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Abstract: Temperature sensors are ubiquitous in every field of engineering application since tem-
perature control is vital in operating, testing and monitoring various equipment systems. Herein,
we introduce a facile and rapid laser digital patterning (LDP) process to fabricate low-cost, Ni-
based flexible resistance temperature detectors (RTDs). Ni-based RTDs are directly generated on
a thin flexible polyimide substrate (thickness: 50 µm) by laser-induced reductive sintering of a
solution-processed nonstoichiometric nickel oxide (NiOx) nanoparticle thin film under ambient
conditions. The shape of RTDs can be easily adjusted by controlling computer-aided design (CAD)
data without using the physical patterning mask while the sensitivity (temperature coefficient of
resistance (α) ~ 3.52 × 10−3 ◦C−1) of the sensors can be maintained regardless of shape and size of
the sensor electrodes. The flexible Ni-based RTDs can operate over a wide temperature range up to
200 ◦C with excellent repeatability. Additionally, the Ni-based RTDs respond quickly to the temper-
ature change and can operate in corrosive environments including water and seawater. Moreover,
the Ni-based RTDs show a superior mechanical and electrical stability with a negligible resistance
change up to a radius of curvature of 1.75 mm. Finally, a tape-pull test demonstrates the robust
adhesion of Ni-based RTDs on the substrate.

Keywords: laser digital patterning; NiOx nanoparticle ink; laser-induced reductive sintering; Ni
electrodes; flexible resistance temperature detector

1. Introduction

Resistance temperature detectors (RTDs) are extensively adopted as temperature sen-
sors in every field of industrial, consumer, automotive, and medical electronics applications
because temperature control and monitoring are vital. The basic principle of RTDs is an
increase in electrical resistance of metallic electrodes upon temperature change with a
positive temperature coefficient (PTC). Various conventional vacuum-based deposition
methods such as sputtering [1,2], chemical vapor deposition (CVD) [3,4], electron beam
evaporation [5–7], and thermal evaporator [8,9] have been extensively employed to fab-
ricate RTDs. However, the fabrication of flexible RTDs faces a major challenge for actual
utilization since the required high temperature in these fabrication processes can destroy
the flexible polymer substrates. On the other hand, the need for customizable sensors is
increasing due to the emergence of wearable electronics, artificial skins, health monitor-
ing kits, and soft robotics [10–19] that require more complicated designs and seamless
integration between components. To meet these requirements, a new fabrication process
to fabricate lightweight and flexible RTDs should be developed, which enables direct
deposition of sensor electrodes onto heat-sensitive polymer substrates as well as altering of
sensor design in a simple way.

Laser digital patterning (LDP) process of solution-processed thin films has recently
emerged as a suitable tool to realize electrode patterning on flexible substrates due to its low
thermal stress applied to the substrate [20–32]. In the process, no vacuum-based equipment
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is necessary because thin films can be deposited by spin-coating or blading of nanoparticle
(NP) or composite ink. Especially, the pattern designs in the LDP process can be easily
controlled simply by changing the computer-aided design (CAD) data instead of altering a
physical patterning mask. Au and Ag NPs have been extensively utilized in the early stage
of the LDP process because such noble materials are not easily oxidized even in nanoscale,
and are easily fused or sintered together to form continuous conductive structures upon
laser irradiation owing to their low melting temperature [33–35]. Even though Au [36,37]
and Ag [38–40] have been widely employed for the temperature sensing applications,
the high price of the noble metals presents a major challenge for practical usage. Hence,
using non-noble metals for the LDP process is becoming increasingly important. However,
non-noble metal NPs are easily oxidized and exist as metal oxides unless special treatment
is applied. Therefore, to form non-noble metal electrodes by the LDP process, metal oxide
NPs should be reduced and sintered simultaneously, which is referred to as so-called the
laser-induced reductive sintering (LRS) phenomenon [41–43]. Hata et al. reported the
fabrication of Cu-based RTDs by reductive sintering of CuO NPs using femtosecond laser
pulses [44]. They also demonstrated that the resistance of the laser-irradiated Cu electrodes
displayed a metal-like electrical conductivity behavior with a PTC whereas the resistance
of Cu2O electrodes showed a semiconductor-like behavior with a negative temperature
coefficient (NTC), which could be achieved by controlling the reduction degree of CuO NP
thin films during the LRS phenomenon [45]. However, it remains a challenge to use Cu
electrodes as temperature sensors because Cu is prone to oxidation even under ambient
conditions leading to performance fluctuation.

In contrast to Cu, Ni has high thermal, chemical stability with silver-like color, thus is
used as a component of corrosion-resistant alloys [46–48]. In addition, bulk Ni possesses a
relatively higher temperature coefficient of resistance (α) (αNi = 5.866 × 10−3 ◦C−1) com-
pared to Cu (αCu = 4.041 × 10−3 ◦C−1) and other noble metals (αAu = 3.715 × 10−3 ◦C−1,
αAg = 3.819 × 10−3 ◦C−1) [49]. For these reasons, Ni has been widely utilized for temper-
ature sensors [50–52]. Atashbar et al. reported the screen printing process to fabricate a
Ni-based RTD [50]; Bao et al. demonstrated a Ni-filled binary polymer composite tem-
perature sensor with high thermal cycling stability and tunable temperature range [51];
Yuan et al. developed Ni flexible thermal sensor arrays for underwater applications [52].
However, the limitations such as low thermal stability [51], vacuum-based thin film de-
position [52], insufficient adhesion strength of the sensors on the substrate [50], and fixed
design patterns [50–52] have room for improvement.

In this study, we introduce a facile and rapid method to fabricate Ni-based flexible
RTDs by the LDP process of solution-processed NiOx NP thin films. Entire processes
covering from synthesis of NiOx NPs to the laser process are conducted under ambient
conditions. Continuous-wave (CW) laser beam irradiation on the selected areas of the NiOx
thin film coated on very thin (≤50 µm) flexible substrates induces the reductive sintering
phenomenon to generate Ni electrode patterns that are used for RTDs. Various shapes
and sizes of Ni-based RTDs can be facilely produced without using physical photomasks.
Although the shapes of RTDs are varied, the temperature coefficient of resistance, or
sensitivity of the RTDs is maintained, which is advantageous in practical usage by offering
design flexibility. The flexible Ni-based RTDs can operate over a wide temperature range
up to 200 ◦C with fast response and excellent repeatability. Moreover, Ni-based RTDs can
detect very small temperature variations (the temperature of the gloved finger) and can
operate normally in corrosive environments such as water and seawater. The superior
mechanical and electrical stability of the RTD on PI is confirmed through the bending and
tape-pull tests.

2. Materials and Methods
2.1. Synthesis of NiOx NPs Ink and NiOx Thin Film Deposition

NiOx NPs were prepared following the chemical precipitation method reported
in previous literature with several modifications [53]. Nickel(II) nitrate hexahydrate
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(Ni(NO3)2·6H2O), polyvinylpyrrolidone (PVP, molecular weight ≈ 10,000), sodium hy-
droxide (NaOH), and 1-pentanol were supplied from Sigma-Aldrich, St. Louis, MO, USA.
Ni(NO3)2·6H2O (0.05 mol) was dispersed in 100 mL of deionized (DI) water. After the
pH of the solution was controlled to 10 by dropwise adding of NaOH solution (10 M), the
green nickel hydroxide (Ni(OH)2) was produced as a colloidal suspension. The colloidal
precipitate was separated from the liquid phase by centrifuging at 3000 rpm for 5 min, and
the upper liquid phase was discarded. The centrifuging process was repeated twice more
after adding some amount of DI water to the solid phase and mixing together. Then, the
colloidal precipitate Ni(OH)2 was dried at 80 ◦C for 6 h and calcined at 270 ◦C for 2 h to
obtain NiOx NPs by the following reaction [54]:

Ni(OH)2 → NiOx + H2O (1)

The well-dispersed NiOx NP ink was prepared by dissolving NiOx NPs (23.8 wt%)
and PVP (5.60 wt%) into 1-pentanol (70.6 wt%) using ultrasonication for 15 h.

Polyethylene terephthalate (PET, thickness ~25 µm) and PI (thickness ~50 µm) were
cleaned by ethanol and used as substrates. The surface of the substrates was treated by
oxygen plasma (BD-10A High-Frequency Generator, Chicago, IL, USA) to improve the
adhesion between the substrates and the NP ink. Uniform NiOx thin films were prepared
on both PET and PI by spin coating at 1000 rpm for 60 s and dried naturally under the
ambient atmosphere for 30 min.

2.2. Laser Setup for the Laser Digital Patterning Process

A schematic illustration of the laser system setup for the LDP process using a 532 nm
continuous wave (CW) Nd:YVO4 laser is illustrated in Figure 1. The focused laser beam
irradiated the NiOx thin films through a galvanometer scanner (HurrySCAN III, Scanlab,
Puchheim, Germany) consisting of scan mirrors and a telecentric f-theta lens (f = 100 mm).
The half-wave plate and the polarized beam splitter were installed to control the laser
power more precisely. The beam expander was used to enlarge the laser beam entering
the telecentric lens installed in the galvanometer scanner to minimize the focused beam
diameter. The diameter of the laser beam on the surface of the thin film was measured to be
25 µm. The laser power was precisely controlled by rotating the half-wave plate while the
laser beam path for electrode patterning was controlled by the CAD system (laserDESK,
Scanlab, Puchheim, Germany) that is linked to the scanner. The scanning speed was fixed
at 50 mm s−1 and optimal laser power was found to produce the lowest resistance of a
certain shape of the electrode. In this study, the laser power of 20 mW (power density:
4.1 kW cm−2) was applied to produce the RTD electrodes on both PET and PI substrates.
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2.3. Characterizations

The sizes of NiOx NPs were estimated using transmission electron microscopy (TEM,
JEOL JEM-2100F, Tokyo, Japan) images. The surface morphology of the sensor electrodes
was characterized by scanning electron microscopy (SEM, Hitachi S-4800, Tokyo, Japan)
and atomic force microscopy (AFM, Park System XE100, Suwon, Korea). Energy-dispersive
X-ray spectrometry (EDS, Hitachi S-4800, Tokyo, Japan) analysis was conducted to in-
vestigate the elemental composition of the electrode. X-ray diffraction (XRD, Bruker D8
Advance, Billerica, MA, USA) patterns were recorded for phase identification. The resis-
tance was measured using a multimeter (Agilent U1251B, Santa Clara, CA, USA) while
the temperature was precisely controlled by a hot plate (Fisher Scientific, Hampton, NH,
USA). The temperature of the hot plate also was monitored by a commercial thermocouple
(Type K, EA11A). The resistivity (ρ) of the electrode was calculated using the equation:
ρ = R·(A/l), where R, A, and l are the resistance, cross-sectional area, and length of the
electrode, respectively.

3. Results and Discussion

The TEM image (Figure 2a) indicates that the sizes of NiOx NPs are in the range of
4–8 nm; their size distribution is displayed in Figure 2a inset. The high-resolution TEM
image and the selected-area electron diffraction (SAED) pattern shown in Figure 2b and
inset, respectively, demonstrate that NiOx NPs have a cubic crystalline structure with the
distance of 0.24 nm between two successive bright fringes which corresponds to the (111)
plane of NiOx [53]. Owing to the well-dispersed NP ink containing ultra-small NPs, smooth
and uniform NiOx thin films can be coated on the substrate by spin-coating (Figure 2c).
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selected-area electron diffraction (SAED) pattern for NiOx NPs. (c) A uniform NiOx NP thin film on a polyimide (PI)
substrate. (d) Schematic diagram of the entire processes to produce Ni-based resistance temperature detectors (RTDs). (i)
Spin-coating NiOx thin film on a polyimide substrate, (ii) laser digital process to fabricate Ni-based RTDs. (iii) Removing
non-irradiated parts by the washing process.
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The LDP process by which flexible Ni-based RTDs are produced by the LRS phe-
nomenon is illustrated in Figure 2d. First, a NiOx thin film was deposited on the substrate
by spin-coating of the NiOx NP ink. After drying the thin film under ambient atmosphere,
the selective laser irradiation was applied on the NiOx thin film to produce Ni electrodes.
The mechanism of the LRS phenomenon of PVP-containing metal oxide thin film has been
reported in the previous studies [55,56], and can be applied to this work. In short, PVP
incorporated in the NiOx NP thin film thermally decomposes upon laser irradiation and
generates carboxylic acid that reduces NiOx to Ni. The reduced Ni NPs subsequently
sinters together, and form a continuous conductive Ni electrode. Arbitrary patterns of
Ni-based RTDs are easily fabricated on the substrate within a short time (Video S1 for the
demonstration of the laser process). Last, the non-irradiated NiOx parts were easily washed
away by rinsing with DI water or suitable solution, while the irradiated parts strongly
adhered to the substrate (Video S2, Supporting Information). The LDP process applied
on the solution-processed NiOx NP thin film to fabricate flexible Ni electrodes for RTDs
offers the following advantages: (1) the entire processes from the NP synthesis to electrode
patterning are conducted under ambient conditions without using any vacuum chamber
or gas flow; (2) direct patterning without using a physical photomask is achievable and the
shape of electrodes can be easily tuned; (3) thermally vulnerable thin flexible polymers can
be employed as substrates since fast heating and cooling nature of localized laser heating
minimizes thermal stress exerting on them.

The surface morphology of Ni electrodes on the PI substrate fabricated by the LDP
process at the laser power of 20 mW and scanning speed of 50 mm s−1 was characterized
using SEM (Figure 3a) and AFM (Figure 3b). The width of the electrode (30 µm) is
larger than the focused laser beam diameter (25 µm) due to heat diffusion across the thin
film while the nominal thickness of the electrode is measured to be about 500 nm. It
is worthwhile to note that the two axes for the cross-sectional height in Figure 3b have
different scales. The phase change that occurred by the LRS phenomenon was confirmed
by XRD data shown in Figure 3c. Before laser irradiation, the XRD pattern of the thin
film shows peaks at 37.2◦, 43.3◦, and 63.2◦ corresponding to (111), (200), and (220) planes
of the face-centered cubic (FCC) crystal structure of NiOx, respectively (JCPDS file no.
01-089-3493). After laser irradiation, the XRD pattern exhibits peaks at 44.4◦, 51.7◦, and
76.2◦ matching with (111), (200), and (220) planes of FCC Ni, respectively (JCPDS file card
no. 01-087-0712). The reduction phenomenon was further confirmed by EDS data acquired
with the NiOx thin film and the Ni electrode on the PI substrate as shown in Figure 3d.
Ni content in the laser-irradiated region was higher than that in the non-irradiated region.
The carbon peaks in both cases could come from the PI substrate and the PVP that exists in
the thin film. Detection of oxygen element in the laser-irradiated region is possibly due
to incomplete reduction of NiOx NPs and the formation of native oxide layers on the Ni
electrode surface. The resistivity (ρ) of the Ni electrode is calculated to be 975 nΩ m which
is about 14 times higher than that of bulk Ni (69.3 nΩ m).
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Figure 3. (a) Scanning electron microscopy (SEM) image of multiple Ni electrodes on the polyimide (PI) substrate. The inset
is the SEM image at a higher magnification. (b) Atomic force microscopy (AFM) image of a single Ni electrode and the
corresponding cross-sectional profile. (c) X-ray diffraction (XRD) patterns before and after the laser-induced reductive sintering
of the NiOx nanoparticle (NP) thin film. (d) Comparison of a chemical composition detected by X-ray spectrometry (EDS)
measurement before (left columns) and after (right columns) laser-induced reductive sintering of the NiOx NP thin film.

It is demonstrated that arbitrary Ni electrode patterns could be fabricated on an ultra-
thin (thickness: 25 µm) PET substrate that has a much lower glass transition temperature
(~80 ◦C) than PI, as shown in Figure 4a. However, the performance of a Ni-based RTD on
the PET substrate is limited due to the low glass transition temperature of the substrate.
Therefore, the performance analysis of Ni-based RTDs in this study was executed using
RTDs fabricated on a PI substrate which possesses high thermal stability [57]. Addition-
ally, the thermal expansion coefficient of PI (~3 × 10−5 ◦C−1) [58] is close to that of Ni
(~1.4 × 10−5 ◦C−1) [59]. Therefore, the possibility of any failure due to a large thermal
expansion mismatch between the electrode and the substrate can be excluded. Figure 4b
shows multiple Ni-based RTDs of various shapes. Areal Ni electrodes without vacant
spaces between single Ni electrodes were generated by partly-overlapped parallel scan-
ning of the laser beam with a pitch of 20 µm considering that the width of the single Ni
electrode is 30 µm as mentioned above. It is worthwhile noting that no protective layer
was added to the Ni-based RTD owing to its high thermal stability and strong adhesion
on the substrate. The RTD performance of one Ni electrode sample that is selected among
various samples shown in Figure 4b was investigated by measuring its electrical resistance
variation from room temperature (RT = 23 ◦C) to 200 ◦C. The photo-image and the size
detail of the selected sample are displayed in Figure 4c. The sample was placed on a
temperature-controlled hot plate and its electrical resistance variation with temperature
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was recorded by a digital multimeter. For each measurement, the temperature of the hot
plate was increased to the desired value and then maintained for 5 min to ensure a thermal
equilibrium between the sample and the hot plate. The resistance of the sample increases
from 1.09 kΩ at RT to 1.77 kΩ at 200 ◦C during the heating process and returns to its
original value during cooling with almost no hysteresis (Figure 4d). More importantly, the
relationship between temperature and resistance shows high linearity, which is desirable
for an ideal sensor. Compared to the narrow temperature range of Cu-based RTDs due to
oxidation issues, the Ni-based RTDs can operate without oxidation problems, which could
be attributed to the oxidation-resistant property of the nickel itself and the native oxide
layer formed on the electrode surface as discussed above. The temperature coefficient of
resistance (α) is a common characteristic parameter that indicates the sensitivity of RTDs,
and is described by the following equation [60]:

α =
1

R(T0)

R(T)− R(T0)

T − T0
(2)

where R(T0) is the resistance at a reference temperature T0 which is the RT in this study,
and R(T) is the resistance at an elevated temperature T. The α value of Ni-based RTD is
calculated to be about 3.52× 10−3 ◦C−1, which is higher than those of Au- [36], Ag- [38], Cu-
based RTD [44], and slightly smaller than that of the commercial platinum (Pt) temperature
sensor (3.92× 10−3 ◦C−1) [61]. To assess the reliability of the sensor performance, a thermal
cyclic test was conducted by heating and cooling the sensor between RT and 200 ◦C for
100 cycles. The resistance variation from 1.09 kΩ at RT to 1.77 kΩ at 200 ◦C was maintained
during the cyclic test (Figure 4e). The response speed of the RTD was evaluated by a
latex-gloved finger touching test. The time of the resistance change resulting from the
contact and isolation of the gloved finger on the RTD was recorded using a data logger
software. Note that the Ag paste was applied on the two ends of the RTD and copper
wires were used for the connection between the RTD and the multimeter. As the gloved
finger contact the RTD, the resistance increased rapidly and was saturated after 4 s. Upon
detaching the gloved finger from the RTD, the resistance returned to its original value
after 8 s as shown in Figure 4f top and recorded in Video S3 in Supporting Information. In
contrast, there was no change in resistance of the RTD in contact with objects of different
shapes that were in thermal equilibrium with the room environment, which indicates that
the effect of other parameters such as pressure force and contact area was much smaller
than that of gloved-finger contact. The resistance variations during the gloved-finger test
were converted to the temperature applying equation 2 with α = 3.52 × 10−3 ◦C−1 and
equilibrium temperature was determined to be 31 ◦C. To compare the performance of the
fabricated Ni-based RTD with that of a commercial thermocouple (Type K, EA11A), the
same test was conducted using the commercial thermocouple, and the result is shown in
Figure 4f bottom. The response times and the recovery times for the RTD, which is defined
by the time taken by the signal change between a specified low threshold (10%) and a
specified high threshold (90%), were indicated in Figure 4f. It is clear that the response and
recovery times of the Ni-based RTD were faster than those of the commercial thermocouple,
and the Ni-based RTD can precisely measure the temperature of the gloved finger. The
fast response of the Ni-based RTD is attributed to the low thermal capacity of the thin
substrate (50 µm) that allows fast reactions to temperature variations [62]. To demonstrate
the high stability of the Ni-based RTD in various environments, the RTD was applied to
measure the temperature of tap water and seawater, as shown in Figure 4g,h, respectively,
(see Video S4 in Supporting Information).

To verify the effect of the electrode shape on the temperature-sensing performance,
which affects the reference resistance of the electrode, the Ni-based RTD of another shape
was selected and the α value of it was examined. The schematic drawing and photo images
of the real sample are shown in Figure 5a. The temperature–resistance relationship of
the RTD was measure in the same manner and verified that the resistance of the sample
changes linearly from 428 Ω at RT to 693 Ω at 200 ◦C (Figure 5b) during heating and cooling
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without hysteresis. It is noted that even though the room temperature resistance (428 Ω)
is different from that of the first sample (1.09 kΩ) because the dimension of the electrode
is different, the α value of the sample (3.50 × 10−3 ◦C−1) is almost same as that of the
first RTD sample (3.52 × 10−3 ◦C−1). The room temperature resistance and corresponding
α value of each RTD of different shapes are summarized in Figure 5c. The variation of the
α values are within 2.6% regardless of the room temperature resistance of the RTD. This
result shows that the sensitivity of the Ni-based RTD does not depend on the extensive
properties of the Ni electrodes, which provides convenience in practical use by offering
design pliability.
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(e) 100 thermal cyclic tests of the Ni-based RTD. (f) Responses of the Ni-based RTD (top) and a commercial thermocouple
(Type K, EA11A) (bottom) to the latex-gloved finger touching test. Responses of the Ni-based RTD to (g) tap water and (h)
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Figure 5. (a) Schematic drawing of the Ni-based resistance temperature detector (RTD) (i) and photo images of the real
sample (ii and iii). (b) The resistance variation with temperature of showing a linear relationship. (c) The reference resistance
values and the corresponding temperature coefficient of resistance (α) values of the Ni-based RTDs of various shapes. Each
set of values corresponds to the RTD of the designated position.

Mechanical robustness is also an important requirement for flexible RTDs. To examine
the mechanical stability of the RTDs, the resistance variation (R/R0) under various bend-
ing radii was measured, where R0 is the initial resistance and R is the resistance under
the bending condition. The resultant resistance variation (R/R0) is less than 3% up to a
bending radius of 1.75 mm indicating a high-level stability under mechanical deformation
(Figure 6a). The small resistance variation indicates that there is no permanent damage to
the electrodes under bending conditions. The high electrical reliability could be attributed
to the lowered bending stress owing to the thin thickness of the sensor (~50 µm) as well as
the fully-densified microstructure and robust adhesion of the electrode on the substrate.
It should be noted, however, that 3% of the resistance variation corresponds to 8.5 ◦C
temperature difference based on the given α = 3.52 × 10−3 ◦C−1, which is not negligible.
Therefore, if the RTD is attached to a surface where the radius of curvature of the surface
actively varies over a wide range from ∞ (flat) to 1.75 mm, the error in the measured
temperature can be that large, which means that the Ni-based RTD on polyimide has some
limitation to be applied to such a surface. However, if the curvature variation decreases,
the measurement error can be reduced. For example, if the radius of curvature of the
surface varies in the limited range such as flat (∞) ~6.5 mm, and 5 mm ~ 3 mm, the errors
in the measured temperature are less than 1 ◦C and 2 ◦C, respectively. The mechanical
robustness of the Ni-based RTD suggests that the RTD can be applied to curved surfaces
without degrading its performance. For instance, the performance of the Ni-based RTD
under the bending condition was evaluated by attaching the sensor to the curved surface
of a 15-mm-diameter glass vial as shown in the left inset of Figure 6b. The vial was filled
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with 4 mL of silicon oil to ensure the uniform heat distribution on the curved surface, then
placed on a hot plate to increase the temperature. The right inset of Figure 6b confirms
the uniform surface temperature during heating. The resultant resistance variation with
temperature did not change when compared to the change in resistance of the specimen in
a flat state (Figure 6b). The adhesion of Ni-based RTDs on the PI substrate was investigated
by carrying out a tape-pull test. The tape-pull test was conducted by applying conven-
tional adhesive tape (Scotch® MagicTM, 3M) to the electrode surface and peeling it off
subsequently several times. It was confirmed that the Ni-based RTDs did not detach from
PI as shown in Figure 6c (see Video S5 in Supporting Information). The strong adhesion of
Ni-based RTDs on the PI substrate is attributed to the melting-solidification process that
happens at the interface of the electrode and the substrate resulting in interlocking of them
as discussed in our previous study [53].
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(b) Resistance variation with temperature under the bending condition. (c) Tape-pull test of the Ni-based RTD on the PI
substrate. (i) RTD attached on the surface of a 26-mm-diameter glass vial, (ii) applying tape (Scotch® MagicTM tape, 3M) on
top of the electrode, (iii,iv) repeating peeling off the tape.

4. Conclusions

In summary, we have demonstrated a facile and rapid LDP process to fabricate low-
cost, Ni-based flexible RTDs. Ultrasmall NiOx NPs were synthesized by a scalable chemical
precipitation method, and smooth and uniform thin films could be spin-coated owing to
the well-dispersed NP ink. The LRS phenomenon facilitated the generation of various
shapes of Ni electrodes on a thin flexible substrate using the NiOx thin film without using
a physical photomask. The entire processes from the NP synthesis to the laser process were
operated under ambient conditions without involving any vacuum process. The flexible
Ni-based RTDs exhibited fast response and excellent repeatability in a wide temperature
range up to 200 ◦C. The temperature coefficient of resistance, or sensitivity of the RTD
(3.52 × 10−3 ◦C−1) was higher than those of Au-, Ag-, Cu-based RTDs reported in previous
literature and was comparable to that of the commercial Pt-based one. Moreover, the
sensitivity of the Ni-based RTDs was independent of the electrode shape and the reference
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resistance, which is advantageous in practical application by offering design flexibility.
The bending test and the tape-pull test confirmed the superior mechanical and electrical
stability of the flexible RTDs. This novel yet simple LDP process for the generation of
the Ni-based flexible RTDs offers a new way to replace conventional fabrication methods
and materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/3/576/s1, Video S1: Laser digital patterning processing, Video S2: Washing process, Video S3:
Response to gloved-finger touching, Video S4: Immerse in cold tap water and seawater, Video S5:
Tape-pull test.
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