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Abstract: To improve glucose electrocatalytic performance, one efficient manner is to develop
a novel Cu-Ag bimetallic composite with fertile porosity and unique architecture. Herein, the
self-supported electrode with CuxO/Ag2O (x = 1, 2) nanowires grown in-situ on a nanoporous Cu-Ag
network (CuxO/Ag2O@NP-CuAg) has been successfully designed by a facile two-step approach. The
integrated hierarchical porous structure, the tip-converged CuxO/Ag2O nanowires combined with the
interconnected porous conductive substrate, are favorable to provide more reactive sites and improve
ions or electrons transportation. Compared with monometallic Cu2O nanowires integrated with
nanoporous Cu matrix (Cu2O@NP-Cu), the bimetallic CuxO/Ag2O@NP-CuAg composites exhibit the
enhanced electrocatalytic performance for glucose. Moreover, the higher sensitivity of ~1.49 mA mM−1

cm−2 in conjunction with a wider linear range of 17 mM for the CuxO/Ag2O@NP-CuAg electrode
anodized for 10 min are attributed to the synergistic effect of porous structure and bimetallic
CuxO/Ag2O nanowires. Particularly, the integrated CuxO/Ag2O@NP-CuAg composites possess good
flexibility, which has been reported for the first time. Accordingly, the CuxO/Ag2O@NP-CuAg with
excellent glucose electrocatalytic performance and good flexibility is promising to further develop as
a candidate electrode material of glucose sensors.
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1. Introduction

In recent years, various nanostructured metals or metallic oxides have been developed as an
electrode material for glucose sensors [1–6]. Among these, bimetallic Cu-Ag oxides have aroused
extensive attention due to the unique synergistic effect of structure and composition [7,8]. As reported,
Cu-Ag2O nanowalls and Cu-Ag nanocomposites displayed the improved glucose sensing performance
as compared to single metal material [9,10]. However, most of them are powders and easy to
agglomerate or shed from the supporting substrate, which in turn result in the inferior electrocatalytic
activity and stability. It has been demonstrated that the development of a self-standing electrode
is an efficient way to avoid above problems. Based on this strategy, CuO-Ag2O nanoparticle [11]
electrode based on bulk substrate has been synthesized. It is worth noting that the 3D porous matrix
is more beneficial to improve the electrocatalytic performance of materials as compared to the bulk
substrate because of larger specific surface area and better connectivity. In addition, the pore network
structure can obviously influence the distribution of the active substance, which further enhances
the performance of material [12,13]. Regrettably, there have been rare related reports so far for the
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development of bimetallic Cu-Ag oxides based on 3D porous substrate. Therefore, it is of great
importance to design a self-standing Cu-Ag bimetal oxides electrode with hierarchical porous structure
for glucose sensing.

Herein, we have successfully synthesized the flexible free-standing CuxO/Ag2O (x = 1, 2)
nanowires electrode composites with hierarchical porous structure. The tip-converged CuxO/Ag2O
nanowires in-situ grown on nanoporous Cu-Ag network (NP-CuAg) were prepared via anodizing
followed by calcination. Subsequently, the glucose electrocatalytic performance of as-prepared
CuxO/Ag2O@NP-CuAg composites was examined.

2. Materials and Methods

2.1. Synthesis of CuxO/Ag2O@NP-CuAg Nanowire Composites

The schematic synthesis process of CuxO/Ag2O@NP-CuAg (x = 1, 2) is depicted in Figure 1a.
The Cu42.5Zr50Ag7.5 (at.%) metallic glass (MG) ribbon as a dealloying precursor alloy was fabricated by
arc-melting and single-roller melt-spinning process [14]. Then, nanoporous copper silver (NP-CuAg)
substrate was obtained by dealloying Cu42.5Zr50Ag7.5 ribbon in 0.05 M HF for 8 h. During the
dealloying process, Zr element exhibited highly active electrochemical property in HF and selectively
dissolved into HF solution [15–17], leaving the inert metals of Cu and Ag behind to further assemble
to nanoporous bimetallic CuAg (NP-CuAg) network substrate. Finally, the anodizing measurements
(Huatai, DC Power Supply, HAP 10-200, Yangzhou, China) were applied for NP-CuAg in 0.5 M
KOH with the current density of 15 mA cm−2 for different time. The NP-CuAg and commercial Pt
net electrode were employed as working and counter electrodes, respectively. Then, the anodized
samples were rinsed three times with distilled water and further calcined in muffle furnace at 473 K
for 2 h in the air. All experiments except for calcination were performed at 298 K. Note that the
anodized samples for anodizing time of 1, 5 and 10 min are labelled as CuxO/Ag2O-1, CuxO/Ag2O-5
and CuxO/Ag2O-10, respectively.
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amorphous structure. Moreover, no Zr element is detected in the as-dealloyed sample, indicating that 
Zr element is selectively dissolved [15–17], leaving the bimetals of Cu and Ag behind to assemble to 
nanoporous bimetallic CuAg network (NP-CuAg) (the inset of Figure 1b). After anodizing for 5 min 
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#72-2108), confirming the formation of CuxO/Ag2O (x = 1, 2) bimetallic oxides on the NP-CuAg 
network. 

Figure 1. (a) Schematic illustration showing the synthesis process of CuxO/Ag2O@NP-CuAg composite;
SEM images of CuxO/Ag2O@NP-CuAg anodized for different time followed by calcination (b) 1 min
with the inset of NP-CuAg substrate; (c) 5 min and the magnification image; (d) 10 min with the
sectional image.
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2.2. Microstructure Characterization

The phases and crystal structures of the as-prepared samples were detected by X-ray diffractometer
(XRD, D8, Cu-Kα, Bruker, Karlsruhe, Germany) with the 2θ range of 25–85◦ and X-ray photoelectron
spectroscopy (XPS, Thermo Fisher Scientific, Waltham, MA, USA). Transmission electron microscopy
(TEM, JEOL JEM 2100F, Tokyo, Japan) and scanning electron microscopy (SEM, Nova nanoSEM 450,
FEI, Hillsboro, OR, USA) were applied to characterize the microstructure and morphology.

2.3. The Electrochemical Measurements for Glucose

The electrochemical measurements were performed by the electrochemical workstation (Chenhua
CHI660E, Shanghai, China) with common three-electrode system. The as-prepared samples,
commercial Pt net electrode and Ag/AgCl standard electrode (3 M KCl) were employed as the
work electrode, the auxiliary electrode and the reference electrode, respectively. The cyclic voltammetry
measurements (CVs) and the amperometric measurements (i-t curve) were used to examine the
electrochemical performance. The frequency of electrochemical impedance spectroscopy (EIS)
detections was conducted in 0.2 M NaOH with 1 mM glucose ranging from 0.01 to 106 Hz.

3. Results and Discussion

3.1. Design of Hierarchical Porous Structure of the CuxO/Ag2O@NP-CuAg Electrodes

Figure 1b–d show the morphologies of the samples obtained by anodizing the NP-CuAg network
substrate for different time followed by calcination. From the inset of Figure 1b, it can be observed
that the as-dealloyed NP-CuAg substrate displays an open, bicontinuous ligament-channel structure
with the average ligament size of ~100 nm, which can provide bimetal sources for anodizing [17].
After anodizing for 1 min (Figure 1b), the ultrafine nanowires sparsely grow on the surface of porous
NP-CuAg matrix, displaying the top-converged structure. As the anodizing time prolongs to 5 min
(Figure 1c), the number of nanowires grown on porous substrate increases significantly. Moreover, as
seen from the magnification image in the Figure 1c, it is clearly observed that the nanowires exhibit an
interesting top-converged structure feature, which coincides with the schematic of the Figure 1a. The
unique structure is perhaps caused by the bending of nanowires with large aspect ratios [18] and Van
der Waals’ force of the tips of nanowires. As the anodizing time further increases to 10 min (Figure 1d),
the intensive nanowires grow on NP-CuAg, which offers richer active sites. The inset cross-sectional
image of the sample in Figure 1d shows that nanowire layer with the thickness up to micron scale tightly
combines with the porous Cu-Ag substrate, which shows a well-integration of the nanowires@porous
network composites. In addition, the average length of nanowires for the CuxO/Ag2O-1, CuxO/Ag2O-5,
CuxO/Ag2O-10 is ~1.07, 1.38 and 1.73 µm, respectively. The corresponding aspect ratio of the nanowires
is about ~26.75, 19.71 and 18.21, respectively. It indicates that the length of the nanowires increases
with an increase in anodizing time, whereas the corresponding aspect ratio decreases.

The XRD patterns of the as-spun, as-dealloyed and anodized samples were shown in Figure 2. It is
found that as-spun ribbon has the broad diffraction halo peak, showing the formation of amorphous
structure. Moreover, no Zr element is detected in the as-dealloyed sample, indicating that Zr element
is selectively dissolved [15–17], leaving the bimetals of Cu and Ag behind to assemble to nanoporous
bimetallic CuAg network (NP-CuAg) (the inset of Figure 1b). After anodizing for 5 min followed
by calcination, the crystalline phases of anodized sample are identified to be Cu (JCPDS #89-2838),
Ag (JCPDS #04-0783), Cu2O (JCPDS #05-0667), CuO (JCPDS #45-0937) and Ag2O (JCPDS #72-2108),
confirming the formation of CuxO/Ag2O (x = 1, 2) bimetallic oxides on the NP-CuAg network.

XPS spectra (Figure 3) were further measured to determine the multi-valences of samples anodized
for 5 min followed by calcination. From the typical wide-scan XPS spectrum shown in Figure 3a,
it appears the presence of Cu, Ag and O in the anodized CuxO/Ag2O-5 sample. The two peaks of Cu
2p3/2 (Figure 3b) are located at 933.1 eV and 934.57 eV together with the feature of two satellite peaks,
which indicate the presence of Cu+ and Cu2+ [19]. The relative content of Cu2O and CuO is 41.28%
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and 58.72%, respectively. The Ag+ 3d5/2 and Ag+ 3d3/2 peaks (Figure 3c) located at 367.8 and 373.8 eV,
respectively, with the binding energy interval of 6.0 eV are assigned to the characteristic Ag+ [20]. The
XPS results reveal that bimetallic Cu-Ag oxide nanowires consist of CuO, Cu2O and Ag2O, which is in
agreement with XRD analysis.Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 8 
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To obtain more detailed structural characteristics, the nanowires of the anodized sample were
analyzed by TEM in Figure 4. It is observed that there are a large amount of small nanopores distributed
on the nanowires with the sizes of 1~3 nm (Figure 4a). In Figure 4b, the lattice spacings of 0.246 nm,
0.253 nm and 0.234 nm, together with the corresponding selected-area electron diffraction (SAED)
patterns (the inset of Figure 4b), are ascribed to the (111) plane of Cu2O, (002) plane of CuO and
(011) plane of Ag2O, respectively, indicating that the nanowires are composed of CuO, Cu2O and
Ag2O. The mapping images (Figure 4c–e) further reveal that O, Cu and Ag atoms uniformly distribute
on the nanowires. Based on the above results, it can be concluded that the bimetallic nanowires
that consist mainly of CuxO mixed with minor Ag2O, integrated with porous Cu-Ag network have
been successfully prepared by a facile two-step method. Furthermore, the unique features of the
multivalent states (Cu+/Cu2+ and Ag+), the hierarchical porous structure as well as the integrate design
without any additional binders endow with the enhanced glucose electrocatalytic performance of
CuxO/Ag2O@NP-CuAg composite.
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3.2. Electrocatalytic Performance of the CuxO/Ag2O@NP-CuAg Electrode Composites

As compared to the free-standing monometallic Cu2O nanowires composite (Cu2O@NP-Cu) [19],
it should be emphasized that the new CuxO/Ag2O@NP-CuAg electrodes not only keep good mechanical
integrity, but also could withstand a large degree of bending (inset photo of Figure 5a), indicating a
good flexibility. The CVs measurements in 0.2 M NaOH with 3 mM glucose (Figure 5a) are performed
for the flexible CuxO/Ag2O@NP-CuAg electrode before and after bending. It appears that both the
CVs almost coincide to each other. Moreover, the oxidation peak appeared at 0.5 V is clearly higher
as compared to that in the NaOH without glucose, which demonstrates the electrode modified by
bimetallic CuxO/Ag2O oxide nanowires possesses high glucose sensing performance.

Amperemetric i-t curves (Figure 5b) of the bimetallic CuxO/Ag2O@NP-CuAg electrodes anodized
for different time were conducted in the 0.2 M NaOH solutions by dropping 1 mM glucose at
0.5 V, while that of monometallic Cu2O@NP-Cu electrode anodized for 5 min [19] is also shown for
comparison. From the i-t curves, it can clearly see that all of the electrodes have significant current
response signals when 1 mM glucose is added. The corresponding linear fitting of the current density
plotted with the addition of glucose concentration was shown in Figure 5c. It is found that all the
CuxO/Ag2O@NP-CuAg electrodes exhibit wide linear range up to 17 mM. Additionally, the sensitivity
value fitted by software for the CuxO/Ag2O-10, CuxO/Ag2O-5, CuxO/Ag2O-1, and Cu2O composite
electrodes is ~1.49, 1.38, 0.85, and 0.58 mA mM−1 cm−2, respectively. The corresponding standard error
of them is ~0.028, 0.026, 0.020, and 0.012, respectively. Thus, the CuxO/Ag2O@NP-CuAg electrode
after anodizing 10 min has the highest sensitivity value. Moreover, as compared to monometallic
Cu2O@NP-Cu electrode, it is found that the bimetallic CuxO/Ag2O@NP-CuAg electrodes possess
higher sensitivity and wider linear range. The Nyquist plots (Figure 5d) display that the radius of the
semicircle for electrode increases with an increase in the anodizing time, indicating that the extension
of anodizing time results in an enhancement in the electron transfer resistance of the electrode [21].
However, it is seen from Figure 5c that the CuxO/Ag2O-10 exhibits the highest sensitivity. Thus, the
effect of the increased electron transfer resistance is far less than the improvement of electrocatalytic
performance caused by synergistic effect of hierarchical structure and bimetallic oxides.

Generally, glucose often coexists with small amounts of interfering substances such as ascorbic
acid (AA) and uric acid (UA) in human blood. In order to investigate the anti-interference ability of the
present electrode, the i-t curve of CuxO/Ag2O-10 was measured by adding 0.1 mM AA, 0.1 mM UA and
3 mM glucose in 0.2 M NaOH solution at 0.5 V, respectively [22]. As shown in Figure 6a, the addition
of glucose results in a significant current response for CuxO/Ag2O-10, whereas the current signals
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of AA and UA are neglectable, illustrating that the present composites demonstrate the excellent
anti-interference ability towards glucose detection in human blood. In addition, the stability of the
electrode is also important for its practical application. Herein, the CuxO/Ag2O-10 electrode was
exposed in the air, and the current response to 1 mM glucose was monitored once a day. Note that
the current intensity measured daily is normalized with the initial value and the result is shown in
the Figure 6b. It is found that the current response detected for 30 days still remains about 97.01%,
revealing that the new electrodes demonstrate outstanding long-term stability, which may derive from
its integrated structural advantages of in situ growth.Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 8 
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4. Conclusions

In this work, the free-standing CuxO/Ag2O@NP-CuAg electrode with good flexibility has been
fabricated by a facile fabrication strategy. The bimetallic CuxO/Ag2O nanowires integrated with
the nanoporous Cu-Ag network present unique structure features, i.e., the tip-converged nanowires
and the hierarchical porous structure. SEM results show that the length of the nanowires increases
with an increase in anodizing time, whereas the corresponding aspect ratio decreases. In addition,
as compared to monometallic Cu2O@NP-Cu electrode, it is found that the electrodes modified by
bimetallic CuxO/Ag2O oxide nanowires demonstrate much higher glucose sensing performance.
The CuxO/Ag2O@NP-CuAg electrode anodized for 10 min demonstrates the highest sensitivity of
~1.49 mA mM−1 cm−2, wide linear range up to 17 mM as well as outstanding long-term stability. The
high electrocatalytic performance of glucose for the new flexible electrode is attributed to the integrated
hierarchical porous structure and the synergistic effect of the copper and silver elements. The newly
developed CuxO/Ag2O@NP-CuAg composite is a prospective candidate for flexible glucose sensor.
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