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Abstract: Short-pulsed laser-induced periodic surface structures (SPLIPSSs) have the possibility to
control tribology, wettability and biocompatibility. Nevertheless, the optimal structure depends on
each functionality, which has not been clarified. The hybrid process with a short-pulsed laser and
electrochemical machining (SPLECM) is, then, proposed to fabricate micro/nano hybrid structures
and to modify the surface composition for providing high functionalities with material surfaces. Elec-
trochemical machining is a well-established micro-elution and deposition method with noncontact
between a workpiece and a tool. In this study, the effects of electrolytes on SPLIPSSs were investi-
gated experimentally by the picosecond laser irradiation on 304 stainless steel substrates in various
electrolytes. The geometry of SPLIPSSs depended on the types and the concentration of electrolytes.
In the case of copper nitrate solution and copper sulfate solution, LIPSSs and spheroidization of
copper were obtained. This study demonstrated the possibility of SPLECM to fabricate micro/nano
structures and to control surface composition.

Keywords: short-pulsed laser; laser-induced periodic surface structures (LIPSSs); electrochemical
machining (ECM); electrolyte; nanostructure formation

1. Introduction

Micro/Nanostructures can alter tribology [1,2], wettability [3,4], optical properties [5,6]
and bioaffinity [7,8] on the material surface. The short-pulsed laser (SPL) is an appropri-
ate method to fabricate nanostructures, called laser-induced periodic surface structures
(LIPSSs), inducing a reduction of friction [9,10], water repellency and hydrophilicity [11–13],
anti-reflection [14,15] and improvement of biocompatibility [16,17]. LIPSSs with a peri-
odicity of 0.5–0.85 times the laser wavelength are fabricated through the self-organizing
way [18]. The plasma waves, induced via protrusions on a surface based on the parametric
decay [18–21], induced surface plasmons by the interference with the incident light, re-
sulting in periodic Coulomb explosions [22] and ablation. Nevertheless, the appropriate
structure for each functionality has not been clarified, although it has been reported that fine
structures are effective to alter the surface reaction. In addition, fabrication of multiscale
structures has been recently required to provide high added value with materials.

The hybrid manufacturing process is then proposed that combines an SPL and elec-
trochemical machining (ECM), a noncontact machining method with electrolytic elution
and deposition [23,24], to fabricate multiscale structures effectively and to control surface
composition, in contrast to the laser-assisted electrochemical machining that combines
a long-pulsed laser and ECM to increase the efficiency of ECM by enhancing thermal
electrochemical action and removing the passive film [25–30].

The objectives of this study were to verify the effects of electrolytes on the fabrication
of LIPSSs since a few studies have reported that LIPSS geometry depends on the irradiation
environment [31]. We also aimed to spheroidize copper since ECM can coat with copper
using copper nitrate (Cu(NO3)2) solution and copper sulfate (CuSO4) solution [32–35] since
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a long-pulsed laser or a continuous laser have been mainly used for laser enhanced electro-
less plating and the effects of an SPL on metal deposition with the fabrication of LIPSSs
have never been studied. Experiments of laser irradiation with 1064 nm and 20 ps laser
pulses at 0.04–1.0 J/cm2 on the workpiece of 304 stainless steel under air, water, sodium
chloride (NaCl) solution, sodium nitrate (NaNO3) solution, copper nitrate (Cu(NO3)2)
solution and copper sulfate (CuSO4) solution, were conducted to fabricate LIPSSs in liquids
and to change the surface composition. The spot size was 260 µm. In liquids, LIPSSs with
less periodicity than LIPSSs under air were fabricated, and spheroidization of copper was
obtained in Cu(NO3)2 solution and CuSO4 solution. This paper describes the formation of
LIPSSs in various electrolytes and the effects of short-pulsed laser irradiation in electrolytes
on the surface composition.

2. Experiment

A 304 stainless steel plate (10 mm × 10 mm × 1.5 mm thickness) was used as a
workpiece for this study to fabricate LIPSSs in various liquids. As liquids, we prepared
water, 5 and 10 wt% NaCl solutions, 5 and 10 wt% NaNO3 solutions, 5 and 10 wt%
Cu(NO3)2 solutions and 5 and 10 wt% CuSO4 solutions. NaCl solution and NaNO3
solution are often used for ECM [23,24,36,37], and Cu(NO3)2 solution and CuSO4 solution
are used for electrochemical deposition of copper [32–35].

Short-pulsed laser irradiation experiments on a 304 stainless steel plate under air,
water and electrolytes were conducted with a picosecond-pulse laser oscillator (EKXPLA,
PL 2250-50P20) with 20 ps pulse duration. A longer pulse duration laser has a lower cost
and more stable laser irradiation, and 20 ps is the approximate maximum of the collisional
relaxation time of metals which is a key for the fabrication of LIPSSs.

Figure 1 shows the schematic diagram of the experimental setup including a half-wave
plate to change the polarization state and to adjust laser power, a polarizer to isolate the
specific polarization of light and a collecting lens with a focusing range of 150 mm. The
workpiece was set in a quartz cell and set vertically to the ground. A workpiece was
irradiated by a Gaussian laser beam on the fixed point without scanning. A picosecond
Nd:YAG laser with a pulse duration of 20 ps, a wavelength of 1064 nm and a frequency of
50 Hz was used. The number of pulses N was set to 1–1000. The laser fluence F was set to
0.04–1.00 J/cm2 by using a pair of a half-wave plate and a polarizer. The entire laser power
was measured via the laser power meter, and the accurate beam profile was calculated by
calibrating the measured beam profile via a charge-coupled device (CCD) beam profiler.
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The surface morphology of the central irradiated area was observed using a scanning
electron microscope (SEM, XL30, Philips, Eindhoven, The Netherlands). The surface
geometries were further analyzed using a laser microscope (VK-X100, KEYENCE, Osaka,
Japan) and an atomic force microscope (AFM, MultiMode 8, Bruker AXS, Karlsruhe,
Germany). The periodicity of the LIPSSs was evaluated by a two-dimensional Fourier
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transform performed on the SEM image along the polarization direction. The elemental
analysis was conducted by the energy dispersive X-ray spectroscopy (EDX, EDAX DX-4,
Philips, Eindhoven, The Netherlands).

3. Results and Discussion

Figures 2 and 3 show the SEM images of 304 stainless steel irradiated at F = 0.04–0.27 J/cm2

for N = 50–1000 pulses under air and water, respectively. These demonstrate that LIPSSs
perpendicular to the laser polarization were fabricated on the irradiated surface under air
and water; on the other hand, LIPSSs with lower periodicity were fabricated in water when
the low laser fluence compared to LIPSSs fabricated under air since large ablation on the
irradiated surface causes disappearance of LIPSSs due to suppression of plasma expansion
by water [38–41]. Figures 4 and 5 show the SEM images of 304 stainless steel irradiated
at F = 0.04–0.08 J/cm2 for N = 50–1000 pulses in 5 and 10 wt% NaCl solutions and 5 and
10 wt% NaNO3 solutions, respectively. These demonstrate that LIPSSs with lower periodic-
ity were fabricated at lower laser fluence in both solutions than LIPSSs fabricated under air,
similar to LIPSSs fabricated in water. Figures 6 and 7 show the SEM images of 304 stainless
steel irradiated at F = 0.04–0.45 J/cm2 for N = 50–1000 pulses in 5 and 10 wt% Cu(NO3)2
solutions and 5 and 10 wt% CuSO4 solutions, respectively. These demonstrate that LIPSSs
with lower periodicity were fabricated at a wide-range laser fluence in both solutions, and
copper particles were deposited on the irradiated surface and grew with increasing the
number of pulses since plasma generation reduced the copper ion in the solutions to form
copper particles on the irradiated surface and made these grow [42–44].
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Figure 8 shows changes in the periodicity of LIPSSs fabricated on 304 stainless steel
surfaces under air, water, 5 and 10 wt% NaCl solutions, 5 and 10 wt% NaNO3 solutions,
5 and 10 wt% Cu(NO3)2 solutions and 5 and 10 wt% CuSO4 solutions for each irradiation
condition. The periodicity of LIPSSs on the 304 stainless steel surfaces under air was about
700–900 nm, which was about 0.65–0.85 times the laser wavelength. This phenomenon
was attributed to the surface plasma waves whose wavelength is 0.50–0.85 times the laser
wavelength, and the increase of the electron density extends it, explained by the parametric
decay [18–21]. On the other hand, the periodicity of LIPSSs on the 304 stainless steel
surfaces in water, 5 and 10 wt% NaCl solutions, 5 and 10 wt% NaNO3 solutions, 5 and
10 wt% Cu(NO3)2 solutions and 5 and 10 wt% CuSO4 solutions was about 600 nm, which
was about 0.56 times the laser wavelength since the refractive index of water is 1.33 [45],
shortening the laser wavelength and the wavelength of the surface plasma waves. In the
solutions, the periodicity is approximately the same since the refractive index of 5 and
10 wt% NaCl solutions, 5 and 10 wt% NaNO3 solutions, 5 and 10 wt% Cu(NO3)2 solutions
and 5 and 10 wt% CuSO4 solutions is close to the refractive index of water [46–50].

Figure 9 shows the changes in height of LIPSSs fabricated on 304 stainless steel
surfaces under air, water, 5 and 10 wt% NaCl solutions, 5 and 10 wt% NaNO3 solutions, 5
and 10 wt% Cu(NO3)2 solutions and 5 and 10 wt% CuSO4 solutions for each irradiation
condition. The LIPSS height in solutions was 150–300 nm, which was lower than the LIPSS
height of 300–500 nm under air [51]. This can be attributed to the attenuation of light in
solutions decreasing the intensity of the plasma waves and the suppression of plasma
expansion removing LIPSSs [38–41]. With the increase of the number of pulses and fluence,
the height of LIPSSs increased gradually under air, water, NaCl solutions and NaNO3
solutions, however, the height of LIPSSs in Cu(NO3)2 solution and CuSO4 solution was not
proportional to the number of pulses since deposited copper particles which grew and were
removed with the increasing number of pulses changed induction and propagation of the
plasma waves. In solutions, the height of LIPSSs in Cu(NO3)2 solution and CuSO4 solution
was larger than that in other solutions since the deposited copper particles facilitate the
induction and propagation of the plasma waves, increasing the electric field intensity on
the surface.
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The depth of craters was measured by a laser microscope as shown in Figure 10.
Figure 11 shows the depth of craters on 304 stainless steel surfaces with N = 500 pulses
at F = 0.04 J/cm2 under air, water, 5 wt% NaCl solution, 5 wt% NaNO3 solution, 5 wt%
Cu(NO3)2 solution and 5 wt% CuSO4 solution. The depth of craters in the solutions was
larger than that under air since solutions suppressed the plasma expansion and induced
large ablation [38–41]. In solutions, the depth of craters in NaCl solution was larger than
that in other solutions due to low attenuation [25].
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Figure 12 shows the elements of surfaces of non-irradiated and irradiated areas with N
= 500 pulses at F = 0.04 J/cm2 under air, water, 5 wt% NaCl solution, 5 wt% NaNO3 solution,
5 wt% Cu(NO3)2 solution and 5 wt% CuSO4 solution. The elements of surfaces were almost
the same under air, water, NaCl solution and NaNO3 solution; on the other hand, the
surfaces in Cu(NO3)2 solution and CuSO4 solution had the copper element, meaning that
copper particles were deposited on the surfaces by laser irradiation in Cu(NO3)2 solution
and CuSO4 solution [42–44]. The composition of copper deposition of CuSO4 was larger
than Cu(NO3)2. It is considered that the lower attenuation of the laser causes more copper
deposition in CuSO4 solution due to Cu(NO3)2 of a larger molecular weight scattering a
laser beam, leading to high LIPSSs and deep craters in CuSO4 solution.
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Figure 12. Relationship between elements of surfaces of (a) non-irradiated area and irradiated areas
with N = 500 pulses at F = 0.04 J/cm2 under (b) air, (c) water, (d) 5 wt% NaCl solution, (e) 5 wt%
NaNO3 solution, (f) 5 wt% Cu(NO3)2 solution and (g) 5 wt% CuSO4 solution.

4. Conclusions

LIPSSs were fabricated on the 304 stainless steel surface by using a 20 ps laser in water,
NaCl solution, NaNO3 solution, Cu(NO3)2 solution and CuSO4 solution at low fluence.
In the case of Cu(NO3)2 solution and CuSO4 solution, copper particles were deposited
on the irradiated surfaces analyzed by EDX. The periodicity of LIPSSs in solutions was
about 600 nm, which was shorter than that under air due to the refractive index shortening
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the laser wavelength. The LIPSS height of 150–300 nm in solutions was lower than that
under air due to the attenuation of light; on the other hand, the depth of craters in the
solutions was larger than that under air due to the suppression of plasma expansion and
large ablation. The 20 ps laser irradiation in solutions can fabricate LIPSSs with shorter
periodicity, depositing copper particles.
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