of nutrients and
cells through porous implants has been reported to be highly influenced by the size of
the pores. Larger pores promote blood supply and bone ingrowth, but the strength of
the scaffold decreases [9]. Taking this into account, it is important that the scaffold has a
hierarchical pore architecture, since the size of the macropores of the cancellous bone varies
from 320 to 1670 µm [64].

Different ways of changing the properties of PLA are being used. One of the most
common is to blend it with different polymers, such as PCL [65,66] or PEG [16,56,60],
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which are also approved by the FDA [67,68]. To overcome the bioactivity issue, bioactive
substances are also being added to such blends, e.g., bioglass or bioceramic [24,69,70].
The addition of PCL and PEG (both 600 and 2000) did not have any significant impact
on the microstructure of the samples, and the TCP particles were visible on each scaffold.
The particles were spread quite well in the polymer matrix, although agglomerates also
occurred. They appear to be reactive, as after 4 weeks of degradation, calcium phosphate
deposits were created on the surfaces of the scaffolds, especially on sample 1 (PLA-TCP).
However, the addition of TCP to the matrix changed the thermal properties of the materials.
Transitions that occur in the polymer were shifted, indicating that the chain mobility was
altered because of the presence of ceramic particles. Moreover, the degree of crystallinity
was decreased, which may suggest that TCP particles hinder the crystallization process of
PLA. The degradation rate of the scaffolds depended on their composition. The slowest
degradation rate was observed for sample 4 (PLA-TCP-PCL), while the greatest weight loss
occurred during the degradation study for samples containing PEG (2 and 3). In general,
PCL degradation is much slower than PLA, while this is the opposite for PEG that is blended
with polymers to increase the degradation rate and improve processability [16,65,68]. That
explains the behavior of the investigated samples during the degradation study.

Moreover, the presence of different polymers in the composition of the scaffolds
changed the wettability of the materials. The highest water contact angle was observed
for sample 4 (PLA-TCP-PCL) and the lowest was for sample 3 (PLA-TCP-PEG600), and
these were equal to 54.8◦ and 75.2◦, respectively. This shows that the addition of PCL
increased the hydrophobicity, while PEG decreased this parameter. According to the
literature, PCL exhibits a more hydrophobic nature compared to PLA, while PEG is very
hydrophilic [65,68], which corresponds well to our results. According to the literature,
mammalian cells adhere preferentially to moderately hydrophilic surfaces with a water
contact angle between 40 and 70◦ [51]. This suggests that the surface of sample 4 (PLA-TCP-
PCL) is slightly too hydrophobic for cells to adhere to. On the contrary, fibroblast adhesion
has been reported to be highest when the water contact angle is between 60 and 80◦ [52].
Taking this into account, sample 3 (PLA-TCP-PEG600) looks too hydrophilic. However,
cell adhesion is dependent on other factors, such as topography and roughness [51,52].
Although the presence of different polymers in the blends has affected degradation and
wettability, the impact of the blending was not clearly visible for the FTIR study. The FTIR
spectra look similar, which means that no new chemical bonds were formed during the
fabrication of the scaffolds. Only a double band originating from C=O stretching vibrations
around 1750 cm−1 confirms the presence of both PLA and PCL in samples 4 (PLA-TCP-
PCL) and 5 (PLA-TCP-PCL-PEG600). The thermal properties of the investigated scaffolds
changed with the addition of different polymers. The peaks of cold crystallization and
the melting of PLA shifted when PEG or PCL were present in the sample. Moreover, the
thermal effects of PLA and PCL overlapped, whereas some of the transformations for PEG
were not observed. This suggests that PEG occurs in an amorphous phase and acts as a
plasticizer. Furthermore, the transition temperature during the first and second heating
cycles was different, which means that the scaffold preparation process has an impact on
the thermal properties of the samples [71]. As shown, the physicochemical properties of
the fabricated scaffolds differed depending on the composition of the blend. A similar
situation could be observed in the case of mechanical properties. According to the literature,
the addition of PCL to the PLA matrix may enhance the fracture toughness of the base
polymer [39,40]. On the other hand, the presence of plasticizer, such as PEG, improves the
elasticity of PLA [72,73]. Mechanical properties are crucial features for scaffolds designed
for use in bone tissue engineering, and thus further study is required on this topic.

Biological evaluation with L929 fibroblasts cultured in 10% extracts of the samples
shows that they are not toxic. Compared to the control sample, a decrease of more than
70% was visible only for sample 3 (PLA-TCP-PEG600) and 4 (PLA-TCP-PCL) on day 1.
However, cells proliferated while cultured in each extract and the statistically significant
difference on day 4, when compared to TCPS, was observed only for sample 5 (PLA-
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TCP-PCL-PEG600) and the results showed the lowest increase in metabolic activity for
this sample. Interestingly, sample 5 showed great performance during this study with
MG-63 osteoblast-like cells cultured in direct contact with the material. According to the
literature, surface hydrophilicity may result in better cell attachment [74]. This property
can be customized by blending different polymers. It was reported that PEG can improve
hydrophilicity of PLA [62]. However, mixing PCL with PLA (with higher hydrophilicity)
may enhance the biocompatibility of PCL [75].

The best results with MG-63 cells were observed for samples 1 (PLA-TCP) and 2 (PLA-
TCP-PEG2000). Even though PEG has higher hydrophilicity than PLA, the effect of better
cell attachment was not observed and there was no statistically significant difference
between these samples. However, the metabolic activity of cells for sample 3 (PLA-TCP-
PEG600) was significantly lower. That may suggest that the hydrophilicity was already too
high and that fewer cells adhered to the surface due to the partial dissolution of PEG600,
which is consistent with findings in the literature [52]. The results of sample 4 (PLA-TCP-
PCL) were slightly worse compared to samples 1 and 2, which confirms that cell attachment
is lower on more hydrophobic surfaces. For sample 5 (PLA-TCP-PCL-PEG600), the cell
culture results, as well as wettability, were comparable to samples 1 and 2. However, the
metabolic activity of cells increased with culture time for all scaffolds investigated.

Of all five compositions, the best appear to be samples 1 (PLA-TCP), 2 (PLA-TCP-
PEG2000), and 5 (PLA-TCP-PCL-PEG2000). They are all thermally stable at temperatures
lower than body temperature and are characterized by a similar contact angle, but the
degradation rate of each differs significantly. L929 fibroblasts proliferated slightly worse
in the extract of sample 5, but the three best samples demonstrated great performance in
direct contact with MG-63 osteoblast-like cells with no statistically significant differences
on days 1 and 3. Furthermore, the only significant difference between these materials was
observed on day 7 between samples 1 (PLA-TCP) and 5 (PLA-TCP-PCL-PEG2000). Thus,
depending on the requirements, it is possible to control the degradation rate of the material
by changing the composition without significant effects on cytocompatibility.

The porosity of the proposed blends is in the range of 58 to 65%; however, a higher
porosity is more suitable for cell interaction [76]. Further study is needed to control the
pore formation process more effectively to overcome this limitation. Even though the
properties of the fabricated samples need to be more thoroughly investigated, the samples
exhibit good cytocompatibility and appear to meet the criteria for application in bone
tissue regeneration.

5. Conclusions

In this study, we aimed to fabricate polymer scaffolds using a gel-casting technique
combined with rapid heating. To do so, we blended PLA with PEG600, PEG2000, and PCL
to evaluate the influence of these polymers on the performance of the scaffold. Moreover, to
improve the bioactivity of the scaffolds, TCP particles have been embedded in each blend.
They can be regarded as bioactive because calcium phosphate deposits are created on the
surface during contact with PBS. The samples were characterized by porosity between
58% and 65% and pore size between 100 µm and 1500 µm. The addition of different
polymers significantly affected the degradation rate, wettability, and thermal properties
of the scaffolds. The susceptibility to degradation decreased for scaffolds containing PCL
because of its higher hydrophobicity. The presence of PEG accelerated scaffold degradation
because of its hydrophilicity and water solubility. The extracts of all scaffolds were not
cytotoxic to L929 fibroblasts. The scaffolds supported the adhesion and proliferation of
osteoblast-like MG-63 cells while cultured in direct contact. Samples 1 (PLA-TCP), 2 (PLA-
TCP-PEG2000), and 5 (PLA-TCP-PCL-PEG2000) appear to best meet the demands for
application in bone tissue; however, further studies regarding mechanical properties and
microbial tests are required. Depending on the size of the defect and its location in the body,
it is possible to create a scaffold with an appropriate degradation rate without affecting the
adhesion of the cells to the surface.
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To sum up, the presented method of fabrication is effective in obtaining highly porous,
bioactive composite scaffolds with a defined microstructure and degradation rate that can
be controlled and adapted to the medical needs.
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15. Czwartos, J.; Zaszczyńska, A.; Nowak-Stępniowska, A.; Fok, T.; Budner, B.; Bartnik, A.; Wachulak, P.; Kołbuk, D.; Sajkiewicz,
P.; Fiedorowicz, H. The Novel Approach to Physico-Chemical Modification and Cytocompatibility Enhancement of Fibrous
Polycaprolactone (PCL) Scaffolds Using Soft X-Ray/Extreme Ultraviolet (SXR/EUV) Radiation and Low-Temperature, SXR/EUV
Induced, Nitrogen and Oxygen Plasmas. Appl. Surf. Sci. 2022, 606, 154779. [CrossRef]

16. Salehi, S.; Ghomi, H.; Hassanzadeh-Tabrizi, S.A.; Koupaei, N.; Khodaei, M. The Effect of Polyethylene Glycol on Printability,
Physical and Mechanical Properties and Osteogenic Potential of 3D-Printed Poly (l-Lactic Acid)/Polyethylene Glycol Scaffold for
Bone Tissue Engineering. Int. J. Biol. Macromol. 2022, 221, 1325–1334. [CrossRef] [PubMed]

17. Nazari, T.; Bayandori Moghaddam, A.; Davoodi, Z. Optimized Polylactic Acid/Polyethylene Glycol (PLA/PEG) Electrospun
Fibrous Scaffold for Drug Delivery: Effect of Graphene Oxide on the Cefixime Release Mechanism. Mater. Res. Express 2019,
6, 115351. [CrossRef]

18. Szymczyk-Ziółkowska, P.; Łabowska, M.B.; Detyna, J.; Michalak, I.; Gruber, P. A Review of Fabrication Polymer Scaffolds for
Biomedical Applications Using Additive Manufacturing Techniques. Biocybern. Biomed. Eng. 2020, 40, 624–638. [CrossRef]

19. Kirillova, A.; Yeazel, T.R.; Asheghali, D.; Petersen, S.R.; Dort, S.; Gall, K.; Becker, M.L. Fabrication of Biomedical Scaffolds Using
Biodegradable Polymers. Chem. Rev. 2021, 121, 11238–11304. [CrossRef]

20. Eltom, A.; Zhong, G.; Muhammad, A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review.
Adv. Mater. Sci. Eng. 2019, 2019, 1–13. [CrossRef]

21. Toh, H.W.; Toong, D.W.Y.; Ng, J.C.K.; Ow, V.; Lu, S.; Tan, L.P.; Wong, P.E.H.; Venkatraman, S.; Huang, Y.; Ang, H.Y. Polymer
Blends and Polymer Composites for Cardiovascular Implants. Eur. Polym. J. 2021, 146, 110249. [CrossRef]

22. Du, X.; Fu, S.; Zhu, Y. 3D Printing of Ceramic-Based Scaffolds for Bone Tissue Engineering: An Overview. J. Mater. Chem. B 2018,
6, 4397–4412. [CrossRef] [PubMed]

23. Aydogdu, M.O.; Oner, E.T.; Ekren, N.; Erdemir, G.; Kuruca, S.E.; Yuca, E.; Bostan, M.S.; Eroglu, M.S.; Ikram, F.; Uzun, M.; et al.
Comparative Characterization of the Hydrogel Added PLA/β-TCP Scaffolds Produced by 3D Bioprinting. Bioprinting 2019, 13,
e00046. [CrossRef]

24. Wang, W.; Liu, P.; Zhang, B.; Gui, X.; Pei, X.; Song, P.; Yu, X.; Zhang, Z.; Zhou, C. Fused Deposition Modeling Printed PLA/Nano
β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function. Int. J. Nanomed. 2023, 18,
5815–5830. [CrossRef]

25. Wei, S.; Ma, J.-X.; Xu, L.; Gu, X.-S.; Ma, X.-L. Biodegradable Materials for Bone Defect Repair. Mil. Med. Res. 2020, 7, 54. [CrossRef]
26. Ruiz-Aguilar, C. Porous Phosphate-Based Bioactive Glass/β-TCP Scaffold for Tooth Remineralization. PLoS ONE 2023,

18, e0284885. [CrossRef] [PubMed]
27. Elhattab, K.; Bhaduri, S.B.; Sikder, P. Influence of Fused Deposition Modelling Nozzle Temperature on the Rheology and

Mechanical Properties of 3D Printed β-Tricalcium Phosphate (TCP)/Polylactic Acid (PLA) Composite. Polymers 2022, 14, 1222.
[CrossRef] [PubMed]

28. Onak Pulat, G.; Sunal, G.; Karaman, O. Enhanced osteogenic differentiation of human mesenchymal stem cells BY flexible
β-TCP/PLA bone grafts with silicate additive. Konya J. Eng. Sci. 2023, 11, 770–782. [CrossRef]

29. Donate, R.; Monzón, M.; Alemán-Domínguez, M.E.; Ortega, Z. Enzymatic Degradation Study of PLA-Based Composite Scaffolds.
Rev. Adv. Mater. Sci. 2020, 59, 170–175. [CrossRef]

30. Wang, Q.; Ye, W.; Ma, Z.; Xie, W.; Zhong, L.; Wang, Y.; Rong, Q. 3D Printed PCL/β-TCP Cross-Scale Scaffold with High-Precision
Fiber for Providing Cell Growth and Forming Bones in the Pores. Mater. Sci. Eng. C 2021, 127, 112197. [CrossRef]

31. Helaehil, J.V.; Lourenço, C.B.; Huang, B.; Helaehil, L.V.; De Camargo, I.X.; Chiarotto, G.B.; Santamaria-Jr, M.; Bártolo, P.; Caetano,
G.F. In Vivo Investigation of Polymer-Ceramic PCL/HA and PCL/β-TCP 3D Composite Scaffolds and Electrical Stimulation for
Bone Regeneration. Polymers 2021, 14, 65. [CrossRef]

32. Tabatabaei, F.; Gelin, A.; Rasoulianboroujeni, M.; Tayebi, L. Coating of 3D Printed PCL/TCP Scaffolds Using Homogenized-
Fibrillated Collagen. Colloids Surf. B Biointerfaces 2022, 217, 112670. [CrossRef] [PubMed]

33. Siqueira, L.D.; Passador, F.R.; Lobo, A.O.; Trichês, E.D.S. Morphological, Thermal and Bioactivity Evaluation of Electrospun
PCL/β-TCP Fibers for Tissue Regeneration. Polímeros 2019, 29, e2019005. [CrossRef]

34. Pae, H.; Kang, J.; Cha, J.; Lee, J.; Paik, J.; Jung, U.; Kim, B.; Choi, S. 3D-printed Polycaprolactone Scaffold Mixed with B-tricalcium
Phosphate as a Bone Regenerative Material in Rabbit Calvarial Defects. J. Biomed. Mater. Res. 2019, 107, 1254–1263. [CrossRef]
[PubMed]

35. Senatov, F.; Zimina, A.; Chubrik, A.; Kolesnikov, E.; Permyakova, E.; Voronin, A.; Poponova, M.; Orlova, P.; Grunina, T.;
Nikitin, K.; et al. Effect of Recombinant BMP-2 and Erythropoietin on Osteogenic Properties of Biomimetic PLA/PCL/HA and
PHB/HA Scaffolds in Critical-Size Cranial Defects Model. Biomater. Adv. 2022, 135, 112680. [CrossRef] [PubMed]

36. Liu, K.; Sun, J.; Zhu, Q.; Jin, X.; Zhang, Z.; Zhao, Z.; Chen, G.; Wang, C.; Jiang, H.; Zhang, P. Microstructures and Properties of
Polycaprolactone/Tricalcium Phosphate Scaffolds Containing Polyethylene Glycol Fabricated by 3D Printing. Ceram. Int. 2022,
48, 24032–24043. [CrossRef]

37. Sankaralingam, P.; Sakthivel, P.; Chinnaswamy Thangavel, V. Novel Composites for Bone Tissue Engineering. In Biomedical
Engineering; Haidar, Z.S., Ed.; IntechOpen: London, UK, 2023; Volume 17, ISBN 978-1-80356-896-6.

38. Revati, R.; Majid, M.S.A.; Ridzuan, M.J.M.; Basaruddin, K.S.; Rahman, Y.M.N.; Cheng, E.M.; Gibson, A.G. In Vitro Degradation of
a 3D Porous Pennisetum Purpureum/PLA Biocomposite Scaffold. J. Mech. Behav. Biomed. Mater. 2017, 74, 383–391. [CrossRef]
[PubMed]

https://doi.org/10.1016/j.apsusc.2022.154779
https://doi.org/10.1016/j.ijbiomac.2022.09.027
https://www.ncbi.nlm.nih.gov/pubmed/36087749
https://doi.org/10.1088/2053-1591/ab508d
https://doi.org/10.1016/j.bbe.2020.01.015
https://doi.org/10.1021/acs.chemrev.0c01200
https://doi.org/10.1155/2019/3429527
https://doi.org/10.1016/j.eurpolymj.2020.110249
https://doi.org/10.1039/C8TB00677F
https://www.ncbi.nlm.nih.gov/pubmed/32254656
https://doi.org/10.1016/j.bprint.2019.e00046
https://doi.org/10.2147/IJN.S416098
https://doi.org/10.1186/s40779-020-00280-6
https://doi.org/10.1371/journal.pone.0284885
https://www.ncbi.nlm.nih.gov/pubmed/37200370
https://doi.org/10.3390/polym14061222
https://www.ncbi.nlm.nih.gov/pubmed/35335552
https://doi.org/10.36306/konjes.1198527
https://doi.org/10.1515/rams-2020-0005
https://doi.org/10.1016/j.msec.2021.112197
https://doi.org/10.3390/polym14010065
https://doi.org/10.1016/j.colsurfb.2022.112670
https://www.ncbi.nlm.nih.gov/pubmed/35779329
https://doi.org/10.1590/0104-1428.02118
https://doi.org/10.1002/jbm.b.34218
https://www.ncbi.nlm.nih.gov/pubmed/30300967
https://doi.org/10.1016/j.msec.2022.112680
https://www.ncbi.nlm.nih.gov/pubmed/35581092
https://doi.org/10.1016/j.ceramint.2022.05.081
https://doi.org/10.1016/j.jmbbm.2017.06.035
https://www.ncbi.nlm.nih.gov/pubmed/28688321


J. Funct. Biomater. 2024, 15, 57 18 of 19
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