

Supplementary Materials

Filling Exciton Trap-States in Two-Dimensional Tungsten Disulfide (WS₂) and Diselenide (WSe₂) Monolayers

Zeynep Ezgi Eroglu ¹, Dillon Contreras ¹, Pouya Bahrami ¹, Nurul Azam ², Masoud Mahjouri-Samani ² and Abdelaziz Boulesbaa ^{1,*}

- ¹ Department of Chemistry & Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA; zeynep.eroglu.568@my.csun.edu (Z.E.E.); dillon.contreras.3@my.csun.edu (D.C.); pouya.bahrami.60@my.csun.edu (P.B.)
- ² Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA; mna0018@auburn.edu (N.A.); mzm0185@auburn.edu (M.M.-S.)
- * Correspondence: aboules@csun.edu

Spectral analysis of transient spectra:

To spectrally resolve the different components of the positive induced absorption (IA) band observed in Figure 2 in the Main Text, we conducted a multi-Gaussian peak fit of transient absorption spectra taken at 10 ps time-delays. This time-delay is chosen because by 10 ps, the IAs resulting from exciton line broadening due to many-body interactions have recovered [1–4]. The returned fitting parameters are listed in Table S1 for 2D-WS₂ and Table S2 for 2D-WS₂.

Figure S1. Multi-peak fitting of a transient absorption spectrum collected 10 ps following exciton of the monolayer of 2D-WS₂ (a), and 2D-WS₂ (b). The individual components of the fits are shown in the bottom panels.

In the case of 2D-WS₂, we identified four compenents; two negative peaks corresponding to depletions of excitons X_A and X_B, and two positive features IA_A near X_A and IA_B near X_B. In the case of 2D-WS₂, and additional IA_C was indentified. We note that the probe used in both sample starts at 480 nm, which allows us to capture the IA_C, in 2D-WS₂, one expects the existance of a similar IA at shorter wavelengths that we can not capture using our probe.

w (nm)

(nm): peak center; w(nm): full width at half maximum of the peak.										
	Хв	IAB	XA	IAA						
I(mOD)	-2.45	+1.05	-11.2	+74						

Table S1. List of the muti-Gaussian peak fit of a transient absorption spectrum measured at 10 ps following excitation of the 2D-WS₂ monolayer at 3.1 eV with 4 J·cm⁻². I (mOD): peak amplitude; C₀

	Хв	ІАв	XA	IAA					
I (mOD)	-2.45	+1.05	-11.2	+7.4					
C_0 (nm)	517.2	531.9	623.4	631.0					

18.1

61.4

Table S2. List of the muti-Gaussian peak fit of a transient absorption spectrum measured at 10 ps following excitation of the 2D-WSe2 monolayer at 3.1 eV with 2.8 J·cm⁻². I (mOD): peak amplitude; Co (nm): peak center; w(nm): full width at half maximum of the peak.

	IAc	Хв	ІАв	XA	IAA
I (mOD)	+0.56	-1.10	+0.65	-8.15	+5.55
C ₀ (nm)	503.4	573.1	596.5	728.1	735.2
w (nm)	35.1	29.7	89.3	21.1	22.9

Supplementary References

20.5

- 1. Sim, S.; Park, J.; Song, J.-G.; In, C.; Lee, Y.-S.; Kim, H.; Choi, H. Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics. Phys. Rev. B 2013, 88, 075434.
- 2. Yuan, L.; Huang, L. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7, 7402-7408.
- Sun, D.; Rao, Y.; Reider, G. A.; Chen, G.; You, Y.; Brezin, L.; Harutyunyan, A. R.; Heinz, T. F. Observation 3. of Rapid Exciton-Exciton Annihilation in Monolayer Molybdenum Disulfide. Nano Lett. 2014, 14, 5625-5629.
- 4. Cunningham, P. D.; McCreary, K. M.; Jonker, B. T. Auger Recombination in Chemical Vapor Deposition-Grown Monolayer WS2. J. Phys. Chem. Lett. 2016, 7, 5242-5246.

24.8