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Abstract: Transcriptomics data are relevant to address a number of challenges in Toxicogenomics
(TGx). After careful planning of exposure conditions and data preprocessing, the TGx data can be
used in predictive toxicology, where more advanced modelling techniques are applied. The large
volume of molecular profiles produced by omics-based technologies allows the development and
application of artificial intelligence (AI) methods in TGx. Indeed, the publicly available omics datasets
are constantly increasing together with a plethora of different methods that are made available to
facilitate their analysis, interpretation and the generation of accurate and stable predictive models.
In this review, we present the state-of-the-art of data modelling applied to transcriptomics data in
TGx. We show how the benchmark dose (BMD) analysis can be applied to TGx data. We review
read across and adverse outcome pathways (AOP) modelling methodologies. We discuss how
network-based approaches can be successfully employed to clarify the mechanism of action (MOA)
or specific biomarkers of exposure. We also describe the main AI methodologies applied to TGx data
to create predictive classification and regression models and we address current challenges. Finally,
we present a short description of deep learning (DL) and data integration methodologies applied in
these contexts. Modelling of TGx data represents a valuable tool for more accurate chemical safety
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assessment. This review is the third part of a three-article series on Transcriptomics in Toxicogenomics.

Keywords: toxicogenomics; transcriptomics; data modelling; benchmark dose analysis; network analysis;
read-across; QSAR; machine learning; deep learning; data integration

1. Introduction

Clarifying the toxic potential of diverse substances is an important challenge faced by scientists
and regulatory authorities alike [1]. The rapid generation of genomic-scale data has led to the
development of TGx, which combines classical toxicology approaches with high throughput/high
content molecular profiling technologies in order to identify deregulated molecular mechanisms upon
exposures as well as candidate biomarkers for toxicity prediction [2–7].

In the last years, many transcriptomics datasets have been generated to characterize the molecular
MOA of chemicals, small molecules and nanomaterials exposure by transcriptomics profiling of the
exposed biological systems [5]. At the same time, new ML algorithms have been proposed in order to
better understand and eventually predict the genomic behaviour underlying the exposure. Indeed,
TGx datasets have been exploited in the context of drug repositioning [8,9], toxicity prediction [10–13],
definition of adverse outcome pathways (AOP), and as a valuable source to develop new approach
methodologies [14,15].

Notably, TGx approaches have been used to analyze quantitative transcriptomic data, to determine
the BMD and estimate the critical point of departure for human health risk assessment [16–19]. These
approaches are applied in the framework of read-across analysis, with the aim of predicting the
behaviour of uncharacterized compounds by comparing them to other substances whose molecular
effects are known [20,21].

TGx shifts the focus from traditional end-point-driven analysis to a systems biology approach,
allowing to better understand and predict the alterations in the molecular mechanisms leading to
toxicity. In this context, different methods for the study of gene co-expression networks is of great
interest to identify common patterns of expression among relevant genes [2–6,22].

Furthermore, different ML methodologies have been developed and applied to the analysis of
TGx datasets for the purpose of identifying toxicogenomic predictors. ML includes both unsupervised
and supervised methods. The unsupervised methods, such as clustering, do not require any prior
classification of the samples, grouping them based on similarities of selected features. On the other
hand, supervised methods require discrete or continuous endpoints. They are often combined with
strategies to identify an optimal subset of features that can discriminate the endpoint values. This
subset of features can then be used for the prediction of the class or the effect of a new sample. A wide
range of algorithms has been proposed to build robust and accurate predictive models, including linear
and logistic models, support vector machines (SVM), random forests (RF), classification and regression
trees (CART), partial least squares discriminant analysis (PLSDA), linear discriminant analysis (LDA),
artificial neural networks (ANNs), matrix factorization (MF) and k-nearest neighbours (K-NN) [23–26].
Classic techniques such as linear and logistic models have been the first to be applied in such modelling
tasks and can still be considered the methods of choice, especially when analyzing small datasets.
More recently, novel methodologies based on artificial intelligence (AI) and deep learning (DL) have
been used with great success in a wide range of applications, including image analysis, and also
for the development of TGx-based predictive models [27]. These new approaches are envisaged to
produce more accurate predictions and open new horizons to the identification of biomarkers with
discrimination performance and predictive ability [5,28]. One of the biggest challenges faced in TGx is
the limited amount of samples in the available data, especially in specific fields such as nanotoxicology.
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ML techniques can be very useful to overcome small sample sizes in TGx studies by combining several
gene profiles from multiple related biological systems or by applying transfer learning techniques [27].

In this review, we present the state-of-the-art methodologies developed to interpret, analyze and
model already preprocessed omics data. These include BMD analysis, gene co-expression network and
ML methods for predictive modelling. We discuss the main ML methodologies, highlight scenarios
where each methodology is most suited, the pros and cons of the different approaches, and which are
the best validation strategies. We also provide a brief overview of data integration methodologies for
multi-omics data analyses.

2. Benchmark Dose Modelling

One of the main goals of toxicity assessment is the study of exposure–response relationships that
describe the strength of the response of an organism as a function of exposure to a stimulus, such
as chemical exposure, after a certain time. These relationships can be described as dose-response
curves where the doses are represented on the x-axis and the response is represented on the y-axis.
From these curves, a BMD value is calculated as the dose (or concentration) that produces a given
amount of change in the response rate (called BMR) of an adverse effect. Normally, the BMR value
is 5% or 10% change in the response rate of an adverse effect relative to the response of the control
group. Furthermore, estimations of the lower and upper confidence interval for the BMD value are
also computed and are called BMDL and BMDU, respectively [29–31].

In the last years, dose-response studies have been integrated with microarray technologies, thus
introducing gene expression as an additional important outcome related to the dose. Indeed, the
genes whose expression changes over the dose are of particular interest, since they provide insights
into efficacy, toxicity and many other phenotypes. A specific challenge is to identify genes with
expression level changing according to dose level in a non-random manner, identifiable as potential
biomarkers [32].

The combination of microarray technology with BMD methods results in a bioinformatic tool that
provides a comprehensive survey of transcriptional changes together with dose estimates at which
different cellular processes are altered, based on a defined increase in response [33]. A classic BMD
modelling pipeline involves fitting the experimental data to a selection of mathematical models, such as
linear, second- or third-degree polynomial, exponential, hill, asymptotic regression, Michaelis–Menten
models etc. Among all, the best model is selected by using a goodness of fit criteria, such as the Akaike
information (AIC) or the goodness-of-fit p-value.

A predefined response level of interest, called BMR, is identified and the optimal model is
used to predict the corresponding dose (BMD) [34]. Moreover, the European Food Safety Authority
(EFSA) suggests reporting both the lower and upper 95% confidence limit on the BMD [35]. The most
popular tool to perform BMD analysis is BMDS (Table 1), which is developed by a U.S. Environmental
Protection Agency’s publication [29]. It implements the following pipeline: first, the BMR value is
selected. A set of appropriate models and their parameters for which the model fit are assessed. Then,
the BMDs and BMDLs values for the adequate models are estimated. The optimal values coming from
the model with the lowest AIC are selected.

BMD approach is also implemented by the PROAST software (https://www.rivm.nl/en/proast)
(Table 1), developed by the Rijksinstituut voor Volksgezondheid en Milieu institute (RIVM). Although
RIVM and EPA aim to achieve consistency between these tools, there are still differences in some
of their default settings and functionalities [36,37]. For example, PROAST allows for the statistical
comparison of dose-responses between subgroups (covariate analysis) and offers larger flexibility in
plotting [37,38]. PROAST can be run as a library in R, but also using two web applications that offer only
basic functionalities for quick access (https://efsa.openanalytics.eu/, https://proastweb.rivm.nl/).

A similar pipeline for toxicogenomics applications is implemented in the java-based US National
Toxicology Program’s BMDExpress 2 tool, where a dose-response model is fitted for every gene, whose
expression value is the response variable for the different doses [39–41] (Table 1). Furthermore,

https://www.rivm.nl/en/proast
https://efsa.openanalytics.eu/
https://proastweb.rivm.nl/
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an R package for the dose-response analysis of gene expression data, called ISOgene has been
proposed [42,43]. It implements the testing procedure proposed in, in order to identify a subset
of genes showing a monotone relationship between the expression values and the doses [44]. This tool
does not compute any BMD or BMDL values but returns a set of genes with a statistically significant
monotone relationship (Table 1).

More recently, a novel user-friendly software based on R/Shiny, BMDx, has been introduced [31].
In addition to the evaluation of dose-response of each gene expression pattern, BMDx also provides
ways to compare multiple exposures or multiple time points along with suggesting functional
characterization of the identified dose-response genes (Table 1).

Table 1. Tools available for benchmark dose analysis.

BMDS PROAST BMDExpress 2 ISOgene BMDx

EPA Models * X X
Probe id - - X
Gene id - - X

BMD/BMDL X X X X
BMDU X X X

IC50 X
EC50 X

Enrichment Analysis - - X X
Interactive enriched maps - - X

Comparisons at different time points - - X
GUI X X X X X

* Models approved by the US Environmental Protection Agency.

3. Gene Co-Expression Network Analysis

Gene co-expression network analysis is a systems biology method used to describe the correlation
patterns among genes across different experimental samples. It allows representing, investigating and
understanding the complex molecular interactions within the exposed system [22,45]. The genes and
their interactions are represented as a network (or graph) where the genes are the nodes of the network
and their strength of similarity is represented as weighted edges between the nodes [46].

To understand the nature of cellular processes, it is necessary to study the behaviour of genes
by means of a holistic assessment [47]. Thus, the inference of gene co-expression networks is a
powerful tool for better understanding gene functions, biological processes, and complex disease
mechanisms. Indeed, co-expression network analysis has been widely used to understand which
genes are highly co-expressed within certain biological processes or differentially expressed in various
conditions. They are also used for candidate disease-related gene prioritization [48], for functional gene
annotation and the identification of regulatory genes [49]. For example, Kinaret et al. systematically
investigated the transcriptomic response of the THP-1 macrophage cell line and lung tissue of mice
after exposure to several nanomaterials by using a robust gene co-expression network inference
method [2,50]. Subsequently, they ranked the genes in the network by computing different topological
measures, identified and functionally characterized a set of genes that play a key role in the adaptation
to exposure. Other approaches focus on identifying gene network modules associated with specific
patterns of drug toxicity [45].

Studying the topology of the gene co-expression network allows identifying communities of genes
that show similar behaviour. Moreover, the use of centrality measures facilitates the identification of
genes that are hubs in the network [49]. A classical analysis performed on inferred gene co-expression
networks is the identification of functional modules, such as groups of co-expressed genes. This
is usually carried out by means of standard clustering algorithms, such as k-means, hierarchical
clustering, spectral clustering, or by means of community detection algorithms [51]. The clustering
method needs to be chosen with consideration because it can greatly influence the outcome and
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meaning of the analysis [49]. Modules can subsequently be interpreted by functional enrichment
analysis, a method to identify and rank overrepresented functional categories in a list of genes.

Algorithms to Infer Gene Co-Expression Networks

The first challenge in this type of analysis is the identification of the best algorithm used to infer
the gene co-expression network. Indeed, starting from the preprocessed TGx data, different methods
to construct the gene co-expression network can be applied [52–54]. These methods differ on how
they calculate the similarities between the expression profiles and how they remove the non-relevant
connections. The dependence between the expression profiles is usually computed by means of
information-theoretic methods such as the pairwise correlation coefficient and mutual information
(MI) [45,55]. The main difference between the two methods is that the first one is able to identify only
linear dependence between the profiles, while the second is also able to identify non-linear dependencies.

Various algorithms have been proposed based on information theory. Some of the most important
ones are RelNet [56], ARACNE [57], CLR [58], PANDA [59] and WGCNA [60]. RelNet works on two
steps: it first creates a completely connected gene co-expression matrix where the mutual information
between all genes is computed [56]. Subsequently, a threshold is defined, called TMI, that identifies
which are the associations to be considered as significant. ARACNE computes the mutual information
for all gene pairs of a gene expression dataset and excludes all the mutually independent gene pairs.
Consequently, the ARACNE algorithm reduces the number of false positives connections, by cutting
the less strong association between every triplet of genes in the network [57].

The CLR algorithm is an extension of the relevance network, but there is a correction step to
eliminate false correlation and indirect effects [58]. Similarly to RelNet and ARACNE, this algorithm
uses the matrix of MI values between all regulators and their potential target genes. In the next step,
the CLR calculates the statistical likelihood of each MI value within its network context. This algorithm
compares MI values of gene pairs with the background distribution of MI values. The interactions
whose MI scores stand significantly above background distribution of MI scores are considered as
the most probable interactions. This step eliminates many of the false correlations in the network
(e.g., when transcription factors co-vary weakly with a lot of genes or a gene co-varies weakly by
transcription factors of different factories).

Unfortunately, applying different methods to the same omic dataset may not always result in
consistent co-expression networks. For this reason, Marwah and collaborators recently proposed a
tool, called INfORM (Inference of NetwOrk Response Module), able to infer a more stable and robust
network by applying an ensemble strategy [50]. INfORM derives gene networks by employing a
two-level ensemble strategy that combines models proposed by multiple network inference algorithms
(ARACNE [57], CLR [58], MRNET, MRNETb [61]), to ensure the robustness of gene–gene associations.
Network topology information and user-provided biological measures of significance (e.g., differential
expression scores) are used together to obtain a robust rank of genes in the network, by means of the
Borda method. Community detection methods are used to identify modules of closely correlated genes.
Such modules are characterized by the importance of member genes in the network and GO enrichment
is performed for functional characterization. Finally, the user can assess the characteristics of the
modules and the functional similarity between modules to define the response module that represents
the best network properties. The biological significance of this response module can be inferred from
the summarized representation of enriched GO annotations clustered by their semantic similarity.

A different approach is to infer directed graph networks, which allow not only to reveal the
systematic coordinated behaviour of sets of genes but also the identification of causal and regulatory
relationships between them [61]. These models can overcome the pitfalls of correlation networks, which
are sensitive to technical and biological noise and may produce artefacts due to the loss of the direction
of the correlation between each pair of genes during the network construction [62–65]. There are a
number of methods for learning directed acyclic graphs (DAGs) available [66], but significant effort is
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being made to modify them in order to produce meaningful results by analyzing high-dimensional
omics data [62–67].

4. Read-Across

The main assumption of read-across studies is that structurally similar compounds are likely
to share a similar toxicological profile. These approaches are used to fill toxicological data gaps by
relating to similar chemicals for which test data are available [68]. Traditional read-across studies rely
only on the similarities between the chemical structure of the compounds. Different measures have
been proposed to compute the chemical structure similarity and also multiple tools for read-across,
mainly based on the nearest neighbour algorithm, have been developed [69,70]. However, these
approaches are limited to the fact that the chemistry cannot explain the complex biological processes
that are activated by substance exposure [71].

TGx datasets, such as DrugMatrix [72], Connectivity Map (CMAP) [73] and LINCS 1000 [74], can
be used to profile the biological fingerprint of multiple chemicals and allow to compare the measured
compound with a huge number of tested chemicals at the transcriptomic levels. Thus, the assumption
underlying related read-across studies could be that if two chemicals have similar biological profiles
they have a similar adverse outcome. Biological-based read-across could be complemented to the
structure-based read-across.

For example, Zhu et al. developed a read-across method based on a consensus similarity approach
starting from different biological data, to assess acute toxicity in the form of estrogenic endocrine
disruption [68]. Moreover, Serra et al. proposed a network-based integrative methodology to perform
read-across of nanomaterials exposure with respect to other phenotypic entities such as human diseases,
drug treatments and chemical exposures [20]. In particular, they integrated gene expression data from
microarray experiments for 29 nanomaterials, with other gene expression data for drug treatments and
data available from the literature that relates differentially expressed genes to chemical exposures and
human diseases. They created an interaction network that was used to contextualize the effect of the
nanomaterials exposure on the genes by comparing their effects with those of chemicals and drugs
with respect to particular diseases. With this approach, the authors identified potential connections
between metal-based nanoparticles and neurodegenerative disorders.

Furthermore, the toxFlow web-based application is available to perform read-across and toxicity
prediction by integrating omics and physicochemical data [21]. The implemented workflow allows
to filter omics data with enrichment scores and then merge them together with the physicochemical
data into a similarity-based-read across method to predict the toxicity level of a substance by
inferring information from its most similar ones. However, the user still needs to define an initial
grouping/read-across hypothesis regarding the variables that will be considered important and
the threshold values, that set the boundary to the neighborhoods of similar ENMs. Apellis web
application updates the toxFlow methodology by automating the process of searching over the
solution space in order to find the read-across hypothesis that produces the best possible results in
terms of prediction accuracy and number of ENMs for which predictions are obtained [75]. To do
so, a stochastic genetic algorithm that serves the selection of both the appropriate variables and the
threshold values simultaneously was developed and is trained during the first step of the procedure,
while the predicted toxicity endpoint is retrieved during the second part of it [75].

5. Adverse Outcome Pathways

Adverse outcome pathway (AOP) is a conceptual framework that couples existing knowledge on
the links between a molecular initiating event (MIE), such as contact of nanomaterial with Toll-like
receptors on the cell surface, with the activation of a chain of causally relevant biological processes or
key events (KE), e.g., the production of inflammatory cytokines, with the resulting adverse outcomes
(AO) at the level of the organ or the organism (e.g., lung fibrosis) [76,77]. Coupling of gene expression
profiling with bioinformatics-driven placement of the results into AOP descriptions has the potential
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for quantitative analysis of adverse effects that combines in vitro-derived mechanistic analyses with
causally relevant modes-of-action and related key events [77,78]. As AOPs can span different cell
types, numerous in vitro assays may need to be associated with a single one [14,76]. The details of the
coupling are still being worked out by the community but mapping the results of pathway analyses
to KEs is a simple alternative. For example, if the bioinformatics results cover all of the KEs in the
chain leading up to an AO, then the AOP could be considered as active. The point-of-departure
concentration might be defined as the lowest concentration where all of the KEs are activated.
Naturally, this depends on the type of model systems used and its limitations (see Part I of this
article series). However, early activation of molecular mechanisms in vitro have been shown to be
predictive of phenotypic effects taking place later or in other systems [12], providing a basis for use
of TGx data to cover largely all information blocks in an AOP [78]. Pathway annotations that can
be considered include the WikiPathways, Molecular Signatures Database, KEGG, Reactome, Gene
Ontologies Biological Process but also the Predictive Toxicogenomics Space (PTGS) components and
other dedicated descriptions of toxicity pathways [12,79]. A more refined POD concentration could
be provided by coupling the aforementioned AOP-based transcriptomics data analysis with BMD
modelling to evaluate the dose-response nature of the exposure to ENMs at gene or pathway level.
Subsequently, these transcriptional BMD values may be used to rank the potency of the nanomaterials
to induce changes related to specific adverse outcomes of interest at the lower levels of biological
organization, and group them according to the severity of the biological effects they cause [18].

6. Machine Learning in Toxicogenomics

ML methods have significantly advanced in recent years and are proven to be important
alternatives to experimental testing for chemicals and nanomaterials [80–82]. The value of TGx-derived
biomarkers of toxicity lays in the fact that they can be detected earlier than histopathological or
clinical phenotypes [83]. The development of ML methods and tools for omics data analysis has
also been proposed and several algorithms have been successfully applied to the analysis of omics
data also in the TGx field [84]. For example, Rueda-Zarate, Hector A., et al. proposed a strategy that
combines human in vitro and rat in vivo and in vitro transcriptomic data at different dose levels to
classify the compound toxicity levels [85]. They combined machine learning algorithms, with time
series analysis by taking into account the genes correlation structure across the time. Furthermore,
Su et al. developed a drug-induced hepatotoxicity prediction model based on biological feature
maps and multiple classification strategies [86]. They use a biology-context based gene selection to
identify the most discriminative genes and showcased their methodology on the Open TG-GATEs and
DrugMatrix datasets.

ML algorithms use data-driven approaches to develop predictive models. Data derived from
empirical experiments is first analysed to assess its quality, and, if necessary, it is preprocessed to
improve the stability of the ML models. Common preprocessing techniques include filtering out
features that are not informative, removing anomalous observations (outliers, noisy data) or filling
data gaps. After this step, the dimensionality of the training data can still be excessive, so the data can
be further preprocessed using dimensionality reduction techniques.

The preprocessed data is used to train ML models that can predict a variable of interest (supervised
learning) or detect patterns in the dataset (unsupervised learning). In addition to estimating parameters
fitted to the data, most models also provide a set of hyper-parameters that must be optimized to achieve
best performances, like the number of clusters in k-means, or the number of trees in a random forest.
After training, the capability of the model to generalize beyond the training data is evaluated on an
independent and identically distributed test set. In the case of multiple competing models, the best
model of each family of predictors is evaluated and the optimal model is deployed in the real-world
environment. A graphical representation of the process is shown in Figure 1.
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Data
Acquisition Preprocessing

Hyper-
parameter 

Tuning

TrainingValidation

Model 
Selection Testing

Figure 1. Example of ML pipeline for TGx data. Data Acquisition and Preprocessing: Data is
collected and analyzed to ensure the quality of the dataset. During the preprocessing, feature
selection and/or feature transformations may be applied to improve stability. Training-Hyperparameter
tuning-Validation loop: candidate models are fit to the data. This is embedded in an iterative process
where for each candidate model the best hyperparameters are optimized through the validation step.
Model Selection and Testing: Optimized candidate models are identified and the best ones are tested
on a final hold-out dataset to evaluate generalization capabilities.

6.1. Dimensionality Reduction and Feature Selection

Since TGx data usually present a large number of measured molecules compared to the number
of samples, they can suffer from the curse of dimensionality. Thus, the model overfitting, the spurious
correlations and a trade-off between accuracy and computational complexity have to be taken into
account when modelling these data [87].

Dimensionality reduction techniques and feature selection methods can mitigate these issues and
can be used in combination with ML approaches to build predictive modeling [24]. Some examples of
dimensionality reduction techniques are principal component analysis (PCA) [88], multidimensional
scaling (MDS) [89], t-distributed stochastic neighbour embedding (t-SNE) [90] and Uniform Manifold
Approximation and Projection (UMAP) [91].

Probabilistic component modelling can be a powerful technique as it combines dimensionality
reduction with highly interpretable ML models [10,92]. It can be used in unsupervised mode to
identify response modules that describe aspects of cellular response to chemicals or in a supervised
way to predict responses based on omics input data. The Predictive Toxicogenomics Space (PTGS)
scoring concept tool is based on modules derived from Latent Dirichlet Allocation (LDA) probabilistic
component model analyses of the entire CMAP dataset [73] of over 1300 chemicals and drugs.
To begin, 100 response components were derived. Expression data was then integrated with the
NCI-60 DTP cellular screening database (222 chemicals) to identify 14 components that corresponded
with cytotoxicity at 50% growth-inhibitory level or above. Further ML assessment selected 4 of
these 14 components that were able to predict liver toxicity. The multi-view Group Factor Analysis
(GFA) and Bayesian Multi-tensor Factorization (MTF) are in some ways more advanced versions of
probabilistic component modelling but also have their own limitations, so decisions on their use have
to be made individually.

If the goal of the analysis is to reduce the dimensionality by preserving the original features, feature
selection approaches can be a better alternative. Indeed, it allows to reveal significant underlying
information and to identify a set of biomarkers for a particular phenotype [24]. Examples of these are
filter approaches such as information gain, correlation feature selection (CFS) [93], Borda [94], random
forests [95,96], FPRF [26], and Varsel [97]. More advanced modelling based on genetic algorithms,
such as GALGO [98] and DIABLO [99], GARBO [100], allows taking into account the non-linear
correlations between candidate biomarkers.

Feature selection methods for the identification of biomarkers of toxicity can be used in
combination with ML approaches to predict the toxicity of different drugs and chemicals [12,101,102].
For example, Eichner et al. [103] applied an ensemble feature selection method in conjunction
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with bootstrapping technique to derive reproducible gene-signature from microarray data for the
carcinogenicity of drugs. The application of stable feature selection methods is particularly important
since it may accelerate the screening for promising candidates and hence have more efficient and less
costly processes for drug development.

Su et al. proposed a multi-dose computational model to predict drug-induced hepatotoxicity
based on gene expression for toxicogenomics data [104]. Their methodology is based on a hybrid
feature selection method, called MEMO, which uses the dose information after drug treatment based
on a dose response curve to deal with the high-dimensional toxicogenomics data after. They validated
their model using the Open TG-GATEs database and they show that the drug-induces hepatotoxicity
can be predicted with high accuracy and efficiency.

6.1.1. Stability and Applicability Domain

TGx data are the result of an experimental measure that is prone to both technical and biological
noise, due to the complexity of the exposed system. Thus, stability and reproducibility play a key role
in the analysis [105]. For example, multivariate methods can identify different subsets of candidate
biomarkers with equal or similar accuracy, even if the feature selection algorithms are used on the
same data [26,106,107]. Other challenges that should be taken into account when creating models
from TGx data involve the applicability domain (AD) of the predictors, the number of predictors in
the models.

According to the OECD principle of validation [108], one of the essential steps in model
implementation is the definition of the AD. Indeed, predictions extrapolated outside of the model’s
AD may be less accurate [109]. Even though different methods have been proposed to compute and
evaluate the model AD, there is still a lack of a uniform definition. One of the most common methods
to compute AD is based on the leverage methods such as the Williams plot [110]. This method can
be used to compute AD for linear regression models and is also useful to identify outliers in the
data. Other methods can be the standardization approach [111] and the euclidean and city block
distance methods [112]. The AD of non-linear models can be computed with kernel-based estimators
or k-nearest neighbours method [112]. The AD for classification models can be computed by using the
PCA-based and range-based methods [113].

Recently, a new methodology for feature selection from complex data, called MaNGA has been
proposed [114]. MaNGA uses a multi-objective optimization strategy to identify the minimum set
of predictive features with the widest AD, better predictivity capability and high stability. Even
though the MaNGA strategy has been implemented for the development of robust and well validated
predicting QSAR models, it could be easily applied to identify biomarkers of toxicity from TGx data.

6.2. Clustering

Clustering is an unsupervised learning exploratory technique, that allows identifying structure in
the data without prior knowledge on their distribution. The main idea is to classify the objects based on
a similarity measure, where similar objects are assigned to the same class [51,115,116]. Transcriptomic
data are characterized by a huge number of features (genes), thus the first step in gaining some
understanding of microarray data is to organize them in a meaningful way. Cluster analysis has
been used as an extremely helpful method to analyze and visualize this data. The main objective of
performing cluster analysis with transcriptomic data is to group together genes that share the same
pattern of expression but differ from the genes in other clusters. The main assumption is that the genes
in the same cluster may be involved in similar or related biological functions [117–119].

Different clustering algorithms are available and some well known algorithms are listed in
Supplementary Table S1. Some entries (e.g., biclustering) refer to families of algorithms stemming
from a common structure. Different clustering algorithms can produce different results starting from
the same input data, and even a single algorithm may produce two different results in two different
runs if featured with a random component. Different metrics, such as the Davies-Bouldin index,
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the Dunn index, and the silhouette index [120], can be used to internally validate the clustering results
based solely on the data on which clustering was made. Other metrics, such as the Rand index, the
Jaccard index, the Normalized Mutual Information, and the F-measure [121], can be used to compare
different clustering results. In order to improve the stability of an algorithm with a random component,
consensus clustering can be used to aggregate the results from a number of runs. It can also be used in
case an ensemble approach is desired [122].

Furthermore, due to the intrinsic complexity of the omics technologies and processes involved,
experiments can also produce low quality data. As in other domains, the presence of outliers may
strongly influence the results. Various methods exist to detect outliers and to handle them. When an
outlier is detected it may simply be removed, but also other approaches are possible like substituting it
with an object more similar to the others, or assigning a reduced weight [123,124].

Applications of clustering in TGx include evidencing groups of samples/experimental conditions
by similarity in gene expression or, analogously, classes of genes by similarity in their expression
between samples/experiments. If the focus is on the responses to different stimuli, fold change
similarities between pairs of readings occurred before and after the stimuli may be used as a similarity
measure. Clustering may be applied to data before training a predictive model in order to tune the
stratification of the samples or to train different models on different subpopulations [125]. McNicholas
and Murphy [126] applied k-means, PAM, hierarchical, and mixture models to map the correlation
between gene expression levels in data collected from two different studies about leukaemia and
colon cancer. The clustering algorithms were compared using the Rand index, resulting in a better
performance of the mixture models. Gao et al. [122] applied consensus clustering to transcriptomics
time series data from E. coli subjected to toxicants at various dosages. Self-organizing map, a kind of
ANN producing dimensionality reduction to a discrete space, was used as the underlying algorithm
for the consensus clustering. The resulting clusters were mostly consistent with prior toxicological
knowledge. Nystrom-Persson et al. [117] applied hierarchical clustering (Ward’s method with Pearson
distance) to the toxicogenomics database Open TG-GATEs to study the hepatotoxicity of pirinixic
acid. Hasan et al. [127] applied a number of hierarchical clustering configurations to the Japanese
Toxicogenomics Project dataset to detect toxic DDs and their associated biomarker genes. They
concluded that Ward’s method with similarities computed with Minkowski distances produced the
better results.

6.3. Classification

In supervised learning, classification is the task of predicting the class to which a sample belongs,
given the class of previously seen samples. To build such a predictive system, it is necessary to provide
as training samples to a learning algorithm both the TGx features and the toxicity label. In classification
tasks related to TGx data, it is common to assign to the positive class the “interesting” effects, which,
for example, may correspond to events of toxicity. Different classification algorithms have been applied
to the problem of predicting toxicity in the liver and kidney using TGx features, in vitro endpoints and
molecular descriptors [128–130].

For example, Minowa et al. [130], proposed a methodology for the prediction of future kidney
injury based on gene expression data measured at most 24 h after a single exposition. Specifically,
kidney gene expression sampled at different time points (3 h, 6 h, 9 h, 24 h) after administration
of a single dose was used to predict proximal tubular injury in rats for up to 28 days of repeated
doses administration. The authors trained several linear SVM models on gene expression data at
different time points. The best model, according to sensitivity (93%) and selectivity (90%), have been
obtained using 19 differentially expressed gene features at 24 h after administration of a single dose.
In Low et al. [128], several models have been employed to build rat hepatotoxicity predictors based on
QSAR methodologies as well as toxicogenomics features. Gene expression from rat kidney after 24 h
from single exposure were used together with molecular descriptors to train different models, namely
kNN, SVM, RF and distance weighted discrimination (DWD) in order to predict in vivo hepatotoxicity
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events. All the models were trained using a five-fold cross validation procedure. Each model has been
trained using only molecular descriptors, transcriptomics data and a combination of the two. Even
though hybrid QSAR-toxicogenomics models had comparable performances with predictors built
with only toxicogenomics features, post-hoc analysis of how these types of features interact can help to
identify relevant transcripts and chemical alerts for hepatotoxicity.

When training a model, the whole dataset is split into training data and test data. The training
data is used to fit the model, and the test data is used to evaluate the quality of the fitted model against
data unseen during training. Once fitted on the train data, the model’s generalization capabilities are
estimated by multiple metrics, such as the accuracy and F1-score that are computed starting from a
confusion matrix [131].

The objective is for the model to adapt to the training data enough to be able to generalize
to new data samples, but not too much to overfit and being unable to generalize to new samples.
Overfitting is particularly worsened in cases where the number of samples is smaller than the number
of features so that the joint distribution cannot be properly represented by the data [132]. Many
methodologies have been proposed to dampen this effect by prioritizing the most predictive features,
e.g., Liu et al. [133], proposed a ranking algorithm for the prioritization of predictive features based
on an iterative sampling scheme. At each iteration, a random subset of features, smaller than the
number of samples, is chosen, and used to train a classification model. For each feature, the predictive
performances are registered and when the ranking stabilises, the algorithm ends. The efficacy of
the algorithm was validated on a toxicogenomics database where the top predictive genes resulted
functionally related to several phenotypes of liver toxicity.

The more a dataset is unbalanced, the less informative some evaluation metrics become. This
is because, during training, every classifier learns with less effort the negative class, at the expense
of a rising rate of false negatives. Consider, as an extreme example, a dataset made of 99% negative
samples and 1% positive samples. A trivial classifier that always outputs the negative label, would
have an accuracy of 99% but is essentially useless.

Different methodologies can be applied to compensate for imbalances in the dataset. During
training, the dataset can be resampled, i.e., to reduce the imbalance in the training data, the majority
class can be down-sampled (discard a given proportion of the samples), the minority class can be
over-sampled, or both. Over-sampling can be as simple as randomly adding duplicate samples, or
it can be a generative scheme that creates new synthetic samples combining the actual samples like
hybrid methods, such as ROSE [134,135], and SMOTE or its variants [136,137]. Also, it is worth noting
that these methods are used only to stabilise model fitting, meaning that resampling schemes are
performed only on the training dataset. Since the test dataset is used to evaluate the generalization
capabilities of the model simulating new, unseen data, it is important that the test data distribution is
not altered by resampling.

Another approach to reduce the effects of imbalance in the dataset is to weight differently
classification errors of the classes, e.g., a false negative is ten times worse than a false positive. A trivial
weighting scheme is to assign to each class the inverse of the corresponding class proportion as a
weight. In conjunction to either approach or a combination of the two, after training, model evaluation
should be performed using a metric that takes into account the proportions of each possible outcome
such as the Matthews Correlation Coefficient [138,139].

6.4. Regression

Regression is a supervised learning methodology that estimates the relationship between the
features (a.k.a. independent variables) and a continuous variable referred to as outcome or dependent
variable. It is used in TGx to predict important quantities as the level of toxicity of a compound, the
half maximal inhibitory concentration (IC50), the survival, or differences between in vitro and in
vivo response.



Nanomaterials 2020, 10, 708 12 of 26

The simplest regression algorithm is the linear regression, where the outcome is predicted by a
linear function of the features. Also, nonlinear regression methods are available, where the outcome
depends on the features by a more complex function. E.g. Schüttler et al. [140] used the nonlinear Hill
equation to describe the time- and concentration-dependent fold change after compound exposure
in zebrafish embryo microarray data. Farmahin et al. [16] applied exponential 4, exponential 5, Hill,
power, polynomial, and linear models, choosing the best fitting one, to predict the BMD for various
types of cancer from microarray gene expression data of rats exposed to different chemicals and doses,
measured at 4 time points.

ANNs are well known techniques for nonlinear regression [141]. While sometimes avoided for
their black-box nature, they can offer high predictive performances. Deep approaches are viable and
have been applied with varying results to predict toxicity. They are promising but not always provide
better results than shallow techniques because of the small quantity of data available with respect to
other application domains like computer vision or spoken language recognition [142]. For a description
of deep learning see Section 6.5.1.

Since using a high number of features produces less compact models and possibly overfitting, a
variety of techniques allows to select or reduce the features. Previous external knowledge can be used
to select features [143], or they can be algorithmically combined to get more synthetic ones (e.g., with
PCA as with a type of unsupervised ANNs called autoencoders [144–146]) or part of them can be
removed by a preprocessing step (e.g., with a minimum redundancy maximum relevance selection
process [147]). Another approach consists in penalizing the weights of the features, possibly down to 0,
when they are in fact removed. There are algorithms that apply these penalizations during the fitting
of the model. The penalization may be linear in the value of the parameter, as in LASSO models [148],
quadratic in the value of the parameter, as in ridge regressions [149], or a combination of the two, as in
elastic nets [150].

After a regression model has been trained, it is necessary to internally and externally validate it.
Internal validation is performed on the same data that was used in training. It measures how well
the model fits the original data, but does not measure overfitting. External validation is performed
on a different dataset than the one used for training. Most of the quality measures can be used for
each kind of validation just changing the data the model is applied to. Prediction quality measures
are extremely variegated, as potentially any similarity measure between the model outputs and the
correct outcomes can be used. There are measures of distance between the model output and the
correct output, like the root mean square error (RMSE) or the mean absolute error (MSE), measures of
goodness of fit, correlation, collinearity, ordering, or other aspects, e.g., the coefficient of determination
R2 or the q2 [151]. The best choice for a quality measure depends on the domain of application of the
model, i.e., on how the errors impact the utility for the user.

Regression, as clustering, may be affected by outliers (see Section 6.2).

6.5. Model Selection and Hyper-Parameter Optimization

In order to find the best trade-off between model complexity and data availability, it is useful to
train more than one model and compare their performances on the test dataset. In addition to model
parameters most of the models have another set of hyper-parameters that need to be tuned to achieve
optimal performances, like the number of neighbours in k-NN, the number of trees in a random forest
or the number of layers, the number of units and the activation functions in a neural network.

These hyper-parameters cannot be inferred directly from data like other training parameters, and
need to be estimated by means of an explicit search in some parameter space. Care must be taken when
performing hyperparameter optimization since models cannot be evaluated neither on the training set
nor on the test set to avoid producing over-optimistic error estimates. The solution is to split the data
into three datasets namely, training, validation and test sets [132]. A common rule of thumb is to use
65% of the samples for training, 15% of the samples for validation and 20% of the samples for testing.
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When there is not enough data to ensure that model parameter estimates and performance estimates
are stable, a simple split of the data is not the most efficient use of data. A more data-efficient approach is
k-fold cross-validation, in which the dataset is randomly split into k subsets of approximately the same
size, then iteratively, one of the k subsets is used as a validation set and the remaining k-1 subsets as
training. The cross-validated estimate is then the average across the k runs, common choices for k are 5
or 10. The limit case where k is equal to the number of samples is called leave-one-out cross-validation.

In case of classification, care must be taken during either type of splitting in ensuring that the
class distribution is preserved across the splits. This is particularly important for the case of heavily
imbalanced datasets, where some of the splits may completely miss the less represented classes.
To overcome this problem, the split may be performed taking into account the class labels and ensuring
that each, e.g., the validation set has the same proportion of samples from each class.

Modeling of toxicogenomics data should always take into account the issues. For example,
Minowa et al. identified genomic biomarkers for drug-induced renal injury from gene expression data,
by applying filter based feature selection and linear classification algorithms. They evaluated their
model by using a five-fold cross validation strategy and achieved high sensitivity and selectivity. The
genes included in their model were primarily involved in DNA replication, cell cycle control, and
oxidative stress and chemical stimuli.

More recently, Furxhi et al. [102], compared the performances of different classifiers to predict
nanomaterials in vitro toxicity. They used physicochemical properties and in vitro experimental
conditions, from the safe and sustainable nanotechnology (s2NANO) database to predict the toxicity of
nanomaterials based on cell viability. Their comparative analysis included eight classifiers of different
categories such as rule induction, decision trees, function-based and Bayes classifiers. Furthermore,
they used a meta-classifier approach to combine all their results. To train and validate the different
models, they split the S2NANO dataset into a training (60%) and validation (40%) set. The training
set was heavily unbalanced (with only a few toxic samples), thus they use the SMOTE technique
to oversample the minority class. The internal validation was performed by using a 10-fold-cross
validation strategy to reduce the randomness of the results, while the validation set was used for
external validation. Eventually they used the Copeland index to identify the optimal classifier, that
was an ensemble of random-forest, locally weighted learning and k-nearest-neighbour using euclidean
distance classifier.

6.5.1. Deep Learning

In the ML field particular attention has been given to DL methodology as a very good alternative
for big data analytics with a high rate of success [152]. This rapid advancement has been due
to the development of more powerful GPU hardware, automatic differentiation software and the
development of new architectures based on the ReLU activation function that reduced the issue of
the vanishing gradient [153]. DL methods are composed of multiple processing layers and are able to
cope with a high level of abstraction [154]. One of the biggest differences between DL methodologies
and classical shallow learning is that DL does not necessarily require a feature extraction step before
the learning process [154]. Indeed, DL methods take advantage of their multilayer structure to extract
abstract and sophisticated features from the raw data input during the training process.

Algorithms for DL that have been used with success [155] include feedforward neural network
(FNN) [156], convolutional neural network (CNN) [157], and graph convolutional network (GCN) [158].
For example, Wang et al. [159] compared the performances of deep neural networks (DNN) with
respect to RF and SVM in the prediction of chemically induced liver injuries. They used whole-genome
DNA microarray data to predict the presence or absence of three endpoints (biliary hyperplasia,
fibrosis, and necrosis) for the drugs in the Open TG-GATEs database and DrugMatrix. The datasets
were strongly unbalanced, with lots of negative samples and few positive ones, so they applied the
SMOTE algorithm and used multiple metrics, such as F1 and MCC, to evaluate the model performances.



Nanomaterials 2020, 10, 708 14 of 26

Their results show that DNNs have better performance than SVM and RF with a higher generalization
capability on the phenotype prediction.

The increasing interest in DL also favoured the creation of a high number of frameworks and
platforms for the development of custom applications. Among those, the most used open source
frameworks are Tensorflow, PyTorch and MXNet. Apart from frameworks, also platforms for the
execution of computational experiments have become common. Many companies nowadays provide
the hardware infrastructure required to train DL models as cloud instances in which is possible to
develop “notebook” style general applications like Google Colab, Amazon Sagemaker and Azure
Notebooks, as well as commercial platforms specialized on the analysis and integration of TGx data
such as the Enalos Analytics (http://enalossuite.novamechanics.com) that is used by NanoSolveIT
H2020 nanoinformatics project.

One main issue related to the modelling of TGx data is that the studies usually have a smaller
number of samples than those needed from the DL methods. Thus, it is more difficult to assess
whether the DL model can be well representative of a broad space of samples and if the conclusions
that can be drawn from the model are reliable. One solution is to use transfer learning methodology
under the assumption that the knowledge learned from a dataset can be used to improve the learning
process from a different dataset with limited information [160]. Even if transfer learning has been
successfully applied in image or video analysis and speech recognition, few efforts have been made to
apply it to TGx studies. For example, Chen et al. [161] developed a multitask multilayer feedforward
neural network to inference the gene expression by using LINCS 1000, Genotype-Tissue Expression
(GTEx) data and 1000 Genomes expression. Furthermore, DL methods have been successfully
applied in the context of de novo drug design. For example, Popova et al. [162] developed a
new computational strategy called ReLeaSE (Reinforcement Learning for Structural Evolution) that
integrates two deep neural networks, one generative and one predictive, that are used to generate
novel target chemical libraries.

6.6. Data Integration for Multi-Omics Analyses

The rapid advances of high-throughput “-omics” technologies lead to the production of different
kinds of omics data, such as gene expression, microRNA expression (miRNA), copy number
variation (CNV), single nucleotide polymorphism (SNP) and protein-protein interactions (PPI). Each
of these experimental data potentially provides complementary information about the whole studied
organism [163,164].

Depending on the nature of the data and on the statistical problem to address, the integration
of heterogeneous data can be performed at different levels: early, intermediate and late [25]. Early
integration consists in concatenating data from different views in a single one, without changing
the nature of the data. This first type of integrative strategy applied in a TGx study allows us to
increase the number of samples related to a particular experimental condition or to compare different
experimental results [165,166]. The transcriptomics datasets coming from different studies are first
independently preprocessed and then concatenated to form a single dataset [167–169]. Intermediate
integration consists of transforming all the data sources into a common feature space before combining
them. In the late integration methodologies, each view is analyzed separately and the results are then
combined. Late integration methods are mainly used to combine statistics p-values across different
studies. Different methodologies exist such as the combination of effect size and the Fisher sum of logs
method. These methodologies can be strongly influenced by outliers, thus rank-based methodologies
have been proposed to obtain more stable results [170,171].

Moreover, different TGx studies integrated gene expression or RNA-Seq data with biological
assays, clinical chemistry, therapeutic categories or molecular pathways to get increasingly exhaustive
reasoning of biological mechanisms and cellular functions associated with adverse outcomes from
environmental exposures and toxicants [172]. For example, Zhang et al. [173] assessed the toxic effect
of doses of Zearalenone on cultured donkey granulosa cells (dGCs) by integrating gene expression
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data from RNA sequence analysis and RT-qPCR and immunofluorescence staining of dGCs, showing
the dysregulation of apoptosis-related genes and induction of ovarian cancer-related genes via the
PTEN/PI3K/AKT signaling pathway. Scala et al. performed an integrative analysis in which they
combined the alterations of DNA methylation, mRNA and microRNA expression of ten carbon
nanomaterials in order to better characterize their regulatory and functional map in three human cell
lines [3,174].

Furthermore, a different set of ML methods, both supervised and unsupervised have been
proposed for multi-omic data analysis. For example, Pavlidis et al. [175] proposed an intermediate
integration method based on SVM, to integrate microarray expression and phylogenetic profiles
in order to infer gene function. Similarly, Napolitano et al. [9] proposed a methodology for drug
repositioning by integrating genome-wide gene expression measures, chemical structure and drug
targets. Moreover, Kim et al. developed the Analysis Tool for Heritable and Environmental Network
Associations (ATHENA), a grammatical evolution neural networks (GENN) algorithm to integrate
different omics data for identifying features associated with cancer clinical outcomes [176]. Different
unsupervised multi-view clustering methodologies have been proposed, such as MVDA [25] and
SNF [177], for patient stratification in cancer studies or iNMF that is a multi-view biclustering algorithm
for module detection genomic datasets [178].

6.6.1. Integrate Transcriptomic Datasets with Molecular Descriptors for Hybrid Qsar Models

Following the assumption that the relationship between structural properties and phenotypic
effects of exposure is indirectly mediated by its MOA, an alternative approach to identify markers
for toxicity could focus on defining hybrid predictive models that combine both structural properties
and TGx features [9]. For example, Perualila-Tan et al. combined gene expression and chemical
information to infer if the gene expression response is caused by the presence or absence of a particular
chemical sub-structure [179]. In addition, Serra et al. proposed a methodology that integrates molecular
descriptors and gene modifications to create a hybrid QSAR model that predicts human serum albumin
binding of small molecules [180].

7. Conclusions

In this third part of the three-article series review on transcriptomics data in TGx, we provided an
overview of the state-of-the-art methodologies to analyze, interpret and model TGx data that are used
to better explain the compounds’ MOAs and to perform toxicity predictions.

The availability of open source transcriptomics datasets led to the development of different
downstream analysis and modelling methodologies to answer specific research questions. For example,
the BMD analysis allows identifying the minimal doses that affect the gene expression. The gene
co-expression network analysis can elucidate the similarity/dissimilarity in treatment response.
Read-across methods can be used to fill data-gaps and translate knowledge from existing compounds
to the most similar ones. AOPs can be used to explain the links between a molecular initiating event
after exposure and the final adverse outcome by creating a chain of relevant key events. Furthermore,
ML methods can be used to create accurate and reliable models for toxicity prediction. Key aspects are
robust and accurate predictions, rigorous model validation, well defined AD, and when possible an easy
interpretation of model results. Predictive models that satisfy these requirements might assist the risk
assessment and decision-making procedure [81].

One major issue of concern is the reproducibility of data and the quality assurance that are of
utmost importance for all data used for modelling. Lack of high-quality data will result in unreliable
in silico models that will not be exploitable for regulatory purposes. A more thoughtful discussion
about data generation can be found in the first part of this review series. Moreover, open data access,
open protocols and publicly available meta-data annotations, although not the focus of this review, are
integral for reproducible analyses as part of the FAIR Data Principles in order to make data findable,
accessible, interoperable and reusable [181].
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In conclusion, TGx methodologies have a good potential to become part of the regulatory
hazard assessment when all aspects from data generation to data preprocessing and modelling will
be harmonized, and openly available for the scientific and regulatory communities. Furthermore,
we believe that some methodologies and techniques implemented in other fields (e.g., QSAR) could
be translated in the contest of TGx. Eventually, future methods could combine ML algorithms and
dose-dependencies methods in order to identify biomarkers of toxicity.

This review can be considered the starting point to identify the best downstream analysis
methodology to apply to TGx data depending on the problem in hand. It is important to highlight that
each one of the described methods can be used individually, but they can also be concatenated in a
pipeline to perform a more comprehensive TGx analysis. Moreover, it is important to note that all the
modelling methodologies strongly rely on careful planning of the exposure conditions and robust data
preprocessing, discussed in detail in the first and second parts of this review series.
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Abbreviations

The following abbreviations are used in this manuscript:
AD applicability domain
AI artificial intelligence
AIC Akaike criterion
ANNs artificial neural networks
AOP adverse outcome pathways
ATHENA Analysis Tool for Heritable and Environmental Network Associations
BMD benchmark dose
BMDL benchmark dose lower bound
BMDU benchmark dose upper bound
BMR benchmark regulation
CART classification and regression trees
CFS correlation feature selection
CNN convolutional neural network
CNV copy number variation
CMAP Connectivity Map
DAGs directed acyclic graphs
dGCs donkey granulosa cells
DL deep learning
DT decision trees
EFSA European Food Safety Authority
FN false negative
FNN feedforward neural network
FP false positive
GCN graph convolutional network
GENN grammatical evolution neural network
GFA group factor analysis
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GO gene ontology
GTEx Genotype-Tissue Expression
KE key events
K-NN k-nearest neighbors
IC50 half maximal inhibitory concentration
L1000 Library of Integrated Network-Based Cellular Signatures 1000
LDA linear discriminant analysis
LDrA Latent Dirichlet Allocation
LR logistic regression
MDS multidimensional scaling
MF matrix factorization
MI mutual information
ML machine learning
MOA mechanism of action
MOE molecular initiating event
MVDA multi-view data analysis
miRNA microRNA
MTF bayesian multi-tensor factorization
NAM novell assessment methods
NB naive bayes
OECD Organisation for Economic Co-operation and Development
Open TG-GATEs Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System
PCA principal component analysis
PLSDA partial least squares discriminant analysis
POD point of departure
PPI protein-protein interactions
PTGS Predictive Toxicogenomics Space
QSAR quantitative structure activity relationship
ReLU Rectified Linear Unit
RF random forest
RIVM Rijksinstituut voor Volksgezondheid en Milieu institute
RNA-Seq RNA sequencing
SNF similarity network fusion
SNP single nucleotide polymorphism
SVM support vector machines
tSNE t-distributed stochastic neighbour embedding
TGx Toxicogenomics
TN true negative
TP true positive
UMAP Uniform Manifold Approximation and Projection
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