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Abstract: The cold cathode X-ray source has potential application in the field of radiotherapy, which
requires a stable dose. In this study, a gated carbon nanotube cold cathode electron gun with high
current stability was developed by using Insulated Gate Bipolar Transistor (IGBT) modulation, and
its application in X-ray source was explored. Carbon nanotube (CNTs) films were prepared directly
on stainless steel substrate by chemical vapor deposition and assembled with control gate and focus
electrodes to form an electron gun. A maximum cathode current of 200 µA and approximately
53% transmission rate was achieved. An IGBT was used to modulate and stabilize the cathode
current. High stable cathode current with fluctuation less than 0.5% has been obtained for 50 min
continuous operation. The electron gun was used in a transmission target X-ray source and a stable
X-ray dose rate was obtained. Our study demonstrates the feasibility of achieving high current
stability from a gated carbon nanotube cold cathode electron source using IGBT modulation for X-ray
source application.

Keywords: carbon nanotube; current stability; IGBT; X-ray source; current stability

1. Introduction

X-ray source has important applications in the fields of industrial inspection, medical
diagnosis and cancer radiotherapy, etc. [1–3]. The traditional thermionic cathode X-ray
sources have the disadvantages of slow response, bulky volume, high-power consumption
and short lifetime even though they are widely used nowadays [4]. The cold cathode X-ray
sources have been developed to solve those problems. By using cold cathode, the X-ray
source can achieve instant turn-on and off, small size, low power consumption and long
lifetime. In addition, it is easy to realize miniaturized or micro-focus X-ray sources. Cold
cathode X-ray sources have thus become a research hotspot in the field [5–9].

Since 2001, carbon nanotubes (CNTs) cold cathode has been extensively studied
for X-ray sources application due to its ultra-high aspect ratio and excellent electrical
characteristics [10]. H. Sugie et al. first fabricated a prototype X-ray tube with carbon
nanotube cold cathode prepared on cobalt coated tungsten wire. X- ray imaging was
achieved under 1.5 µA of cathode current and anode voltage of 60 kV and the lifetime of
more than 60 min was obtained [11]. After that, extensive studies have been carried out
for miniature, pulsed or micro-focus CNT cold cathode X-ray source [12–20]. For example,
Park et al. has developed a fully vacuum-sealed miniature X-ray tube with CNT emitters for
portable dental X-ray imaging systems [18]. The operational voltage of 65 kV and a current
of 3 mA has been achieved. Yue et al. fabricated a pulsed CNT cold cathode X-ray source,
and a total emission current of 28 mA was obtained from a 0.2 cm2 area CNT cathode [19].
The CNT cold cathode X-ray source had imaged a human extremity with pulsed anode
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voltage of 14 kV and can potentially be applied for industrial and medical applications.
Liu et al. reported a CNT cold cathode microfocus field emission X-ray tube [20]. X-ray
imaging was achieved at anode current of 0.1 mA and at the peak anode voltage of 40 kV.

Some applications of CNT cold cathode X-ray source in medical X-ray system have
been demonstrated. Cao et al. reported a Computed Tomography (CT) scanner using a
compact CNT X-ray tube [21]. The system could achieve 100 µm spatial resolution and
20 msec temporal resolution, which has been adopted in cardiac imaging of free-breathing
mice. Hadsell et al. proposed a compact X-ray-based Medical Radiologic Technology (MRT)
system that employed CNT cold cathode [22]. A dose rate of 1.54 mGy/s has been obtained
under 50 kV anode voltage and 0.5 mA anode current, which demonstrated the feasibility
of compact MRT system with a high dose rate. Zhang et al. used CNT cold cathode X-ray
source to develop a multi-beam X-ray imaging system [23]. The device can provide a tube
current of 0.1–1 mA at 40 kV and realize fast data acquisition for tomographic imaging.
Cheng et al. has reported a dynamic radiography system with a CNT cold cathode X-
ray source [24]. The system achieved ultra-fast temporal resolution and has potential
applications for dynamic X-ray imaging, which is promising for biomedical research.

Application imposes stability requirement on CNT cold cathode X-ray source [25].
For example, in radiotherapy application, high dose stability over a long period of (up
to half an hour) continuous operation is essential, and thus high stable operation of cold
cathode is a must [26–28]. Several approaches have been studied for achieving high stable
emission from gated CNT cold cathode electron source for X-ray source application. Some
researchers optimized the preparation method or adopted a post-treatment process [29,30].
Xiomara et al. put forward an electrophoretic process to fabricate composite CNT films
with controlled nanotube orientation and surface density, and enhanced adhesion [29]. The
cathodes have significantly enhanced macroscopic field emission current density and long-
term stability under high operating voltages. The peak emission current in the pulsed mode
was fixed at 3 mA and an average peak current of 3.0 ± 0.1 mA was obtained under the
modulation of gate voltage. The application of this CNT electron source for X-ray imaging
is also demonstrated. Ji et al. has proposed a post-processing technology of electrical aging
for CNT cathode prepared using resist-assisted patterning (RAP) and direct current (DC)
plasma-enhanced CVD [30]. An anode current of 5.27 mA and a current stability of 2.4%
were obtained at 1400 V gate voltage. X-ray images were obtained under 65 kV anode
voltage. Although others use electronic circuit (active or passive) to stabilize the emission
current [31,32], Sun et al. have adopted a passive ballast resistor under CNT to improve
reliability and current stability [31]. Moreover, Kang et al. has reported using an advanced
active-current control (ACC) circuit to increase the stability of emission current in a CNT
cold cathode X-ray source [32]. Despite the above-mentioned progresses, further study
is needed for achieving high stable current and high dose stability of X-ray source using
active circuit.

In this work, a gated CNT cold cathode electron gun has been fabricated for high
current stability X-ray source application. CNTs have been prepared by CVD. The I-V
characteristic curve and electron transmission have been tested under a high-vacuum
system. Current stability has been studied and a high voltage Insulated Gate Bipolar
Transistor (IGBT) has been used to suppress the current instability. Finally, the fabricated
gated CNT cold cathode electron gun was used in a transmission target X-ray source and
the dose rate stability was measured.

2. Device Fabrication and Cathode Preparation

Figure 1 shows the structure and the measurement circuit of a gated CNTs cold cathode
electron gun. The electron gun is composed of CNTs cold cathode, control gate and focus
electrodes. The cathode comprises CNTs thin film prepared on round stainless steel (SS
304) substrate of 1.6 mm in diameter and 0.2 mm in thickness. The gate is a molybdenum
mesh fixed on a stainless steel (SS 304) support. The 2 mm diameter mesh is composed
of round holes with a diameter of 90 µm and spacing of 30 µm. The focus electrode is a
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cylinder with a height (d) of 6 mm and inner diameter of 11 mm. The cathode, gate support
and focus electrode were installed on a circular ceramic base. The gap between the cathode
and the mesh gate is approximately 100 µm, which is defined by a thin metal ring.
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Figure 1. The structure and measurement circuit of CNTs cold cathode electron gun.

For the measurement of the current-gate voltage (I-V) curve and current stability of
gated CNTs cold cathode electron gun, a phosphor screen was used as the anode. The
distance (D) between the ceramic base and phosphor screen is 11 mm. The current-voltage
characteristics of the electron gun are measured in a high vacuum chamber with a base
pressure of 2.0 × 10−5 Pa. The anode is connected to a high voltage power supply (TD2200,
Teslaman. Tech Co., Ltd., Dalian, China), capable of biasing up to a maximum voltage
of 50 kV. The gate and focus voltage were supplied by individual digital manual-mode
voltage sources. Anode current (Ia), gate current (Ig), focus electrode current (If) and
cathode current (Ic) versus gate voltage (Vg) were recorded by amperemeters.

IGBT is a voltage-driven power semiconductor device combing BJT (Bipolar Junction
Transistor) and MOSFET (Metal Oxide Semiconductor Field Effect Transistor) [33]. It can
form a channel to drift charge carriers which can achieve a stable current by adding a fixed
positive gate voltage within a certain range [33,34]. In this study, an IGBT (SP25N135T,
Xiner, Shenzhen, China) was incorporated into the cathode circuit as shown in Figure 1.
The collector of IGBT was connected in series with the cathode. The source of IGBT
was grounded through a digital amperemeter. The gate of IGBT was linked to a source
metre (Keithley 2450, Tektronix, Beaverton, OR, USA), which can provide a highly stable
voltage output.

The CNTs were prepared by thermal chemical vapor deposition (TCVD) [35]. First, the
0.5 nm thickness Fe thin film was pre-deposited by sputtering on the SS 304 stainless steel
substrate acting as the catalyst. Then, the substrate was placed in the centre of a quartz
tube furnace. Secondly, the tube furnace was pumped to 1.5 × 10−3 Pa by the mechanical
pump and turbo pump. Then mixture gases of hydrogen and argon were continuously
introduced while the tube was heated up to 650 ◦C in 60 min. Subsequently, the reaction
gases of acetylene and hydrogen were let in and the CNTs were grown on the substrate.
After 20 min, the reaction gas was stopped, and the mixture gas of hydrogen and argon
was resumed until the temperature lowered to room temperature.

The morphology the prepared CNTs were characterized by SEM (SUPRA™60, Zeiss,
Oberkochen, Germany). The crystalline structure was studied by HRTEM (Titan G2
300 KV, FEI, Columbus, NJ, USA). In addition, Raman spectra were obtained by Raman
spectroscopy (FLSP920, Edinburgh Instruments, Edinburgh, UK) with a 532 nm Ar ion
laser source.



Nanomaterials 2022, 12, 1882 4 of 10

For X-ray source device, a transmission target made of 1070 nm molybdenum thin film
on the quartz substrate was used as the anode [36]. The distance between the ceramic base
and molybdenum anode is about 50 mm. The X-ray source was measured in the vacuum
chamber with a beryllium window. The X-ray dose rate was measured by a dose detector
(Magic Max, IBA, Göttingen, Germany) which is installed before the beryllium window.
A cadmium telluride (Cd-Te) X-ray energy spectrum detector (X-123SDD, AMPTEK, Inc,
Bedford, MA, USA) was used to measure the X-ray energy spectrum. Finally, the X-ray
imaging was carried out by using a flat panel X-ray detector (Xineos-1515, Thousand
Oaks, CA, USA).

3. Results and Discussion
3.1. Materials Characterization

Figure 2a,b shows the overview morphology of the prepared CNTs under different
magnifications. The prepared CNTs are dense and have randomly aligned spaghetti-like
morphology. The diameter of CNTs is about 20–30 nm and the length of CNTs reaches
several tens of microns. Figure 2c shows the cross-sectional morphology of prepared CNTs.
The CNTs twisted and tangled randomly and some CNTs protrude 10–20 µm above other
CNTs. Figure 2d shows magnified SEM of one protruding CNTs.
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Figure 2. SEM images of the prepared CNTs. (a,b) The overview morphology under different
magnifications. (c) The cross-sectional view of grown CNTs. (d) SEM image of one protruding CNT.

The HRTEM of the prepared CNTs was shown in Figure 3a, which shows a multi-wall
structure. Figure 3b shows the Raman spectrum. The Raman shift at 1349 cm−1, 1587 cm−1

corresponding to the D peak and G peak of CNTs. The intensity ratio of IG/ID is about 0.57,
indicating a relative-high defect level in the graphene structure of prepared CNTs. Weak
sideband can also be found on the right side of G peak, which represents lattice defect of
prepared CNTs [37,38].
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Figure 3. (a) HRTEM image and (b) Raman spectrum of the prepared CNTs.

3.2. Field Emisison Characteristics and Stability of Gated CNT Electron Gun

The field emission current-voltage (I−V) characteristics of the CNT cathode electron
source are measured in a vacuum chamber. The anode current (Ia), gate current (Ig), focus
electrode current (If) and cathode current (Ic) versus gate voltage (Vg) characteristics of the
electron gun were measured under 6 kV anode voltage and 0 V focus voltage, as shown in
Figure 4a. Maximum current of 200 µA has been achieved at gate voltage of 1450 V, which
corresponding to a current density of 9.55 mA/cm2 at the cathode. The field emission
current was usually described by the Fowler–Nordheim (F–N) equation [39]:

I = AS

(
βV2

Φh2

)
exp

(
−BΦ

3
2 h/βV

)
(1)

where A and B are two constants, Φ is the work function of emitter, β is field enhancement
factor, S is the emission area, h is the distance between cathode and gate and V is applied
voltage. The inset of Figure 4a shows the corresponding F–N plot and the field emission
image. A deviation from linear relation was observed, which can be attributed to space
charge effect according to early studies [40,41].
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The electron transmission rate was calculated using Ianode/Icathode. The transmission
rate results under different gate voltage are shown in the Figure 4b and the assembled
electron gun device is also shown in the inset of Figure 4b. The electron transmission rates
are around 53% under different gate voltages.

We further studied the current stability of the CNT cold cathode electron source with
and without IGBT regulation. In the measurement, the anode voltage was fixed as 4 kV.
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Figure 5a shows the cathode current stability of CNT cold cathode electron source under
different current levels without IGBT modulation.
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The current fluctuation ϕwas calculated by [42]:

ϕ = ∑n
i=1

∣∣Ii − Iaverage
∣∣

n.Iaverage
(2)

where Ii is the cathode current at each moment and Iaverage is the average current. The
calculated current fluctuations are 3.97%, 3.91% and 7.34% for gate voltage of 1.0 kV, 1.1 kV
and 1.2 kV, respectively. The current instability of CNT electron source mainly resulted
from surface adsorbates of CNT cold cathode [43].

Furthermore, the cathode current stability was measured when the IGBT was con-
nected to the cathode to modulate the emission current. The gate voltage of the CNT
electron source was set to 1.2 kV and the gate voltage of IGBT was tuned. Figure 5b shows
the results when the IGBT gate voltage is fixed at 5.3 V, 5.4 V and 5.5 V. We found that the
emission current can be effectively modulated by the IGBT gate voltage and current of
15.3 µA, 28.5 µA and 49.3 µA were obtained under the different IGBT gate voltages. The
current fluctuations were calculated using equation 2 and the obtained values are 0.22%,
0.45% and 0.24% when the IGBT gate voltage is 5.3 V, 5.4 V and 5.5 V, respectively.

The electrical characteristics of the IGBT was measured, as shown in Figure 6. The
collector currents were ~2.21 µA, ~4.14 µA, ~7.72 µA, ~14.5 µA, ~27.6 µA, ~53.2 µA and
~96.8 µA when the IGBT gate voltage was set as 5.0 V, 5.1 V, 5.2 V, 5.3 V, 5.4 V, 5.5 V and
5.6 V, respectively. Clearly, the IGBT works in the saturation region which has high stability
current. When the emission current from CNT cathode fluctuates, the IGBT will limited the
current in the circuit, lowering the fluctuation in the emission current.
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Table 1 compares the current stability of the CNT electron source reported in references.
The results indicate the current stability achieved in our work are better compared with the
referred data. Using IGBT modulation is an effective approach to overcome the instability
in CNT cold cathode and realize high current stability.

Table 1. The current stability of CNT electron sources reported in references.

CNT Preparation Method
Device Structure

and Current Modulation Method Gate Voltage Cathode Current Current Fluctuation Ref.

Plasma enhanced CVD;
Resist-assisted patterning

Gated structure without
current modulation 1400 V ~6000 µA 2.4% [30]

Electrophoretic deposition Gated structure without
current modulation 800 V ~600 µA ~1% [44]

Microwave Plasma CVD Diode structure with thin
film transistor N/A ~11 µA <2% [45]

Thermal CVD Gated structure with CNTs on
silicon posts as resistor ballast 60 V ~120 µA <5% [46]

Plasma Enhanced CVD;
Resist-assisted patterning Diode structure with MOSFET N/A ~77 µA ~0.45% [47]

Thermal CVD Gated structure without
current modulation 1200 V ~30 µA 3.91% this work

Thermal CVD Gated structure with IGBT 1200 V 15.3 µA 0.22% this work

3.3. Application in X-ray Source

The fabricated CNT cold cathode electron gun was assembled with a transmission
anode to form an X-ray source. The X-ray emission of the device was measured in a high
vacuum chamber with a beryllium window. The gate voltage of IGBT was set to 5.5 V
and the anode voltage is set to 45 kV. The dose rate data were collected by a dose detector
within 100 s;the result is shown in Figure 7. A stable dose rate of about 15.5 µGy/s was
achieved, and the high stability proved the effect of IGBT modulation.
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Figure 7. The X-ray dose rate of gated CNTs X-ray source at Va = 45 kV.

The energy spectrum was recorded under 50 kV anode voltage by the Cd-Te X-ray
energy spectrum detector, as shown in Figure 8. The two peaks at 17.48 and 19.58 keV in the
X-ray spectrum correspond to characteristic emissions of the K-shell of the Mo target [48].

The X-ray imaging properties of the X-ray source were also studied. The X-ray focal
spot was measured following the European standard (EN 12543-5), where the resolution is
obtained based on the line profiles of the transmitted X-ray intensity of a 1 mm diameter
tungsten wire phantom in two orthogonal directions [20]. To satisfy the conditions set
by this standard, the wire and flat panel X-ray detector were placed, respectively, 15 and
20 cm apart from the X-ray source, horizontally. The X-ray projection image of the tungsten
wire phantom is shown in Figure 9a. The horizontal and vertical size of the X-ray focal
spot was calculated to be about 473 µm and 521 µm from the line intensity profiles of the
cross wires shown in Figure 9b. The focal spot demagnification factor is approximately
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3.2, which is calculated from the ratio of the cathode size (160 µm) and the true focal spot
diameter. X-ray imaging results of a line pair card was presented in Figure 9d and up to
3.55 line pairs/mm was clearly resolved, indicating that the imaging resolution of CNT
cold cathode X-ray source can reach to approximately 140 µm. The integrated circuit chips
were also clearly imaged as shown in Figure 9d.
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Figure 9. (a) X-ray projection images of vertically crossed tungsten wires. (b) Intensity profiles
along the vertical and horizontal directions. X-ray images of line pair card (c) and integrated circuit
chips (d).

4. Conclusions

A gated carbon nanotube cold cathode electron gun with high current stability was
achieved using IGBT modulation. Maximum cathode current of 200 µA and approximately
53% transmission has been achieved. High stable cathode current with less than 0.5%
fluctuation has been obtained for 50 min continuous operation by using IGBT modulation.
A transmission target X-ray source was fabricated with the electron gun. Stable X-ray dose
rate and clear X-ray imaging were obtained. The results demonstrate that IGBT modulation
is an effective way to achieve high current stability of gated carbon nanotube cold cathode
electron source for X-ray source application.
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