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Abstract: The pursuit of ever-more efficient, reliable, and affordable solar cells has pushed the devel-
opment of nano/micro-technological solutions capable of boosting photovoltaic (PV) performance
without significantly increasing costs. One of the most relevant solutions is based on light manage-
ment via photonic wavelength-sized structures, as these enable pronounced efficiency improvements
by reducing reflection and by trapping the light inside the devices. Furthermore, optimized mi-
crostructured coatings allow self-cleaning functionality via effective water repulsion, which reduces
the accumulation of dust and particles that cause shading. Nevertheless, when it comes to market
deployment, nano/micro-patterning strategies can only find application in the PV industry if their
integration does not require high additional costs or delays in high-throughput solar cell manu-
facturing. As such, colloidal lithography (CL) is considered the preferential structuring method
for PV, as it is an inexpensive and highly scalable soft-patterning technique allowing nanoscopic
precision over indefinitely large areas. Tuning specific parameters, such as the size of colloids, shape,
monodispersity, and final arrangement, CL enables the production of various templates/masks for
different purposes and applications. This review intends to compile several recent high-profile works
on this subject and how they can influence the future of solar electricity.

Keywords: colloidal lithography; thin-film photovoltaics; photonics; light-trapping; self-cleaning

1. Introduction

Highly efficient renewable energy sources and storage devices are needed to deal
with the increasingly expensive energetic demands of our society. Considering the de-
pleting fossil fuel stock and the devastating effects of global warming, technologies like
photovoltaics (PV) have become one of the leading contenders in this field, as PV offers a
broad diversity of devices—each with their potential use and functionality [1-4]. Recent
reports [5,6] show that, despite its current small output, about half of the growth in the
electric production capacity worldwide is now held by solar energy systems (Figure 1), with
the technology costs decreasing largely. These are indicators of a clear energy transition
with large investment, highlighting a tremendous growth potential.
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Figure 1. Annual growth of the solar energy market in each development area/country. Although Europe is slowly

increasing its production, China is decreasing its yearly rate—overall, the global market is growing largely throughout the

years. The inset pie plot presents the net power generating capacity (in GW) added in 2019 for several energy-generating

sources, showing that the biggest market growth belongs to solar energy. Adapted with permission from [5]. Copyright

2020 SolarPower Europe.

First-generation solar cells based in mono-crystalline silicon wafers convert a large
fraction of the incident sunlight energy with an efficiency of up to ~26 %, being still the
most commercially used PV technology with a widespread application on rooftops and
solar farms. Second-generation solar cells, based on thin-film technologies, have shown
signs of becoming a competitive PV class due to potential advantages in low cost, large area,
lightweight, solution-process fabrication, and mechanical flexibility [7]. In this category,
we can additionally include semitransparent organic and hybrid (organic-inorganic) PV
devices, which also tend to be suitable for indoor applications as they work relatively well
with diffuse visible light [8-10].

Thin-film solar cells enable fast and cheap production methods, such as flexible
roll-to-roll processes [9,11]. Moreover, thin devices benefit from lower material usage
and thence further cost reduction, also with the potential of increase in the open-circuit
voltages, Voc (and consequently efficiencies), due to lower bulk recombination. These are
crucial factors at the industrial level for cost-effective production, making the technology
attractive for application in affordable solar-powered consumer products such as mobile
electronics (e.g., wearable PV), intelligent packaging (e.g., smart labels), electronic devices
for Internet of Things (IoT) applications (e.g., smart buildings), and portable medical
diagnostic services [12-18].

The efficiency of the solar cells is inherently limited by the absorber material’s bandgap,
as it sets the lower energy limit for absorption [19]. Moreover, thin-film PV suffers from
additional absorption losses from the smaller travel path of light within the thin absorber
layer [20]. One method to circumvent the first problem would be shifting the incident
lower energy photons into higher energy photons [21]. To overcome the second drawback,
advanced light management techniques must be used to improve the optical response of
the devices. From these, light-trapping (LT) schemes that create challenging conditions for
light to escape the device have been the topic of many studies [22-31]. The development of
photonic structures, implemented via nano-patterning methods [32,33], has been funda-
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mental for PV performance enhancements, for instance by extending the absorption onset
to the near-infrared (NIR) region of the solar spectrum [34].

As a production technique, microfabrication has been essential to modern science and
technology through its role in microelectronics and optoelectronics. Photolithography is
the current state-of-the-art patterning technique, and as such, it is the most well-established
microfabrication method [35,36]. However, it is primarily limited by its low diffraction-
limited resolution, high-cost, and low-throughput. The sizes of the features that it can
produce (i.e., patterning resolution) are mostly determined by the wavelength of the
radiation used. As such, small features require high-energy radiation and thence complex
and expensive facilities and technologies [37,38]. Moreover, photolithography cannot be
easily applied to nonpolar surfaces, as it tolerates little variation in the materials that can
be used, and it provides almost no control over the chemistry of the patterned surfaces.

With these disadvantages in mind, many alternative techniques have been developed
to fabricate nanostructures [39]. For instance, electron beam lithography is capable of
fabricating designs with <10 nm resolution, with a high level of acceptance for application
in more sophisticated devices where costs are not critical, but is even more limited in
terms of patterning speed [40]. Focused ion beam (FIB) lithography has similar advan-
tages and drawbacks, but permits patterning without the use of a resistor or mask [41].
Nevertheless, these techniques do not entirely mitigate the previously mentioned issues
of photolithography, such as the cost, low throughput, and the requirement for highly so-
phisticated equipment. Hence, such disadvantages prompted research for unconventional
soft-lithography fabrication techniques [39] as: nanoimprint lithography (NIL) [42,43],
hot embossing [44], thermal injection molding [45], light-initiated polymerization (with
ultraviolet, UV-NIL, and step-and-flash NIL [43,46]), solvent-based processing [47], and
colloidal lithography (CL) [48]. These cost-effective soft techniques have brought focus to
the patterning world, as they can be used in nonpolar surfaces—increasing the range of
allowed materials, enable large scale patterning, and most importantly, employ industrially
attractive fabrication methods due to their ease of use and low manufacturing cost [49].

Among several soft-lithography techniques developed in the last decade, NIL and CL
sparked the highest research interest for micro and nanostructuring in photovoltaics [42].
In NIL [50], a pattern is created by pressing a mold into the resist, thus printing the inverse
design of the mold. This technique is severely limited when applied to large areas, due to
sticking issues from the large contact area between the mold and the imprinted structure,
as well as the low pattern fidelity over large areas since the polymer chains in the stamping
materials tend to relax elastically. NIL depositions are also strictly reserved for materials
that can be molded and cured at moderated temperatures, resulting in a limited range of
materials that can be effectively NIL patterned. As such, NIL may not provide the best
solution for photonic applications, which usually require dense dielectric or metal oxide
materials with a high refractive index for stronger interaction with light [26,51].

The main focus of this study, CL, is presently considered the most promising nano/mic
ro-structuring method for photonic and PV applications [52]. It is an especially interesting
technique since it can pattern almost any material, as it is not affected by the aforementioned
limitations of NIL. It uses low-temperature steps (<100 °C), therefore not limiting the usage
of temperature-sensitive materials (e.g., polymeric-based flexible substrates) or devices
(e.g., perovskite solar cells, PSCs) [52], tolerating a wide range of materials and surface
chemistries. Properties such as processing simplicity, low cost, and substrate agnostic
patterning make CL a highly desirable method [53]. It can also produce well-ordered
two-dimensional (2D) and three-dimensional (3D) periodic arrays of nanoparticles from
various materials on many substrates. Three-dimensional layers are of tremendous interest
for photonic crystal-based applications [49], whereas two-dimensional layers can be used
as etching or lithographic masks that can be used for nanofabrication of several structures,
specially photonic-enhanced PV devices [29,31,52].

In terms of the CL resolution, it is solely dependent on the colloidal particle sizes that
can be deposited, thus allowing nanoscale patterning. However, the smaller the particles
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the more they become affected by destabilizing Brownian forces which prevent their
ordered arrangement in the self-assembly process. Consequently, thus far the minimum
feasible resolution of CL ranges between 50 to 200 nm [22,54], which is comparable to that
of state-of-the-art hard-lithography (more costly) systems, such as photolithography (set
by the diffraction limit of UV light), but not as low as the resolution of E-beam or FIB
(order of nanometers). Nevertheless, research means are underway to further improve
the CL resolution, for instance by operating at low temperature to hinder the Brownian
diffusion [55].

This article provides an overview of the present panorama of CL, exploring its working
concept and the patterning materials, with a focus on its last-generation
PV-related applications.

2. Colloidal Lithography (CL) Methodologies

The use of colloids in lithography has been studied for about 35 years, with the
continuous development of nano and microfabrication methods reaching increasing po-
tentialities [39]. The methodology (Figure 2) generally comprises two main stages: the
patterning mask preparation (Figure 2a,b), followed by the nano/micro-structure produc-
tion (Figure 2¢,d). The process starts with a colloidal deposition technique which is further
described in Section 2.2, where we present a large set of procedures that use self-assembled
colloidal arrays for surface patterning. The variety of methods that can be used for the
colloidal array formation, as well as for the subsequent structure production, shows the
high versatility of this method for implementation in various applications.

d) c)

Figure 2. Illustration of the colloidal lithography (CL) main steps, depicting the sequence of
(a) the deposition of colloidal particles on a surface, (b) reactive ion etching (RIE) for particle shap-
ing, (c) material deposition, and (d) lift-off of the colloids leaving only the patterned material on
the surface.

2.1. Colloidal Self-Assembly

Colloid particles are an important class of materials, sharing properties with bulk
and molecularly dispersed systems. Their behavior is mostly governed by the particles’
size, shape, surface area, and surface charge density [56]. Several techniques and protocols
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have been developed to synthesize highly monodispersed colloidal spheres with diameters
ranging from a few to thousands of nanometers.

For CL applications, any particle material can potentially be used to create the self-
assembled colloidal mask in the first 2 steps of Figure 2. However, the preference lies in
colloidal materials that: (1) can be synthesized with precise monodispersed particle sizes;
(2) allow highly-selective etching (RIE) in step b) of Figure 2; and (3) can be easily removed
by chemical lift-off in step d) [54,57-64]. In view of that, the most synthesized particle
materials for use in CL have been polystyrene (PS), polymethyl methacrylate (PMMA),
and silica [65]. Good phase stability, together with a narrow colloidal size distribution (less
than 5% for the typically employed microspheres), has been achieved by suspension [40],
emulsion [66], and dispersion polymerization [64,67] synthesis techniques.

The self-assembly of colloidal particles, crucial for next-generation surface and volume
nanostructuring applications, consists of their spontaneous arrangement into ordered
superstructures (Figure 3) [68].

. &%

o
® e o ’

® ,
0
Single Clustered Close-Packed

Particles Particles Monolayer

Figure 3. (a) Illustration of the self-assembly of colloidal particle structures forming a hexagonal close-packed array (also
known as honeycomb), which results in the highest in-plane packing density; (b) Top-view and (c) cross-sectional scanning
electron microscopy (SEM) images of honeycomb arrays of 800 nm PS spheres. Adapted with permission from [69].
Copyright 2021 Elsevier.
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Based on the type of dominant force driving the self-assembly, these methods can be
organized into four classes: physical (process dominated by shear forces, adhesion, and
surface structuring), fluidic (by capillary forces, evaporation, surface tension), external
fields (by electric and magnetic fields) and chemical (by chemical interaction, changing the
surface charge or creating binding sites) [70].

In 1981, a lithographic method using self-assembled PS monolayers as a mask was first
proposed by Fisher and Zingsheim [71]. Afterwards, Deckman and co-workers successfully
increased the mask area for patterning [72]. Owing to the size, shape, and monodispersity,
colloidal particles can self-assemble into 2D or 3D extended periodic arrays, but the 2D
colloidal crystals are those that captured the most attention for PV application [53,73,74].

The production of self-assembled arrays of colloidal particles is the starting point
of the CL process, which utilizes the close packing of such colloidal crystals to fabricate
long-range ordered nano/micro-structures in/with any material [68,70,73].

Interesting examples are the fabrication of nanoporous templates [75], 3D photonic
bandgap structures [76], and thin-film nanocrystal solids for electronic devices [77]. For
instance, it has been shown that spherical colloidal particles coated with liquid crystals,
or other materials having nematic degrees of freedom, can form composite materials
that exhibit point defects with sp and sp® valences. For future applications, the most
intriguing aspects of colloidal particles are their potential utility as building blocks, capable
of mimicking molecular self-assembly through covalent and non-covalent interactions, to
created artificially-designed materials [78].

2.2. Deposition of Colloidal Arrays

Three techniques should be emphasized when considering the initial step of colloidal
monolayer deposition on the substrate of the CL method (see Figure 2a). These are spin-
coating, doctor blade, and Langmuir-Blodgett sketched in Figure 4 and described in this
sub-section.

b ) C ) SUBSTRATE

DOCTOR BLADE TIP

COoLLODS COLLOIDS
BARRIER z BARRIER

COLLOIDS

AQUEOUS SUBPHASE

- =lls

Figure 4. Production of a colloidal monolayer using (a) a spin-coating technique, (b) doctor blade trough, (c), and a

Langmuir-Blodgett trough.

The spin-coating technique (Figure 4a) can be considered a simple process for rapidly
depositing thin coatings onto relatively flat substrates [54,79-81]. A spinning fixture holds
the substrate (often using vacuum to clamp and position the substrate in place), and the
coating solution/dispersion is then dispensed onto the surface. The revolving action causes
the solution to spread out and leave behind a uniform coating of the chosen material on
the surface. Due to its short time of production, combined with its simplicity and low cost,
this method is useful in industrial conditions as far as small-area batch coating processes
are concerned. However, it is not compatible with large-area deposition, and the resulting
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colloidal films tend to be less uniform than those produced by dip-coating methods such
as Langmuir-Blodgett [82].

Spin-coating experiments have mainly been designed to deposit small-area nanosphere
monolayers, severely limiting the application of these films as physical masks. Therefore,
important research parameters have been optimized to prepare high-ordered colloidal films
with different diameter nanospheres on larger scales. For instance, by adjusting the spin
speed and acceleration, Chen et al., (2013) [54] spin-coated long-range ordered colloidal
crystal films of PS spheres with diameters of 223 nm, 347 nm, 509 nm, and 1300 nm. Further-
more, for the 509 nm of spheres’ diameter, the team also used these conditions to inspect the
relation between the monolayer coverage area and spin parameters. It was found that with
the increase of the spin speed and acceleration, the monolayer coverage areas oscillated,
with the largest ordered areas (near 100% of 25 mm x 25 mm X 0.5 mm quadrate and
3-inch circular silicon substrates) being achieved at a speed of 1700 rpm and acceleration
of 600 rpm/s. Chen’s results thus revealed the successful preparation of monolayer and
bilayer films of PS nanospheres with four different diameters. In the only structure that
was considered to be with reasonable hexagonal close-packed ordering, both monolayers
and bilayers could be found, which is not suitable for colloidal lithography applications.

Another impactful development was reported by Park et al. [81], who introduced
polyoxyethylene (12) tridecyl ether (PEO-TDE) as a surfactant for the spin-coating of PS
nanosphere monolayers onto Si wafers and glass substrates, under ambient laboratory
conditions, with optimal surfactant properties, as opposed to the conventional highly toxic
Triton X-100 surfactant. Low viscosity and surface tension cause this mixture to show
excellent wettability, which results in superior coverage and uniformity [81].

Another simple, but highly scalable process for nano/microspheres deposition is the
doctor blade coating or blade coating technique (Figure 4b). This method is widely used in
the textile, paper, photographic film, printing, and ceramic industries to create highly uni-
form flat films over large areas [83]. An immobilized blade (or rod) applies a unidirectional
shear force to a slurry that passes through a small gap between the blade and the substrate.
This is a roll-to-roll compatible method that has played a crucial role in ceramic processing
to produce thin, flat ceramic tapes for dielectrics, fuel cells, batteries, and functionally
graded materials. A simplified doctor blade coating process was developed by Velev
et al. [84], based on an evaporative colloidal assembly technology that relies on capillary
forces to drive and merge colloidal particles into crystalline structures with thicknesses
ranging from a single monolayer to a few layers. Inspired by this technology, Yang et al.,
(2010) [85] reported a roll-to-roll compatible doctor blade technology for producing highly
ordered colloidal crystals (mainly polymer nanocomposites) and macroporous polymer
membranes. The resulting 3D-ordered structures exhibited uniform diffractive colors, and
Yang has shown that the templated macroporous membranes with interconnected voids
and uniform interconnecting nanopores can be directly used as filtration membranes to
achieve the size-exclusive separation of particles.

Lastly, the Langmuir-Blodgett (LB) method [86] (Figure 4c) consists of the compression
of nanoparticles, floating in an air-liquid interface, into monolayers—Langmuir films—and
its transferal onto immersed solid substrates via vertical dipping [87]. This technique offers
the possibility to obtain highly ordered, well-defined, controlled mono/multilayers, ulti-
mately serving the patterning purposes for CL applications [88]. Common LB-deposited
materials have amphiphilic molecules with two distinct regions: a hydrophilic head group
(water affiliation) and a hydrophobic tail group (water repulsion). They must be solu-
ble in organic nonpolar and water-immiscible solvents (ethanol, diacetone, chloroform,
benzene, among others [89,90]), with water-insoluble amphiphilic molecules forming a
floating monolayer at the air-water interface. Long-chain fatty acid and lipid molecules are
examples of typical LB-deposited materials, but the method has also been found successful
(highly precise) for the patterning of close-packed monolayers of colloidal spheres, as
for CL.
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The two main steps of the LB technique are the preparation of a floating self-assembled
colloidal monolayer at the air-water interface (Langmuir-film) and its deposition on a solid
substrate [91]. At first, the colloidal particles are dispersed in a volatile and preferably
water-insoluble solvent to prepare the colloidal dispersion. Then, small amounts of this
solution are carefully deposited and spread onto the air-water interface at the LB trough.
Afterward, the volatile solvent evaporates, and the LB barriers are compressed accord-
ingly to force the formation of a self-assembled close-packed colloid monolayer at the
interface [88]. Finally, the immersed substrate is withdrawn vertically from the aqueous
subphase, while the lateral barriers continue to close in towards the substrate, at controlled
rates, therefore transferring the colloids stabilized at the air/water interface to the upwards
moving substrate [86], resulting in a successfully deposited monolayer colloidal film. Mul-
tilayer films can also be engineered by successively subjecting the previously deposited
substrate to further cycles of LB deposition. These multilayers have been considered model
membranes due to their remarkable 3D uniformity; and offer potential application as
photonic waveguides and in breakthrough optoelectronic, nonlinear optical, and sensory
devices [92,93].

Surface and interface chemistry is of paramount importance for defining how the col-
loidal particles float and are packed [32,33,81,94]. For instance, relatively small PS colloids
with sizes close to visible wavelengths (under 1 pm) tend to sink into the aqueous subphase,
contrasting with larger ones that typically float [94]. The fabrication of monolayers by
interface coating methods as LB has been subject to numerous studies, varying the size of
colloids, the amount of solution, temperature, deposition angle, and others [22,95-97].

It is also believed that the use of surfactants in the aqueous subphase may enhance
the floating and Langmuir-film production of colloidal particles at the air/water interface,
with larger areas and mechanical strength, similarly to the solutions presented by Vogel
et al., (2011) [94] for the spin-coating method. Surfactant molecules tend to occupy the
media interfaces and join the incoming colloidal particles together, thus opposing their
dispersion caused by the Brownian motion. The surface assembly forces tend to enlarge the
array area, increasing the monolayer order and coverage [95]. There is also a reduction of
surface tension at the interface due to the presence of the surfactant, which favors colloidal
particle movement along the interface to find their lowest energy configuration, resulting
in an optimally-ordered hexagonal close-packed monolayer [98]. Adding the surfactant,
however, may introduce undesired contamination to the interface. Therefore, care must be
taken to avoid the transfer of substantial amounts of contaminants to the substrate during
the LB lift-up process, to avoid imperfections in the deposited colloidal array [79].

From the three methods mentioned above, the Langmuir-Blodgett method combines
quality, versatility, and scalability, being the headmost characteristics for the fabrication
of high-quality 2D or 3D crystalline films. Furthermore, the capacity to precisely control
the deposition of each layer in a layer-by-layer process, the ability to choose different
particle sizes for each deposited layer, and the possibility for this method to be adapted
to fast industrial production techniques such as roll-to-roll processing [22,99-101] make
it an outstanding candidate for the first step of the CL process. These advantages are
demonstrated in the research of O. Sanchez-Sobrado et al. [29,33,48] that has revealed
outstanding results of thin-film solar cells enhanced with photonic front structures that
were patterned via CL using highly-uniform LB-deposited colloidal masks.

2.3. Colloidal Masking for Surface Patterning

After achieving a good monolayer of close-packed colloidal particles, as previously
described, it is then necessary to define how one can effectively use such array as a
mask to achieve the desired microstructures in the targeted material (recall Figure 2).
The final structures and properties achieved by the CL process are highly dependent
on the prepared mask of material and packing [102,103]. Although attaching functional
molecules or coating materials to colloids offers various possibilities for additional tuning
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of their properties [104], most polymeric or silica colloids end up being straightforwardly
assembled into monolayers without functionalization, for further processing in CL.

The use of the originally deposited close-packed colloids (Figure 2a) as a mask allows
only a limited exposure area in the interstitial spaces of the hexagonal array. Therefore,
increasing the inter-particle distance in non-close-packed arrays (Figure 2b) is an important
tool to optimize the masked area on the surface, at the expense of requiring an extra
intermediate step of physical etching of the colloids.

Still, using the simpler CL version with close-packed 2D colloidal crystals as etching
masks, triangular nanoparticles [105], nanodots [106], and thin-films with nanohole ar-
rays [107], nanotips [108], or nanopillars [109] have been fabricated on several substrates
(such as polymer-based, silica, and silicon) [65,69,97].

Regarding the formation of non-close-packed monolayers (Figure 2b), dry etching
methods have been used (such as reactive ion etching, RIE) to reduce the size of the
spheres after their deposition, and therefore increase their inter-space distancing in the
array (Figure 5).

Figure 5. Schematic illustration of the reduction of the colloidal spheres dimension (with 0.5 um initial diameter) and

increase of their spacing in the array, via low-frequency plasma etching, with increasing etching time (left to right). Adapted
with permission from [60]. Copyright 2021 MDPI.

A recent study from Yun Chen et al., (2019) [60] has shown that low-frequency plasma
etching (40 kHz) can be used to produce PS nanospheres-based arrays with smooth sur-
faces, doubling the etching rate when compared to high-frequency systems. This study
revealed that low-frequency RIE processes are dominated by a thermal evaporation etching
mechanism, different from the atom-scale dissociation mechanism that underlines the
high-frequency etching. It was found that the PS features size can be precisely controlled
by adjusting the etching time and/or power. By introducing oxygen as the assisting gas in
the low-frequency RIE system, one can achieve a coalesced PS particle array and use it, for
instance, as a template for metal-assisted chemical etching which can significantly improve
the aspect ratio of silicon nanowires to over 200 due to their improved flexure rigidity.

RIE has also been used in the CL fabrication of optimized photonic front structures
for light-trapping in thin-film solar cells, which is crucial for increasing light absorbance
in the absorber layer and subsequently the performance of the devices. Recently, two
efficient four-step approaches were described by Mendes et al., (2020) [52] that can produce
two types of geometries based on arrays of semi-spheroidal voids or domes, as shown
in Figure 6. Briefly, for both cases, this method starts with the deposition of a monolayer
of close-packed colloidal PS microspheres (LB method), followed by RIE producing a
non-close-packed array.
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Figure 6. Depiction of two different CL methods used to create distinct geometries of photonic microstructures for light-

trapping, integrated in the front contact of thin-film solar cells, arranged in non-closed-packed hexagonal (honeycomb)

arrays of semi-spheroidal voids (a) or domes (b) Adapted with permission from [52]. Copyright 2021 Elsevier.

The main difference between both approaches occurs in the first two steps. In the
first method (Figure 6a), the selective RIE only acts on the particles, so the final void-like
structures are defined by the subsequent deposition of material in the inter-spaces between
particles (as in Figure 2¢,d). Although in the second method (Figure 6b), the less-selective
RIE process also etches the underlying layer, ultimately defining the final dome/cone-like
structures obtained.

Using etched nanospheres as molds/masks in processes such as metal deposition, in-
filtration, or imprint, it has been possible to produce ordered arrays of spherical voids [110]
and nanoshells [111,112]. Through dewetting around nanospheres, nanorings of poly-
mers [113], carbon nanotubes, or nanoparticles [63] can be obtained. Resorting to site-
selective deposition or etching, nanospheres with asymmetric shapes or functional features
have been produced [114], difficult or impossible to obtain by other synthetic routes.

After the deposition of the intended material onto the RIE-shaped colloidal mask
in step c) of Figure 2, a lift-off treatment removes the colloids (step d) leaving only the
microstructured material on the front surface. After this process, undesirable colloidal
residues may be found in the areas previously occupied by the particles, due to incomplete
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removal. In such cases, besides the chemical removal (e.g., with toluene), both oxygen
plasma [115] and thermal annealing [116] treatments can also be used to remove the
polymeric particle residues which are usually quite volatile at temperatures around 100 °C.

3. Photonic Crystals

The previous section showed that there is a wide range of nano/micro-structure
designs that can be engineered with CL techniques for various technologies, whose di-
mensions are chiefly set by the size of the masking particles. The colloidal particles’ size
propinquity to visible light’s wavelengths will therefore grant the fabricated structures
excellent interaction properties with this type of radiation (Figure 7) [57,70,117-119].

a) Photonic Crystal b) Amorphous Array

J
(&
%

o

Figure 7. Schematic optical interaction of (a) an ordered colloidal crystal and (b) an amorphous colloidal array under white
light. The structural color from the colloidal crystal changes depending on the viewing angle, while that of the amorphous

array remains nearly unchanged.

It is important to note that photonic crystals have structural similarities with common
crystals but have no direct relationship with crystalline materials. The dimensionality
of the photonic crystal is defined by the length(s) in which the dielectric constant varies
periodically, and they can be represented by basic 1D, 2D, and 3D crystals. However, only
3D photonic crystals allow for omnidirectional photonic bandgaps [120] that are an optical
analog of the energy bandgap of the crystalline network.

In nature, one can find many examples of natural photonic crystals (Figure 8), such as
in wings of butterflies and natural opals (Figure 8a,b). These natural crystals are composed
of periodic microstructures whose scattering and transmission properties strongly depend
on the incident light frequency, thus displaying brilliant colors, which have inspired
artificial designs (Figure 8c,f).
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Photonic Crystals
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Figure 8. Natural photonic crystals (left): (a) photo showing the blue iridescence and SEM image of the 1D structure of the

Morpho butterfly, (b) photo of an opal gemstone, and SEM image of the silica sphere structure within it. Adapted with

permission from [121]. Copyright 2021 The Royal Society of Chemistry. Artificial fabricated photonic crystals deposited on

flexible substrates made of semitransparent: (c) photonic crystal films and (d) photonic crystal films with anti-transmission

black tape as the transferred substrate, which blocks backlight transmission [122], as well as (e) photo and (f) reflectance

spectra of stripe-patterned composite photonic crystals with 20 different optical bandgaps. Adapted with permission
from [123]. Copyright 2021 John Wiley and Sons.

Due to their unique characteristics, photonic crystals fabricated via colloidal assembly
have attracted much interest for various prospective applications, ranging from gas sens-
ing to optical filters [124,125], photonic papers [126], inkless printing [127], flat reflective
displays [128], optical devices, photochemistry, and biological sensors [70]. Recent devel-
opments have further enhanced their complexity using non-spherical particles [129,130],
binary colloidal dispersions [131], as well as controlled production of 3D defects (acting
as optical cavities) within the crystals [132,133]. Several approaches have been developed
enabling defect engineering controlled to a great extent, such as surface micromachining
which allows for symmetries other than face-centered cubic [117,134].

Self-assembly has a crucial role in the fabrication of photonic crystals with a pho-
tonic bandgap in the visible and near-infrared region [135]. For instance, freestanding
films have been fabricated by the layer-by-layer assembly [136], solution casting [137],
surfactant-assisted deposition [138], and filtration of dispersions of materials using mem-
brane filters [61]. A facile approach to fabricate such large asymmetric free-standing 2D
array films is by forming 2D colloidal particle arrays at the air—water interface, as in the LB
method [139]. Nevertheless, besides LB, colloidal photonic crystal growth via self-assembly
of monodispersed colloids can involve, as previously mentioned, various fabrication meth-
ods such as controlled evaporation, spin coating, shear growth, among others.

Although the fabrication of 1D or 2D photonic crystals is relatively straightforward,
adapting the conventional patterning techniques to fabricate 3D crystals remains a chal-
lenge. This originates from the stringent constitutional quality, and functional requirements.
Several methods have been proposed in this respect. The most economical and direct ap-
proach to fabricating 3D photonic crystals is also by the self-organization of colloidal
particles. The most inexpensive and direct approach to fabricating 3D photonic crystals
is also by the self-organization of colloids that can be used as a template. Inverse opals
materials with a high degree of periodicity in three dimensions are important templates
for the design of photonic crystals. One method used to prepare these photonic crystals
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consists in infiltrating the void spaces between spheres in a colloidal crystal template with
the desired material in solution phase (sol-gel), which is subsequently solidified. The
subsequent removal of the templating spheres leaves a structured photonic crystal [140].
The sequential passivation reactive ion etching (SPRIE) method, [117] as the name suggests,
relies on sequential passivation and reactive ion etching reactions using C4Fg and SFg
plasma chemistries. It allows the addition of the third dimension using a simple and robust
protocol for direct structuring of silicon-based 3D photonic crystals. Through a single
processing step, SPRIE transcribes 2D colloidal crystal arrangements into well-ordered
3D architectures. The lateral etch extent controls various 3D topologies, useful in the
delamination of 3D photonic crystals slabs or for the insertion of structural defects [117].

Alternatively, direct writing or single-step processing techniques have emerged as
powerful tools for rapid and scalable 3D photonic crystals fabrication. Multiphoton poly-
merization lithography seems an attractive scenario, as it allows for unprecedented control
of the crystal geometry and the defect incorporation, although it suffers from low through-
put due to the serial writing procedure [117]. By infiltrating the interstices of polymer latex
colloidal crystals with inorganic materials, and subsequently burning out the polymer latex,
ordered macroporous films known as ‘inverse opals’ can be prepared. Inverse opals can
have higher reflectivity over wider optical stop gaps (which prohibits light from propagat-
ing in only some directions) [121] due to the higher refractive index mismatch between the
spheres and the medium. Such structures can also have 3D photonic bandgaps in the very
high-frequency regions. Despite their bandgaps being very narrow, these can be reduced
even further with the introduction of small defects, since they exhibit wider stop gaps
and broader mechanical stability. For the production of inverse opal structures, colloidal
templates of inorganic colloids (silica) can be used. Within this process, composites with
polymeric materials are formed and then converted to polymeric inverse opal structures
via the removal of the inorganic particles using selective etchants such as hydrofluoric
acid [141].

Non-crystalline colloidal arrays—photonic glasses (see Figure 8b)—have also much
interest for certain applications. These structures consist of aggregates of monodisperse
colloids with short-range order, over a range of a few particles, that can be detected from
the structure’s diffraction pattern. Although photonic crystals can be used to manipulate
ballistic photons, photonic glasses are useful in controlling light diffusion. The random
structures of designed uniform colloids can interact strongly with light and produce
unusual diffusion phenomena, including random lasing, angle-independent color, and light
localization. These disordered monodisperse and short-range ordered particle structures
have been produced by destabilizing the colloids with the control of the salt concentration,
or by adding particles of different sizes to the colloidal solution [141].

4. Photovoltaics Enhanced with Micro-Structuring

The amazing light-interaction properties of wavelength-sized structures overviewed
in the previous section have motivated their development for optical manipulation in
PV devices, aiming for maximum sunlight conversion to electrical power. In particular,
thin-film solar cells suffer from significant absorption losses, relative to thicker wafer-based
cells, due to their diminished absorber thickness. As such, advanced light management
techniques are necessary to compensate for such losses and ensure that high efficiencies are
achieved [20,33]. As was already introduced, nanophotonic elements in the wave-optics
regime are seen as a promising method to efficiently trap light inside the thin absorber
material, thus boosting its broadband absorption, as further discussed in Section 4.1 [142].

The self-assembled templates from colloidal spheres can provide monolayers with
long-range order throughout large device areas, thus providing an inexpensive and easily
scalable mask to engineer materials with the physical parameters appropriate for efficient
light-trapping (LT) in solar cells. This has led to a significant interest in CL methods for
photovoltaic devices, which is the focus of this review. Nevertheless, the CL applications in
the PV field are not limited to the integration of LT structures. In the next sub-sections, we
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will highlight two other promising nano/micro-structuring solutions that have also been
demonstrated with CL: namely for transparent electrodes (Section 4.2) and self-cleaning
functionality (Section 4.3).

A review article by Wang (2018) [73] described that CL can produce several different
patterns and geometries that could form an anti-reflective LT mechanism. It may include
Janus particles, hexagonal and non-close-packed single layers, double layers, free-standing
films, and template-induced arrangements. The nanostructures obtained by this process
can already be promptly applied to many different areas. Furthermore, this technique can
also be adapted by tweaking the experimental parameters, such as the dimension of the
spheres, the morphology of the surface, and chemical composition, thereby increasing the
spectrum of possible applications.

Micro-meshed electrodes (MMEs) obtained by CL have been one of the most promising
approaches to produce industrial-compatible transparent conducting materials (TCMs),
with excellent optical transmittance and electrical conductance, composed of TCO/metal/
TCO multilayers (TCO = transparent conductive oxide). In particular, replacing the intra-
layer metallic film (usually silver) with a micro-grid of the same material has allowed
additional degrees of freedom to optimize the TCM performance, namely enabling much
higher transparency in the red-NIR (near-infrared) spectral range while maintaining highly
conductive TCMs [62].

Besides efficiency, the outdoor reliability of PV systems is another crucial factor
necessary for their widespread deployment. Solar panels tend to lose efficiency with
time mainly due to unavoidable environmental degradation. Phenomena such as the
formation of hot-spots (areas of large heat dissipation) caused by partial shading of solar
cells (e.g., due to debris/dirt deposits) can be responsible for pronounced efficiency losses
that, for instance, have reached 11% in three days and 65% after six months in certain
power plants [74,143]. Therefore, decreasing unwanted processes that block the amount
of sunlight reaching the cell, such as dust and other accumulation of particles, merits
particular attention due to their inevitability and ubiquity [74].

Most current solutions to this include the mechanical cleaning of the devices [31] to
expel dust specks via four types of techniques: the robotic method, air-blowing method,
water-blowing method, and ultrasonic vibration method. Nevertheless, such type of active
mechanical methods requires a power source for enabling the self-cleaning mechanism.
Moreover, manual cleaning can also create cracks on the PV panel surface due to harsh
brushing which will further deteriorate PV performance. Moreover, very small particles
cannot be removed effectively by a manual cleaning process. On the other hand, the use
of a self-cleaning coating, as no PV panel movement is required for its working function,
is way simpler and more fitting to PV applications [74]. Another active method—the
electrostatic cleaning method [144]—expels the surface dust through electrostatic standing
and traveling waves, due to an existing electric curtain. The electric curtain consists of a
series of parallel electrodes embedded in a dielectric surface, across which are transmitted
oscillations in the electrode potentials. During this process, the standing wave oscillates
the dust particles up and downward while a traveling wave does the same process in a
horizontal direction.

Concerning passive coating methods, they employ either a superhydrophilic or super-
hydrophobic film on the outer PV surface. Superhydrophilic coatings reduce the amount
of dirt through photocatalytic reactions, while superhydrophobic coatings potentiate the
formation of water droplets and their roll-off, carrying away the dirt from the surfaces
with minimum water usage [31,74]. To allow water (or other liquids) droplets to effectively
roll down a surface, different superhydrophobic-oriented strategies are being investigated
mainly via surface micro-structuring, mimicking natural processes such as the skin of
certain plant leaves with self-cleaning capability [145], as further detailed in Section 4.3.

The aforementioned applications reveal that CL offers a wide range of promising
possibilities for the advancement of PV-related technologies, as illustrated in Figure 9 and
elaborated in the following sections.
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Figure 9. Illustration of the distinct applications of CL for micro-structuring in photovoltaics. Adapted with permission
from [62]. Copyright 2021 Elsevier. Adapted with permission from [52]. Copyright 2021 Elsevier. Adapted with permission
from [31]. Copyright 2021 John Wiley and Sons.

4.1. Light-Trapping in Photovoltaics

Light-trapping (LT) structures are a critical enabling factor in PV technology, as
they improve the absorption of incident photons, therefore impacting its conversion effi-
ciency [23,29,31,51,52,62,146,147].

On one hand, reflection losses are an unavoidable shortcoming in all types of PV
technologies. Proper index matching in the surface—using materials with an index between
that of the absorber material and the light incidence medium—can help mitigate this
problem. Photonic structures can further diminish these losses in a broad wavelength
range—by providing geometric index matching.

On the other hand, these structures also bring about LT mechanisms to help with light
management within the device. As previously mentioned, this is particularly important for
thin-film solar cells, where the short optical path is not enough to absorb all the incoming
solar radiation, and it can be useful also for other emerging solar technologies [148].
This shortcoming has also been severely hindering flexible thin-film PV technology from
achieving its market potential. As a matter of fact, many thin solar cells have so far only
reached modest efficiencies (~14%) compared to those of conventional cells based on rigid
silicon wafers (22-25%). Therefore, there is much improvement potential in thin-film PV
with the implementation of effective LT techniques, mainly as a means to make the cells
optically thicker but without increasing their physical thickness (to allow efficient charges
collection) [52].

Here, a detailed analysis is presented of different types of photonic structures inte-
grated via CL methods for LT in thin-film solar cells, particularly based in silicon and
perovskite PV materials, enabling the development of high-efficiency flexible devices.
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4.1.1. Computational Design and Optimization of Photonic Solutions

The resonant nature of wavelength-sized photonic structures substantially limits
the parameter space in which their optical effects can provide exceptional absorption
improvements across the relevant sunlight spectrum. Specifically, the wave-optical front
features (as those integrated via the CL methods of Figure 6) need to provide a gradually
varying effective refractive index, from the air towards the absorber layer to minimize
reflection. Simultaneously, their geometry must interact with the incoming light to produce
strong scattered fields preferentially directed into the higher index absorber layer. Therefore,
before experimental implementation, it is crucial to perform a rigorous screening based
on modeling, to understand the influence that the parameters of the LT structures have
on such effects, and then appropriately search for the best parameter set that allows the
highest photocurrent enhancement in the devices [142,149,150].

Theoretical studies reported by Mendes et al., (2016 and 2018) [142,149] have sought
for designs of wavelength-sized structures optimized towards maximum broadband light
absorption, with the double aim of enabling the reduction of the absorbing layer thickness
(potentiating flexibility) while improving the efficiency of thin solar cells (Figure 10).
Two geometries of front-located photonic structures were pointed out, compatible with
the CL fabrication methods of Figure 6, and computationally optimized to maximize
absorption without degrading the electrical performance of the devices (by avoiding
increased recombination since the absorber layer remains flat, i.e., it is not corrugated as
occurs with texturing).
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Figure 10. Electromagnetic modeling results of two types of LT geometries (sketched in a,d) composed of hexagonal arrays
of TiO, half-spheroids (a—c) or semi-spheroidal voids in a TiO, or AZO layer (d—f), both integrated into thin-film (300 nm)
Si solar cells. The results show the light absorption, Abs, spectra (b,e) and photogeneration rate, G, profiles (c,f) of the

optimized photonic front structures, compared with flat reference cell structures without LT or with a standard AZO

antireflection coating (ARC). The G profiles reveal much higher carrier generation in the cells with the photonic elements

due to the enhanced broadband absorption. Adapted with permission from [142]. Copyright 2021 Elsevier.
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These LT structures are composed of honeycomb arrays of semi-spheroidal features
either made of domes (TiO; half-spheroids separated by a flat aluminum-doped zinc
oxide—AZO—Ilayer—Figure 10a) or voids (semi-spheroidal holes in a layer of either
TiO, or AZO—Figure 10d). The electromagnetic field distribution simulations in the
thin-film solar cell structures were carried out using a 3D Finite Difference Time Domain
(FDTD) method.

The modeling results show that the structures patterned on the front of the cells
drastically reduce reflection losses at short wavelengths—Figure 10b,e (at energies above
the absorber bandgap)—via geometrical refractive index matching with the cell media.
They also boost the absorption of longer wavelengths by increasing their path length via
light bending and coupling with wave-guided modes confined in the absorber layer.

These combined effects (antireflection and light scattering) lead to a substantial broad-
band absorption enhancement in the absorber material, which allows reducing its thickness
without lowering the output current.

When evaluating the different LT geometries, it was found that the optimized absorp-
tion spectra attained with the two types of structures do not differ significantly. Neverthe-
less, the highest photocurrent gains were generally provided by the void geometry due
to higher NIR absorption enhancement, as it allows a higher degree of angular spreading
of the scattered light. Simultaneously, the domes tend to act as micro-lenses that instead
focus the scattered light in localized hot-spots located beneath them, as observed in the
optical generation profiles of Figure 10c,f.

Pronounced photocurrent enhancements, up to 37%, 27%, and 48%, are demonstrated
with honeycomb arrays of semi-spheroidal dome or void-like elements front-patterned on
the cells with ultrathin (100 and 300 nm thick) amorphous, and thin (1.5 um) crystalline
silicon absorbers, respectively [142].

The geometrical optics limits for photocurrent enhancement via LT are known as
the Lambertian or Green broadband absorption limits. Isabella et al. [147] purposed an
advanced LT scheme applied to thin-film silicon-based solar cells, capable of actually
overcoming such limits. They showed that optimized 3D optical modeling of thin-film hy-
drogenated nanocrystalline silicon (nc-Si:H) solar cells endowed with decoupled front and
back textures, result in pronounced photocurrent densities (>36 mA /cm?), thus developing
a suitable base for the fabrication of high-efficiency single and multi-junction thin-film solar
cells. The simulated enhancements result from a gain in light absorption, especially in the
NIR part of the spectrum close to the bandgap of nc-Si:H. Within this wavelength region,
the material is weakly absorbing, whereas with the LT design of Isabella et al., significant
absorption peaks are observed that can only be explained by the simultaneous excitation
of guided resonances by front and rear textures. Using the same advanced LT employed
for nc-Si:H, one would obtain a very high implied photocurrent density of 41.1 mA /cm?
for a device with a 2-um thick absorber.

A recent breakthrough contribution by Li et al. [151] showed that the Green light
absorption limit can also be approached without the need for complex LT geometries. With
simple (yet smartly designed) grating structures, composed of checkerboard and/or penta
arrangements, the photocurrent of thin-film silicon cells can be realistically doubled, thus
revealing performance improvements at the level of the most sophisticated LT grating
structures but here attained with much simpler (hence industrial-friendly) geometries.

4.1.2. Thin-Film Solar Cells Improved with Front-Located Photonic Structures

Guided by the modeling studies, in the past few years, LT mechanisms have been
successfully implemented in both rigid and flexible solar cell devices with promising
experimental results. In this section, we summarize some of these results and the progress
that has been achieved in practice. The LT mechanisms, in addition to allowing remarkable
enhancement of the optical density of ultrathin PV films, can be fabricated with low-cost
materials and integrated by industrial-scale procedures via inexpensive and large-area
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soft-lithography processes. Accordingly, colloidal lithography has been applied to pattern
thin-film solar cells on a photonic length scale with low manufacturing costs.

The simplest CL-related LT implementation consists of using the close-packed array
of colloidal spheres (Figure 2a), self-assembled on the front contact of the solar cells, not
as a mask but as the photonic front structure itself. This allows forming the photonic
structures with a single step performed as a post-process on the cells, as it avoids the
additional colloidal masking steps. Such an approach was tested by Grandidier et al. [26],
employing a monolayer of silica nanospheres deposited by Langmuir-Blodgett on the front
TCO of hydrogenated amorphous silicon (a-Si:H) solar cells. In this design the dielectric
colloids act as resonant Mie scatterers, coupling light into the absorber via their near-
field proximity. At the same time, it acts in the far-field as a graded-index antireflection
coating to further improve the photocurrent. Overall, even though the simple approach of
Grandidier et al. allowed significant enhancements in the photocurrent (average of 6.3%)
and efficiency (1.8%, reaching the absolute value of 11.1%), the attained gains are relatively
low in comparison with those shown in Figure 10, predicted with optimized LT structures.
One of the main reasons for this has to do with the low refractive index (n~1.5) of the silica
spheres, while higher n values are desired for stronger antireflection and light scattering
action, as indicated by the theoretical models [149].

As such, photonic structures composed of high-index dielectric materials, (e.g., TiO;)
as suggested in the simulation works reported in Section 4.1.1, should be capable of yielding
much more pronounced enhancements. Given that, Sanchez-Sobrado et al. [33] (Figure 11)
developed a CL technique aimed at engineering the TiO, semi-spheroidal void-like array
geometry of Figure 6b. The TiO,-based wave-optical structures were first integrated by
CL on the front surface of a-5i:H thin-film absorbers, to optimize the parameters of the
fabrication method while looking at the absorption enhancement caused in the films.
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Figure 11. Schematic drawings and SEM pictures of the samples obtained after the different steps of
the TiO, nanostructure construction via CL on glass substrates: (a) a hexagonal array of colloidal PS
spheres is patterned on the cell front, (b) O, dry etching, (c) TiO; is deposited, filling the inter-particle
spaces, (d) the spheres are removed leaving an array of semi-spheroidal void-like features. The
final TiO, structure (e) uniformly covers the entire sample area. Adapted with permission from [33].
Copyright 2021 The Royal Society of Chemistry.

The method developed by the authors employs the four main steps illustrated in
Figure 11: (a) deposition of periodic close-packed arrays of PS colloids (original diameter
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of 1.0 um, 1.5 pm or 2.0 um) which act as the mask, (b) shaping the particles and increasing
their spacing via dry etching, (c) infiltration of TiO; in the inter-particles spacing and (d)
removal of the PS particles to leave only the nanostructured TiO, layer [33].

It was demonstrated that when directly deposited on a-Si:H absorber films, such
LT microstructures provided pronounced broadband absorption enhancement (27.3% on
spectral average) in the a-Si:H medium relative to the unpatterned sample.

In subsequent work [48], the authors advanced to integrating this type of photonic
structure in actual solar cell devices by CL. These were implemented as a top coating
(see Figure 12), with two different materials tested for the photonic coatings in this work:
TiO,, due to its high refraction index, and indium zinc oxide (IZO), for better optical and
electrical coupling with the front contact of the cells composed of a flat IZO layer.
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Figure 12. (a) SEM images of the cross-section of an a-Si:H solar cell coated with a TiO,-based LT structure (patterned by
CL) over its front flat IZO contact; (b) Measured J-V curves of solar cells incorporating four different photonic coatings made
of either TiO, or IZO and formed with either 1.3 or 1.6 pum diameter PS spheres, and compared with the curve of the planar

reference cell with no LT structure over the IZO contact; (c) measured and theoretically modeled enhancement, relative

to the reference, of the generated current density (dark grey and empty bars, respectively), and the measured conversion

efficiency (light grey bars) of the devices in (b). Adapted with permission from [48]. Copyright 2021 The Royal Society

of Chemistry.

It was observed that all the different photonic structures applied on the a:Si:H cells
produced significant broadband absorption enhancement, leading to systematic increases
in the current (17.6-21.5%, Figure 12c), relative to that of the planar reference cells without
the LT features. The TiO, structures achieved higher optical performance than the IZO
ones, as expected, mostly due to the higher refractive index and lower optical absorption
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of TiO,. Nevertheless, the extra electrical benefits (reduced sheet resistance) on the front
electrode caused by the I1ZO structures allowed for the highest efficiency enhancement
(Figure 12c) [48].

Given the promising results attained with the photonic-structured IZO front contacts,
in a subsequent work Sanchez-Sobrado et al., (2020) [29] further improved the device
architecture and CL process parameters to further optimize the geometry of the IZO
structures and, importantly, their location concerning the Si absorber. This was achieved
by optimization of the thickness (investigating from 30 to 250 nm) of the flat IZO layer
beneath the LT structures, to allow an electrically effective front contact ideally coupled
with the geometry of the CL-patterned 1ZO structures (Figure 13).
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Figure 13. SEM cross-sections of a-Si:H solar cells with two different thicknesses of the flat IZO layer
(30 (a) and 190 nm (b), respectively) located between the a-5i: H absorber and the front LT structures;
(c) Polar plot representing the angular response of the solar cells with 30 nm, S30 (blue lines), and with
190 nm of IZO thickness, S190 (red lines), in terms of the gains attained in the short-circuit current
density, (Jsc, solid lines) and power-conversion efficiency (PCE, dashed lines) of the cells; (d) J-V
curves and (e) external quantum efficiency obtained for S190 (190 nm of IZO thickness). Adapted
with permission from [29]. Copyright 2021 Elsevier.

Here, the CL fabrication method consisted of first dispersing a colloidal suspension of
1.6 um PS spheres in a water-ethanol mixture (1:3) at a solution concentration of 2.5% wrt.
Using the Langmuir-Blodgett technique [152], a close-packed monolayer was then de-
posited onto the flat IZO-coated surface of the a-Si:H cells.

The final IZO structure is revealed after removing the PS particle mask by a combina-
tion of Ar/CF, reactive ion etching and a toluene bath.

As previously mentioned, the main parameter optimized in this work was the thick-
ness of the flat IZO layer deposited on the cell before the CL process of integrating the top
microstructured IZO. Such thickness defines the separation between the a-Si:H absorber
and the photonic features, and the best results were attained with 30 nm and 190 nm
thicknesses, shown in Figure 13a. These results reveal that the LT structures lead to a
remarkable broadband enhancement of the total light absorbed by the devices, therefore
leading to photocurrent gains (relative to reference planar cells) up to 26.7% with the 30 nm
flat IZO space—Figure 13c. However, the best efficiency enhancement (23.1%) was attained
with the optimized thickness of 190 nm for this layer (Figure 13d,e), as it provides the most
favorable combination of optical and electrical gains.
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Another important finding of this work was the remarkable LT gains attained at
oblique light incidence. The angular response of the devices was evaluated by measuring
the JV curve for a range of light incidence angles from 0° to 90°. The highest gain reaches
53.2% enhancement in photocurrent at 70° incidence angle for the cell with the optimized
190 nm thick flat IZO, and 52.2 in efficiency (at 40° incidence) with the ultrathin (30 nm)
flat IZO (Figure 13e) [29].

4.1.3. Photonic-Enhanced Perovskite Solar Cells and CL Compatibility

Perovskite-based PV materials, as thin-film absorbers for perovskite solar cells (PSCs)
[153], have received unprecedented attention in both academia and industry due to the
exceptionally rapid efficiency advancement from ~3.8% to >25.2% over the last decade
[30,154]. As usual, for most PV technologies in the early stages of development, the
progress was mainly accomplished by exploring the composition of perovskite-based
materials and optimizing the fabrication process of the perovskite layer, as well as the
quality of the cells’ interfaces to ensure efficient charge collection and to suppress unwanted
recombination routes [155]. As such, PSCs have reached a stable point in the development
phase, and optical strategies are now paramount to advance beyond its current record
efficiency, particularly for the thinner perovskite layers which are attractive to enable device
flexibility [156].

The rapid progress in this PV technology has enabled improved PSC deposition
methods allowing conformal coating of the cell layers onto microstructured substrates,
resulting in improved efficiencies. This is a promising path that has only recently started
being unraveled for nano/micro-structuring in the PSCs field. Photonic microstructures
can improve the cells” absorption beyond the standard values achieved with planar devices,
facilitating thickness reduction without compromising the output current and without
degrading the electrical performance. On the other hand, the operational stability of
the devices can also be improved by blocking the harmful higher-energy photons of UV
radiation. This is particularly advantageous to assist in the stability of this less-matured PV
technology which quickly degrades with UV exposure [52].

Recently, several LT schemes have been shown to improve the performance of PSCs,
such as disordered micro-pyramids [155,156], nanojets, corrugated substrates, self-cleaning
nanostructures, and micro-cones [157], as well as other approaches such as plasmonic
nanoparticles, surface plasmon resonances, down and/or upconversion, etc. [158-160]. It
is also observed that simple grating structures in the front [161] and back electrodes [162]
enable enhancement in the light absorption and PSCs stability.

CL can play an incredible role in thin-film PV process technology due to its compatibil-
ity with large-scale (even roll-to-roll) manufacturing. The developed low-cost CL processes
commented in the previous sections, for the integration of LT structures in silicon-based
solar cells [29,31], can be adapted for photonic-structuring in PSCs. Previous theoretical
contributions presented novel LT designs [27,28], operating in the wave-optics regime that
demonstrated record photocurrent gains in PSCs via the incorporation of wavelength-sized
features in the front electron transport layer (ETL) of the cells with a substrate configuration,
similarly to the integration discussed in detail in Section 4.1.2. Interestingly, it was shown
that the proposed front-patterned TiO, LT coatings also lead to UV stability improve-
ments [27], with even better results being achieved by incorporating another front-located
luminescent down-shifting layer that can convert the harmful UV photons to non-harmful
visible photons [28]. These structures can be straightforwardly fabricated using the same
procedures of CL (Figure 6) as those developed for silicon-based solar cells [29,31], as
further detailed next.

The initial simulation work by Haque et al., (2019) [27] considered an inverted
(substrate-type) PSC architecture, allowing the integration of the LT structures as a post-
process on the front contact of the cells, in a similar way as in Figure 12 for thin-film
silicon cells. The wave-optical structures optimized by the authors (Figure 14) for the
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inverted PSCs are also based on high-index dielectric (TiO;) micro-scale features, with
semi-spheroidal geometries.
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Figure 14. (a) Photocurrent enhancements attained with the optimized photonic structures presented in Haque’s work.
(b) Light absorption spectra of PSCs with (photonic-enhanced) and without (planar) the optimized LT structures integrated
into the ETL of the cell—a low absorption in the UV region indicates the desired blocking effect caused by the photonic
structure. Adapted with permission from [27]. Copyright 2021 Elsevier. (c) Sketch of the luminescent down-shifting material
encapsulating the photonic-structured PSC. (d) J,1, values obtained considering the full UV-Visible-NIR wavelength range
(300-1000 nm), for two different refractive indexes (n) values of the encapsulating media. (e) UV photocurrent (]ph—UV)
values for wavelengths ranging from 300 to 400 nm (the more transparent bars refer to the devices with 250 nm perovskite
thickness, while the others refer to those with 500 nm). Adapted with permission from [28]. Copyright 2021 American
Chemical Society.

The optically lossless TiO, material allows the structures to be patterned in the final
processing steps, integrated into the top n contact of the cell. This, in turn, avoids structur-
ing the cell layers, thence avoiding increased roughness and consequent electrical losses
due to higher recombination. The electromagnetic field distribution simulations in the PSC
structures were also carried out using the same FDTD method of Figure 10, and the main
results are summarized in Figure 14a. In particular, the optimized array of TiO, voids,
which was shown to be optically favorable when compared with the domes, enables a
photocurrent enhancement of 21% and 27% in PSCs with conventional (500 nm thick) and
ultrathin (250 nm) perovskite layers, respectively.

The photocurrent enhancements attained with the optimized LT designs are mainly
due to absorption improvements for wavelengths above 600 nm, which the authors attribute
to strong antireflection (of visible light) and light scattering effects (of near-infrared), as
shown in Figure 14b.

Furthermore, the TiO, material of the structures advantageously acts as a UV blocking
layer, as also shown in Figure 14b, protecting the perovskite from known degradation
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mechanisms caused by UV penetration [163-165]. Here the UV light is absorbed in the front
TiO; features and does not reach the perovskite, while the light at the longer visible plus
NIR wavelengths is coupled and trapped within the cells, generating an overall enhanced
photocurrent. UV blocking mechanisms as this one can enhance the operational stability of
PSCs upon solar exposure, but inevitably they prevent the conversion of the UV energy by
the cell, so they are not the ultimate solution when aiming for maximizing efficiency.

Alexandre et al. [28] presented an interesting approach to exploit such, otherwise
lost, UV energy via the combined effects of LT and luminescent down-shifting (LDS).
Simply put, this latter effect shifts higher energy light into lower-energy light. Considering
the extensively studied degradation problems of PSCs with UV radiation [166,167], this
method can bypass these unwanted mechanisms while also recurring to the energy coming
from the UV photons.

The use of optimized LDS materials in the front encapsulation of the previous photonic-
enhanced PSCs designed by Haque et al. (Figure 14c) led to an increase in photocurrent
of at best 2% (~0.6 mA /cm?), which is almost half of the theoretical maximum current
(1.4 mA/cm?) that could be gained from all the UV range. The optimum spectral down-
shift was found to be from a central 350 nm UV wavelength to around 500 nm visible
wavelength, matching well with the electrical performance peak of PSCs, which could
imply that an increased device’s efficiency surpassed the projected gains. The LT cells
also revealed a decrease in the harmful TiO, photogeneration near the perovskite/TiO,
interface due to the LT structures” UV shading effect. By assessing the UV penetration
in the perovskite material (given by the UV generated photocurrent by the PSC) for the
different simulated cells, reductions up to 86% (Figure 14d) were obtained when comparing
photocurrent values for the original (pristine) and optimized down-shifted spectrum.
Therefore, these analyses show that the use of LDS provides a more effective way to
eliminate the unwanted effects of UV radiation in the perovskite, demonstrated by the
hefty decrease in UV absorption coupled with the diminished TiO, photoactivity from
lower photogeneration, while also enabling additional power generation from the UV
portion of the sunlight [28].

Although promising and compatible with CL structuring, the aforementioned LT
implementations in Figure 14 require the photonic elements to be patterned on top of the
planar cell layers during the final processing stages, which brings the risk of degrading the
highly sensitive PSC materials located underneath [52]. Specifically, the fast degradation of
PSCs with humidity exposure may render this class of devices incompatible with immersion
or coating with aqueous solutions, as required in the first steps of the CL process (see
Section 2.2).

Given this, Haque et al., (2020) [30] investigated a more industrially viable LT strategy
consisting of the development of photonic substrates used for subsequent PSC deposition.
The authors have shown that it is possible to achieve pronounced broadband absorption
enhancement provided by the LT-patterned substrates, relative to planar cells, which was
also observed for a broad range of incidence angles (0-70 degrees), as seen in Figure 15a.
Apart from substantial light absorption enhancement, this approach has a significant
advantage for its practical compatibility with PSC technology over the previous ones, as
the PSC layers can be wet coated by traditional methods onto a substrate already patterned
with the designed LT structure.
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Figure 15. (a) The polar plot shows the photocurrent density gain as a function of the incidence angle (9), attained with the

optimized photonic-structured PSCs in a conformal architecture, for both the substrate and superstrate cell configurations

illustrated in the middle and right sketches. The Lambertian limits of LT in PSCs, in the geometrical optics regime, are also

indicated for normal incidence angle (6 = 0°) in the left plot. Adapted with permission from [30]. Copyright 2021 Elsevier.

(b) SEM image of a single-junction PSC conformally coated onto a textured glass substrate. Adapted with permission

from [168]. Copyright 2021 Elsevier. (c) SEM image of a tandem perovskite/silicon cell with ~25.1% efficiency, in which
the PSC is conformally coated onto the textured silicon wafer-based bottom cell [169]. (d) SEM image of a triple-junction
perovskite/perovskite/silicon cell in which the top and middle PSCs are also conformally deposited onto textured silicon.

Adapted with permission from [170]. Copyright 2021 American Chemical Society.

This makes the full photonic integration independent of the fabrication of the PSCs.
Moreover, this is a potentially more cost-effective approach since it requires no extra
materials (coatings) for the LT structuring.

However, the LT designs of Figure 15a are only achievable with highly conformal PSC
deposition methods, capable of coating the cell layers onto the micro-patterned substrate
surfaces without defect formation. In that respect, the work of Wang et al. [168] is an
important contribution, as the authors developed a recrystallization treatment that enabled
the conformal coating of high-quality perovskite layers onto textured glass with features
in the order of the micrometer, resulting in 18.6% PSC efficiency with a ~300 nm thin
perovskite absorber, as seen in Figure 15b.

Conformal deposition methods have also shown remarkable potential in monolithic
tandem PV cells, in which perovskite-based top cells are coated onto fully textured crystalline
silicon bottom cells. That is the case of the perovskite/silicon double-junctions developed by
Aydin et al. [169] with 25.1% efficiency (Figure 15¢) and the perovskite/perovskite/silicon
triplejunctions (Figure 15d) of Werner et al. [170] reaching ~2.7 V.
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Within this section, we went through some of the latest trends on LT strategies for
PSCs, revealing promising modeling results with optimized designs for efficiency and
stability improvement. We also discuss the first experimental steps that have been re-
cently undertaken to circumvent the challenges associated with the practical realization of
photonic-structured PSCs, which is a new avenue for CL implementation with enormous
potential in the PV field.

4.2. Micro-Meshed Transparent Electrodes

Another highly promising solution offered by nano/micro-structuring is the devel-
opment of high-performing transparent electrodes, with strong interest not only for the
illuminated contacts of solar cells but also for many other optoelectronic applications.
Nano/microstructured metallic films (termed micro-mesh electrodes, MMEs) offer an
exciting alternative to flat TCO (transparent conductive oxide) layers, and CL was shown
to be one of the most promising approaches to produce industrial-compatible MMEs with
excellent properties [62].

State-of-the-art indium tin oxide (ITO) based TCOs are ubiquitously spread in opto-
electronic technologies as they are in the illuminated contacts of solar cells, in displays,
touch screens, and light-emitting diodes, with low sheet resistances between 8 and 12 (3/[J
(for commercial ITO) [171] and optical transmittance above 80% in the visible range [62,172].
However, as with most TCO materials, their free electrons cause strong parasitic absorption
losses in the NIR range, limiting their performance for solar cell applications. This is further
compounded by the rising cost of In, a rare material, while alternative TCOs made with
Earth-abundant materials (e.g., based in ZnO [173]) offer reduced figures-of-merit in terms
of transmittance-over-resistance ratio. Furthermore, ITO is usually deposited by costly
DC-magnetron sputtering involving high temperatures (up to 300 °C) [174], making it
unsuitable for deposition on thermal-sensitive materials. Moreover, ITO is brittle, making
it also less attractive for flexible electronics as well as resistive touch screens [175].

A solution to mitigate the issues of state-of-the-art TCOs is to use a metallic micro-
grid (MMEs) sandwiched between ultrathin layers of TCO, which allows a pronounced
increase in transparency (especially in the red-NIR region) while maintaining high sheet
conductance; thus, offering an exciting alternative to flat TCOs. CL provides a promis-
ing approach to produce industrial-compatible MMEs, as demonstrated with the copper
(Cu) nanomeshes developed by Gao et al., (2014) [175] exhibiting an excellent diffuse
transmission of 80% and sheet resistance of 17 (/U] (Figure 16a,b).

More recently, Torrisi et al., (2019) [62] have shown the use of CL to create silver (Ag)
micro-grids that were sandwiched between TCO layers. First, a PS colloidal microsphere
monolayer (deposited using the Langmuir-Blodgett technique) is submitted to plasma
etching to serve as a deposition mask. The subsequent evaporation of Ag throughout this
mask, followed by lift-off of the colloids, creates a metallic grid as shown in Figure 16¢,d.
Compared to conventional transparent electrodes (i.e., ITO), excellent electrical and optical
characteristics have been accomplished with such TCO/Ag micro-grid/TCO multilayers,
such as sheet resistances below 10 (/0 and pronouncedly higher near-infrared transmit-
tance, using different layer thicknesses and mesh dimensions (Figure 16e).

The structural parameters of the produced mesh (openings, line width, and thickness)
play a vital role in the electrical and optical performance of the transparent electrodes.
Larger hole structures, attained with large sizes of the PS colloids, result in excellent
transmittance values at the cost of increased sheet resistance. Alternatively, meshes with
smaller holes are less transparent but have a lower resistance, permitting higher cur-
rents (Figure 16f). To reduce the sheet resistance values, one can also increase the metal
grid thickness, by evaporating more Ag material, without having a large effect on trans-
parency [62]. Finally, the best performing correlation between optical and electrical prop-
erties (Figure 16g) is attained with 5 pm spheres and 17 nm Ag thickness, either (120 or
240s RIE).
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Figure 16. (a) Schematic of the Cu MME fabrication process by CL. (b) Plot of the measured diffuse
transmission, specular transmission, reflection, and absorption at A = 550 nm versus sheet resistance
for a variety of Cu MMESs on quartz. Adapted with permission from [172]. Copyright 2021 American
Chemical Society. (c,d) Schematic of the CL fabrication of Ag MMEs, showing the initially deposited
PS sphere mask (c) and the final structure of the IZO/Ag grid /IZO electrode (d), in which the top
and bottom IZO layers are ultrathin (30 nm). (e) Transmittance of samples with 17 nm thick Ag grids
(blue and red lines), produced with distinct sphere size and etching time, compared to a continuous
Ag film (grey line)—high transparency can be noted in the NIR region. (f) Sheet resistance of the
electrodes fabricated with different diameters of PS spheres (1.6 or 5 um), etching time, and Ag
thickness. (g) Haacke’s figure-of-merit (expression in inset) for the main MMEs attained in this work,
in comparison with a state-of-the-art TCO film made of ITO and with continuous (planar) Ag layers.
Adapted with permission from [62]. Copyright 2021 Elsevier.

It is also believed that the use of metallic grids for electrodes when compared to
continuous layers, can bring several advantages for flexible transparent materials. In
particular, honeycomb grids as produced via CL allow the highest flexural robustness
with thinner MME structures [175], due to the fact that the honeycomb lattice enables the
highest packing density in 2D arrays. Overall, the use of metallic micro-grids opens new
and promising paths for transparent electronics, offering additional degrees of freedom for
further electro-optical improvements. Specifically, their much higher transmission if the red-
NIR region can be crucial for applications such as smart windows, low-energy photovoltaic
devices, and as intermediate contacts in multi-terminal multi-junction (tandem) solar cell
architectures [176,177].

4.3. Self-Cleaning with Photonic Structuring

Unavoidable environmental degradation is a major cause of efficiency losses in solar
panels over time. Phenomena such as the formation of hot-spots (areas of large heat
dissipation) caused by partial shading of solar cells can be responsible for large efficiency
losses [74,143]. Among different solutions mentioned at the beginning of Section 4, the
use of a self-cleaning coating appears to be the simplest and most fitting approach for
large-scale PV installations [74], as no mechanical structure is required for its cleaning
function.

Through superhydrophobic coatings, the concept of self-cleaning glass materials
showed a maturing research trend between 2009 and 2017, with 1125 research articles
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being published (ScienceDirect keywords: “self-cleaning glass, superhydrophobic glass”).
These coatings can be fabricated using top-down approaches such as template-based,
photolithographic, and surface plasma treatment [178], or top-down methods such as
chemical modification [179], colloidal assembly [180], layer-by-layer deposition [181], and
sol-gel methods [182] can also be applied [74].

An important application for PV technology was presented by Centeno et al., (2020) [31],
showing a simple, low-temperature, low-cost, and scalable CL method (Figure 17a) to
engineer parylene-C (poly(chloro-p-xylylene)) coatings with encapsulating properties that
endow effective light-trapping (LT) and water-repelling functionality when applied in
thin-film solar cells (Figure 17b—e). Parylene-C was used as the preferred coating material,
as it is a polymer with excellent barrier properties for encapsulation [183,184] and low
water-adhesion surface energy.
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Figure 17. (a) Depiction of the patterning of the photonic-structured parylene-C coating on the trans-
parent front contact of thin-film silicon solar cells, via chemical vapor deposition (CVD), followed
by CL with a patterning approach similar to that of Figure 6b. (b) Artistic image of the photonic
coating on the solar cell, illustrating its superhydrophobic surface where water droplets easily roll-off.
The microstructured parylene-C provides LT while also acting as a water-repellent protective layer,
which allows an effective self-cleaning functionality. (c) SEM image of the parylene-C surface mi-
crostructured via the CL process (O, + SFg RIE). (d) 1-Sun JV curves of the solar cells before (uncoated
reference, left curves) and after (right curves) coating with the photonic-structured parylene-C shown
in images (c,d), for illumination angles varying from 0° (normal to cell’s surface) to 90° (parallel to
the surface). (e) Polar plot presenting the angular dependence of the gain in efficiency (top) and
photocurrent (bottom) of the LT-enhanced solar cells relative to the planar references. Adapted with
permission from [31]. Copyright 2021 John Wiley and Sons.

It also benefits from optical transparency, adequate refractive index, outstanding
flexibility, and mechanical strength. Moreover, parylene is deposited via chemical vapor
deposition, which allows for the deposition of more uniform coatings at room temperature,
thus making it usable with non-flat temperature-sensitive materials [183,185,186].

In this work, the hydrophobicity of parylene was controlled by simultaneously ad-
justing the surface corrugations (i.e., roughness, patterned features) and surface chemical
composition with the CL patterning process following Figure 17a. In this way, a parylene-C
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film was micro-patterned with a hexagonal array of cones (see SEM in Figure 17c) after
being coated on the front TCO of nc-Si:H solar cells [31].

These microstructured parylene coatings also enable outstanding antireflection and
light scattering properties that were shown to enhance the solar cells” photocurrent by
up to 23.6% with normal incident light. Furthermore, the cells” angular response was
also improved, similarly to the previous work of Sanchez-Sobrado et al., (2020) [29]
shown in Figure 13. Figure 17d displays the JV curves with an illumination angle rang-
ing from 0° to 90°. The polar plot of Figure 17e shows the influence of the illumination
angle on the efficiency and Jsc enhancement relative to the flat reference cell without the
front microstructures.

These enhancement values increase with the angle until ~50°, with peak enhancements
up to 52% and 61% in Jsc and efficiency, respectively, while both Vo and FF (fill-factor)
were only marginally reduced with increasing angle. Such gains for oblique incident light
translate to an estimated average daily enhancement of ~35% in the generated energy, as
compared with the daily energy delivered by the uncoated reference cells.

4.4. Overview of Achievements

The following tables list the best results concerning the CL-patterned PV devices (rela-
tive to the unpatterned references) commented along this section (see Figure 9 schematic).
Table 1 summarizes the optimized computational designs and Table 2 the
experimental outcomes.

Table 1. Overview of simulation results on photonic microstructures for thin-film PV.

Authors Year [Ref.] Simulated Structure Best Results
Front-located TiO, domes on planar Si Photocurrent gain of 50% for thin ¢-Si cells with 1.5
2016 [149] .
Mend 1 solar cells pum thick absorber
endes et al. Front-located TiO, /TCO wavelength-sized Photocurrent gains of 37%, 27%, and 48% in 100
2018 [142] : ) . ) .
dome/void arrays nm a-5i, 300 nm a-Si, and 1.5 pm c-Si, respectively
Thin-film nc-Si:H solar cells with Photocurrent densities reaching 41.1 mA /cm?2
Isabella et al. 2018 [148] decoupled front and back textures with 2-um thick ne-Si:H absorber.

2019 [27]
Haque et al.
2020 [30]

Photocurrent gains up to 27% with planar
ultrathin (250 nm) perovskite layers, together with
UV blocking effect granting improved stability.
Photocurrent gains of 22.8% and 24.4%,
respectively with transparent and opaque
substrates, with 300 nm perovskite.

TiO, LT structures integrated on the front
contact of flat Perovskite solar cells (PSC)

Microstructured PSCs on transparent and
opaque photonic substrates

Alexandre et al. 2019 [28]

Photocurrent gains similar to Haque et al.,
together with up to 86% reduction of UV
penetration in the perovskite layer.

Combined luminescent down-shifting and
front-located photonic structures on PSCs

Table 2. Overview of experimental results on CL-fabricated microstructures for thin-film PV.

Authors Year [Ref.] Experimental Structure Best Results
Close-packed monolayer of silica Spheres acting as resonant Mie scatterers
Grandidier et al. 2013 [26] microspheres on the front of a-Si:H provide photocurrent and efficiency gains up to
solar cells 8.9% and 11.1%, respectively.
2017 [33] Front-located TiO; microstructures on  Absorption enhancement of 27.3% on spectral

a-Si:H thin-film absorbers average in 300 nm a-Si:H absorbers

TiO, or IZO structures integrated into Photocurrent gains up to 21.5% with TiO,

2019 [48] . (better optically) and efficiency gain up to 14.4%
Sanchez-Sobrado et al. _Sj:
front contact of a-Si:H solar cells with IZO (better electrically) LT structures.
. Photocurrent and efficiency gains up to 26.7%
2020 [29] Front-located IZO structures on a-Si:H and 23.1%, respectively, while gains >50% are

lar cells with optimized parameter. . . .o,
sofar cells with optiized p eters attained at an oblique incidence.
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Table 2. Cont.

Authors

Centeno et al.

Year [Ref.] Experimental Structure Best Results
Micro-patterned parylene-C film with ~ Water repellant (self-cleaning) surface, granting
2020 [31] micro-cone array coated on the front photocurrent and efficiency gains up to 23.6%,
TCO of nc-Si:H solar cells. and up to ~60% at oblique incidence.

. Diffuse transmission of 80% in the visible range;
Cu micro-mesh electrode as a

Gao et al. 2014 [172] ) . sheet resistance of 17 (3/0J on quartz; high
transparent conductive material
flexural robustness.
. Ag micro-grids sandwiched between Sheet resistances below 10 2/ and
Torrisi et al. 2019 [62] ultrathin TCO layers near-infrared transmittance over 50%.

5. Other Applications of Colloidal Lithography: Biological Cell Studies

Apart from the engineering of photonic solutions for optoelectronic-related technolo-
gies, such as photovoltaics, several nano/micro-structuring colloidal lithography (CL)
approaches have been used to develop breakthrough advances in most various scientific
areas. Among those, the biology community has been gaining increasing interest in CL, as
overviewed next to show the bigger picture of promising applications.

Micro and nanofabrication techniques have revolutionized the pharmaceutical and
medical fields. Complex geometries can be reproduced with technologies such as pho-
tolithography and particularly colloidal lithography [187]. The interaction of cells with
material surfaces has been widely studied, having relevance for the function of medical
devices, as well as to gain a better understanding of cellular action in vivo and in vitro [188].
In this field, nano-topography has shown that nanoscale features can strongly influence cell
morphology, adhesion, proliferation, and gene regulation, but the mechanisms mediating
this cellular response remain unclear [189]. Nano-topographies produced by CL may be
of great importance when considering how cells respond to their environment, allowing
for the elucidation of nano-feature effects on cell behavior. This appears to significantly
alter the morphology of endothelial cells, epithelial cells, epitenon cells, macrophages,
osteoblasts, and fibroblasts [190]. The cell reactions can be controlled by the surface charac-
teristics morphology, chemistry, and viscoelastic properties. Investigations on the influence
of nano-topographies in the cell response require surfaces patterned over large areas with
high reproducibility, high throughput, and fabricated in biocompatible materials [189,191].

For instance, the ability of fibrinogen molecules to specifically bind to receptors in
platelet membranes has been correlated with both nanoscale chemistry (hydrophobic and
hydrophilic) and surface topography (nanopits and planar surface) [192]. Thus, CL was
used to create a continuous thin-film of TiO, with a distribution of nanopits with 40 nm
diameter and 10 nm depth.

Similarly, collagen adsorption in terms of both adsorbed amount and the supramolecu-
lar organization was investigated concerning the influence of substrate surface topography
(smooth surface versus nano-protrusions) and surface chemistry (CHj versus OH groups).
CL and functionalization with alkanethiol were used to create model substrates with
these controlled topographical and chemical surface properties [193] (Figure 18a). The
surface chemistry was found to control collagen protein adsorption, while chemistry and
topography control collagen protein conformation.
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Figure 18. (a) Schematic illustration of prepared substrates with controlled nanotopography using
CL and surface chemistry by alkanethiol self-assembly: i) smooth substrates were obtained by
depositing titanium and gold layers onto silicon wafers; rough substrates were obtained by adhesion
of negatively charged polystyrene colloidal particles to a smooth positively charged surface, followed
by coating with a thin layer of gold. Adapted with permission from [193]. Copyright 2021 American
Chemical Society. (b) Schematic structure of fabrication of ordered tantalum (Ta) nanotopographies
using a combination of CL and glancing angle deposition techniques; and corresponding SEM images.
Adapted with permission from [194]. Copyright 2021 American Chemical Society.

The application of nanotechnology in the field of regenerative medicine has opened
a new realm of advancement in this field. The human fibroblasts have a pivotal role
during the initial phases of implant integration and resultant healing processes. Concern-
ing the tissue-implant interface, in vitro investigations indicate that micro-topography
can be used to control cell behavior, including that of fibroblasts, via initial adhesive
interactions [191,195]. In this respect, CL was used to fabricate irregular nanotopographies
with features of either 20 or 50 nm diameter pillars. These nano-pillar topographies modi-
fied fibroblast adhesion, morphology, and behavior relative to those deposited on planar
substrates. The fibroblast adhesion is observed to be greater on substrates patterned with
20 and 50 nm diameter colloidal topographies, which result in increased fibroblast adhesion
at 20 min and 60 min. Although the colloidal topographies alter the fibroblast adhesion,
morphology, and behavior when compared to control conditions (planar substrates), for
180 min the adhesion is similar to planar surfaces [191].

Andersson et al. [188] investigated how pancreatic epithelial cell lines (AR4-2]) re-
spond to surface structures (titanium pillars) of systematically increasing size. For this
study, a surface with the same surface chemistry and similar surface roughness (but with
increasing size of column diameters from 60 to 170 nm) was produced via CL. The changes
in the epithelial cells were studied by evaluating cell area and cell shape. It was observed
that the larger the feature, the more spread the cells became [188].

The behavior of primary human adipose-derived stem cells was studied on highly
ordered bowl arrays (Figure 18b). PS colloids (722 nm diameter) were self-assembled
into a hexagonally close-packed crystal array at the water-air interface, transferred onto
a biocompatible Ta surface, and used as a mask to generate an ordered Ta pattern. The
results showed that ordered Ta nanotopographies inhibited cell spreading, focal adhe-
sion formation, and filopodia extension when the surface roughness and feature height
increased [194]. It was also demonstrated that by changing the feature size, the ordered
topographies could alter stem cell adhesion and differentiation.
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These remarkable investigations have been expanding our knowledge in cell-surface
interactions, which is of great interest in biomaterials, tissue engineering, and cell ther-
apy applications; being CL a preferential industry-compatible technique for the needed
surface structuring.

6. Conclusions

As nano/microstructures fabrication grows in importance in a wide range of areas
from electronics through optics, microanalysis, combinatorial synthesis, displays, cell
biology, etc., the research on ever-more cost-effective patterning methods will undoubtedly
continue to increase.

In the past decade, colloidal lithography has grown to become one of the most attrac-
tive soft-patterning techniques, and a solid alternative to conventional hard-patterning
processes. Its main characteristic is that it embodies a simple and inexpensive way of
producing the lithographic mask, using monodisperse colloidal particles self-assembled
on the target surface. This method offers advantages in applications in which photolithog-
raphy falters, for instance, manufacturing below the (sub-wavelength) scale of 100 nm,
patterning on non-planar surfaces, fabrication of three-dimensional structures, patterning
functional materials other than photoresists, among other types of surface modifications.
Another key advantage is that colloidal lithography allows the formation of nano/micro-
scale structures of virtually any material, via scalable process steps that are compatible
with industrial mass-production requirements. As such, it is highly attractive for crafting
photonic schemes, such as those discussed here for photovoltaic applications, since it
enables the precise engineering of long-range ordered wavelength-sized features, with the
materials and geometries appropriate for efficient light-trapping.

This article overviewed some of the most promising nano/micro-structuring solutions
in the growing field of photovoltaics, where colloidal lithography was shown to be a
preferential patterning technique for the practical realization of the concepts in industri-
ally attractive ways. In particular, photonic-enhanced photovoltaics has been shown to
circumvent many of the conventional shortcomings of current solar cell technologies, such
as the reflection losses and impaired light absorption especially in thin-film devices; as
well as enabling other interesting functionalities such as improved transparent contacts
and self-cleaning due to the high aspect ratio of the photonic microstructures.
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