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Abstract: Advances in drug delivery systems (DDSs) have enabled the specific delivery of drugs
to target cells. Subtilase cytotoxin (SubAB) produced by certain enterohemorrhagic Escherichia
coli strains induces endoplasmic reticulum (ER) stress and suppresses nitric oxide generation in
macrophages. We previously reported that modification of SubAB with poly(D,L-lactide-co-glycolic)
acid (PLGA) nanoparticles (SubAB-PLGA NPs) increased intracellular uptake of SubAB and had an
anti-inflammatory effect on macrophages. However, specific delivery of SubAB to macrophages could
not be achieved because its effects on other cell types were not negligible. Therefore, to suppress
non-specific SubAB binding, we used low-binding mutant SubABS35A (S35A) in which the 35th serine
of the B subunit was mutated to alanine. In a macrophage cell line, PLGA NPs modified with S35A
(S35A-PLGA NPs) induced ER stress and had anti-inflammatory effects similar to WT-PLGA NPs.
However, in an epithelial cell line, S35A-PLGA NPs induced lower ER stress than WT-PLGA NPs.
These results suggest that S35A is selectively delivered to macrophages rather than epithelial cells by
modification with PLGA NPs and exerts anti-inflammatory effects. Our findings provide a useful
technique for protein delivery to macrophages and encourage medical applications of DDSs for the
treatment of inflammatory diseases.

Keywords: PLGA nanoparticles; anti-inflammatory; controlled drug delivery

1. Introduction

A drug delivery system (DDS) is an engineered technology for targeted delivery
and/or controlled release of therapeutic agents, which plays an important role in advances
in pharmaceutical and medical fields. The goal of a DDS is to achieve better therapeutic
effects without any side effects. Therefore, the development of attractive drug carriers
with both targeting of lesions and controlled release is eagerly awaited [1]. Synthetic
nanoparticles (NPs) as drug carriers are a potential clinical therapeutic tool against cancer
and inflammation [2]. NPs have been developed on the basis of various materials including
liposomes [3], chitosan [4], dextran [5], silica [6], metals such as silver and gold [7], and
biodegradable poly(D,L-lactide-co-glycolic) acid (PLGA) [8]. Recently, Jin et al. reported
the chirality-controlled protein NPs driven by molecular interactions for cancer therapy.
The developed NPs were effectively taken up into HCT116 cells and showed significant
antitumor activity [9]. Other polymer materials including hydrogels, micro/nanofibers,
and inorganic hybrid NPs have also been developed and are expected to be next-generation
DDSs. [10–12] Moreover, drugs are delivered to not only specific tissues and cells, but
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also to specific cellular organelles, such as nuclei, mitochondria, and lysosomes, using a
DDS [13–15].

The endoplasmic reticulum (ER) is a crucial organelle for protein quality control
(e.g., protein synthesis, folding, maturation, and stabilization) [16]. Many intracellular
proteins are folded in the ER by various chaperones and folding enzymes [17]. Subsequently,
the proteins are subjected to post-translational modifications, including glycosylation and
disulfide bond formation by glycosylation enzymes and oxidoreductase, respectively,
to generate mature forms [18]. Genetic and environmental damage, such as nutrient
depletion, and oxidative stress, causes the accumulation of unfolded proteins, resulting in
ER stress. This stress activates the unfolded protein response (UPR) via ER stress sensor
proteins [19]. Although ER stress is associated with many pathological conditions, recent
studies have revealed that adaptive UPR signaling protects cells from cytotoxicity and
excessive inflammation in a context-dependent manner [20]. Therefore, controlling the UPR
may provide new prospects for future treatments of ER-related diseases and inflammation.
On the basis of the above concept, some researchers have reported targeting the ER using
sulfonyl ligands and peptides [21,22].

Subtilase cytotoxin (SubAB), a member of the AB5 toxin family, was identified in
enterohemorrhagic Escherichia coli O113:H21 that was associated with an outbreak in Aus-
tralia [23–25]. SubAB consists of an enzymatically active A subunit (SubA) that cleaves host
ER chaperon binding immunoglobulin protein (BiP) and a pentameric B subunit (SubB)
that binds to sialoglycan-modified cell surface receptors and mediates uptake into target
cells [26,27]. SubAB translocates to the ER via the COPI-dependent Golgi retrograde traf-
ficking pathway [28,29]. After translocation into the ER, SubAB cleaves BiP and results
in ER stress-induced cytotoxicity through activation of ER stress sensors protein kinase
R-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and
activating transcription factor 6 (ATF6) that mediate a unique signaling pathway including
eukaryotic initiation factor 2α (eIF2α) phosphorylation and C/EBP homologous protein
(CHOP) expression [30,31]. Several studies have demonstrated that SubAB induces cyto-
toxicity, stress granule formation [31], inhibition of autophagy [32] and inflammasome [33]
in vitro, and lethal severe hemorrhagic inflammation and enteropathogenic bacterial infec-
tion in mice [34]. Additionally, SubAB inhibits lipopolysaccharide (LPS)-induced nitric oxide
(NO) production in macrophages through suppression of nuclear factor kappa-B (NF-κB)
activation and subsequent inducible NO synthase (iNOS) expression [35]. SubAB may
have therapeutic potential for immunosuppression in macrophages because of inhibiting
activation of NF-κB, the master regulator of LPS-induced pro-inflammatory gene expression.

Recently, we reported that modification of NPs with PLGA improves the efficiency
of wildtype SubAB (WT) uptake into macrophages and the subsequent anti-inflammatory
effect [36]. However, macrophage-specific delivery of WT was difficult because the B
subunit of WT has a potent cell adhesion property without cell specificity. Therefore, in
this study, we attempted macrophage-specific delivery of the toxin using a mutant SubAB
with a low-affinity cell adhesion property engineered through site-directed mutagenesis in
the B subunit.

2. Materials and Methods
2.1. Materials

Poly(D,L-lactide-co-glycolic) acid (PLGA, 85:15, MW: 190,000–240,000) and fluorescein
isothiocyanate isomer I were purchased from Sigma-Aldrich (St. Louis, MO, USA). N-
hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochlo-
ride (water-soluble carbodiimide, WSC), and N-(5-amino-1-carboxypentyl) iminodiacetic
acid (AB-NTA) were from DOJINDO (Kumamoto, Japan). A purified mouse anti-BiP/GRP78
antibody (Cat#610979) was from BD Transduction Laboratories™ (Franklin Lakes, NJ,
USA). Oleylamine and an anti-β-actin mouse monoclonal antibody were purchased from
FUJIFILM Wako Pure Chemical (Osaka, Japan). Anti-mouse immunoglobulin G (IgG),
horseradish peroxidase (HRP)-linked (#7076) and anti-rabbit IgG, HRP-linked (#7074),
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anti-CHOP (#2895), anti-poly(ADP-ribose) polymerases (PARP) (#9542), anti-cleaved PARP
(#5625), anti-cleaved cysteine aspartate-specific protease (caspase) 7 (#9491), anti-cleaved
caspase 3 (#9661), anti-phospho-eIF2α (#3398), and anti-total eIF2α (#5324) antibodies were
obtained from Cell Signaling Technology (Danvers, MA, USA). An anti-iNOS mouse mono-
clonal antibody [37] and anti-SubAB anti-serum [38] were prepared as reported previously.

2.2. Purification of His-Tagged Toxins

Oligo histidine-tagged (6× His-tagged) recombinant SubAB (His-tagged SubAB; WT),
catalytically inactive mutant His-tagged SubAS272AB (S272A), and His-tagged A subunit
(SubA) were purified by affinity chromatography using Ni-NTA agarose (Qiagen, Hilden,
Germany) as reported previously [39].

2.3. Site-Directed Mutagenesis of B Subunit of SubAB

To replace a serine residue (S35) with alanine in the B subunit of SubAB, we per-
formed PCR-based site-directed mutagenesis on a SubAB expression plasmid (pET23b-
SubAB) using a QuikChange site-directed mutagenesis kit (Agilent Technologies, Santa
Clara, CA, USA), in accordance with the manufacturer’s instructions. Primers used for
mutagenesis were as follows: 5′-GGCATGTTTGCAGGCGTTGTTATTACCC-3′ and 5′-
CAACGCCTGCAAACATGCCATCCCGGGC-3′ (mutated bases are underlined). The se-
quence was confirmed by an ABI PRISM 377 DNA sequencer (Applied Biosystems, Foster
City, CA, USA). The his-tagged SubABS35A (S35A) mutant was purified using the same
method described above.

2.4. HiLyte Fluor™ 555 (HF555) Labeling of Toxins

To investigate SubAB uptake by RAW264.7 and HeLa cells, WT and mutant toxins
(S272A, SubA, and S35A) were labeled with HiLyte Fluor™ 555 Labeling Kit-NH2 (Do-
jindo, Kumamoto, Japan) in accordance with the manufacturer’s instructions. Briefly, to
replace the solvent in which the toxins were dissolved, 200 µg toxins were applied to the
ultrafiltration spin column and centrifuged at 8000× g for 10 min. Toxins were dissolved
in reaction buffer, mixed with the succinimidyl ester (SE) reactive form of Hilyte Fluor™
555 (HF555-SE) (dissolved in DMSO), and incubated at 37 ◦C for 30 min. WS buffer was
added to the mixtures in the spin column and then washed by centrifugation at 8000× g for
10 min to remove the unbound HF555-SE. The HF555-labeled toxins (HF555-toxins) were
dissolved in 200 µL PBS by pipetting and stored at 4 ◦C.

2.5. Cell Culture

Murine macrophage cell lines J774.1 and RAW264.7 cells, and human cervical cancer
cell line HeLa were cultured in Dulbecco’s modified Eagle’s medium (FUJIFILM Wako)
supplemented with 10% heat-inactivated fetal bovine serum (MP Biomedicals, Santa Ana,
CA, USA) and 1% penicillin-streptomycin (Nacalai Tesque, Kyoto, Japan) in a 5% CO2
humidified incubator at 37 ◦C.

2.6. Fluorescence Microscopy

RAW264.7 and HeLa cells were seeded on a glass-bottom dish at 5 × 104 cells/dish
and 1×104 cells/dish, respectively. After overnight culture, 100 µL HF555-toxins (HF555-
WT, HF555-S272A, HF555-SubA, and HF555-S35A) and 1 µL Cellstain® DAPI solution
(DOJINDO) were added to the cells. After incubation for 1 h at 37 ◦C, cells were observed
under a BZ-X800 All-in-one Fluorescence Microscope (Keyence, Osaka, Japan).

2.7. Preparation of PLGA NPs

PLGA NPs were synthesized in accordance with our previous study [36]. Briefly, PLGA
and stearic acid at a 1:37 ratio were prepared in chloroform (oil phase). To prepare PLGA
NPs, the oil phase was added dropwise to the ultrapure water under probe sonication and
evaporation solvent for 3 h.
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2.8. Preparation of FITC-Conjugated Oleylamine

FITC-conjugated oleylamine was synthesized by a reaction between the amino group
of oleylamine (OA)-fluorescein isothiocyanate isomer I (FITC) and the isothiocyanate group
of FITC. FITC (2 mg) was dissolved in 2 mL N,N-dimethylformamide (DMF). Then, 30 mL
OA was dissolved in 50 mL DMF. The FITC and OA solution was then mixed for 48 h at
50 ◦C. After the reaction, FITC-OA was collected by column chromatography.

2.9. Preparation of FITC-Labeled PLGA NPs

FITC-labeled PLGA NPs were prepared by an emulsion/evaporation method. Briefly,
PLGA, stearic acid, and FITC-OA at a 1:7:30 ratio were prepared in chloroform (oil phase).
To prepare PLGA NPs, the oil phase was added dropwise to the ultrapure water under
probe sonication and evaporation solvent for 3 h.

2.10. Characterization of PLGA NPs

The size distribution and zeta potential of NPs were measured by a Zetasizer Nano ZS
(Malvern Instruments Ltd., Worcestershire, UK). The shape and size of NPs were observed
by transmission electron microscopy (TEM, JEM-1400Plus; JEOL, Tokyo, Japan). For TEM
observation, 100 µL PLGA NPs was mixed with 100 µL of 0.01% phosphotungstic acid for
5 min and then 20 µL of the solution was placed on parafilm. A carbon-film-coated TEM
grid (ELS-C10, Okenshoji Co., Ltd., Tokyo, Japan) was placed inside the droplet. After
incubation for 2 min, the grid was dried in a vacuum at room temperature overnight.

2.11. Surface Modification of PLGA NPs with SubAB Toxins

Modification of the PLGA NP surface with SubAB was performed in accordance with
a previous report [30]. In brief, 100 µL PLGA NPs dispersed in water was centrifuged at
12,000× g for 5 min. The precipitate was redispersed in 100 µL of a solution containing
10 µL of 0.9 mg/mL NHS and 1.5 mg/mL WSC in 20 mM phosphate buffer (pH 8.2). The
mixture was shaken for 20 min at 37 ◦C, followed by washing with 20 mM phosphate
buffer (pH 8.2). Then, 5 µL of 2 mg/mL AB-NTA was added to the NHS-activated PLGA
NP solution and the mixture was shaken for 2 h at 37 ◦C. After washing the mixture, the
resultant NTA-modified PLGA NPs were reacted with 5 µL of a 2 mg/mL NiCl2 aqueous
solution and shaken at 37 ◦C for 30 min. The mixture was washed with 20 mM phosphate
buffer (pH 8.2) and redispersed in 95 µL of 20 mM phosphate buffer (pH 8.2). Then, 5 µL
of 347 µg/mL His-tagged SubAB was added. The mixture was shaken for 1 h at room
temperature and washed with 20 mM phosphate buffer (pH 8.2). Then, the resultant
His-tagged SubAB-conjugated PLGA NPs (WT-PLGA NPs) were stored at 4 ◦C. Mutant
SubABS35A-conjugated PLGA NPs (S35A-PLGA NPs) and SubA-conjugated PLGA NPs
(A-PLGA NPs) were prepared in a similar manner.

2.12. Evaluation of pH-Dependent Release of His-Tagged SubAB Toxins

One-hundred microliters of SubAB toxins-PLGA NPs (WT-PLGA NPs, S35A-PLGA
NPs, and A-PLGA NPs) were centrifuged (12,000× g, 5 min) to remove the supernatant.
The NPs were redispersed in 100 µL ultrapure water. The solution was centrifuged again
(12000× g, 5 min) to remove the supernatant. The NPs were then redispersed in 30 µL of
8 mM phosphate buffer (pH 7.4) or acetate buffer (pH 5.0) and shaken at 37 ◦C. After 0, 1,
10, and 30 min, the samples were centrifuged (12,000× g, 5 min) to collect the supernatants.
Released His-tagged toxins in the supernatants were analyzed by Western blotting using
anti-SubAB anti-serum.

2.13. Intracellular Uptake of SubAB Toxin-PLGA NPs

Intracellular uptake of SubAB toxins-PLGA NPs in RAW264.7 and HeLa cells was
evaluated by fluorescence microscopy and a fluorescence microplate reader. RAW264.7 and
HeLa cells were seeded at 5 × 104 and 1 × 104 cells/dish in glass-bottom dishes at 5 × 104

and 1 × 104 cells/well in a 96-well plate, respectively, and incubated overnight at 37 ◦C.
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Cells were incubated for 20 h with FITC-labeled PLGA NPs modified with HF555-labeled
SubAB toxins. The distributions of HF555-labeled SubAB toxins and FITC-labeled PLGA
NPs were observed under the BZ-X800 All-in-one Fluorescence Microscope. The fluores-
cence intensity of FITC-labeled PLGA NPs in each well was measured and quantified using
a TECAN Infinite F200 Pro fluorescence microplate reader (Tecan Group Ltd., Männedorf,
Switzerland) at an excitation wavelength of 485 nm and emission wavelength of 535 nm.

2.14. Western Blotting

J774.1 and HeLa cells were seeded at 5 × 104 and 1 × 104 cells/well, respectively, and
cultured overnight at 37 ◦C. The cells were treated with or without LPS (100 ng/mL) in
the presence of 5 µg/mL SubAB toxins and 20 µg/mL SubAB toxins-PLGA NPs, and then
incubated for 3, 8, or 20 h at 37 ◦C. Cells were lysed in SDS sample buffer (62.5 mM Tris-HCl,
pH 6.8, 2% SDS, 6% glycerol, 0.005% bromophenol blue, and 2.5% 2-mercaptoethanol) and
then boiled for 3 min. Proteins were separated by SDS-PAGE, and transferred onto a
polyvinylidene difluoride membrane (Merck Millipore, Darmstadt, Germany) at 100 V for
1 h. The membranes were blocked with 5% dry non-fat milk in TBS-T (20 mM Tris-HCl,
pH 7.5, 137 mM NaCl, and 0.1% Tween 20) for 1 h and then incubated for 1 h at room
temperature or overnight at 4 ◦C with the indicated primary antibody. The membranes
were washed with TBS-T, followed by incubation with an HRP-conjugated secondary
antibody at room temperature for 1 h. Protein bands were detected using Immobilon
Western Chemiluminescent HRP Substrate (Merck Millipore) and a luminescent image
analyzer, the ChemiDoc™ XRS system (Bio-Rad, Hercules, CA, USA).

2.15. MTT Assay

Cell viability was assessed by the MTT assay in accordance with our previous study [40].
To evaluate the toxicity of SubAB toxin-PLGA NPs, J774.1 and HeLa cells were seeded
at 5 × 104 and 1 × 104 cells/well, respectively, in a 96-well plate and treated for 24 h
with or without 5 µg/mL PLGA NPs, WT-PLGA NPs, A-PLGA NPs, or S35A-PLGA NPs.
Culture supernatants were then replaced with a culture medium containing 0.75 mg/mL
MTT. After 1 h of incubation, a stop solution (isopropanol containing 0.4% HCl and 10%
Triton X-100) was added to each well. Relative cell viability was analyzed by measuring
absorbance at 570 nm using the microplate reader. Results are expressed as the mean cell
viability ± standard deviation (S.D.) of triplicate cultures.

2.16. Griess Assay

Quantification of nitrite ions produced by macrophages was examined by the Griess as-
say. J774.1 cells seeded in a 96-well plate were treated with or without 5 µg/mL PLGA NPs,
WT-PLGA NPs, A-PLGA NPs, or S35A-PLGA NPs. After treatment for 20 h, 50 µL of cul-
ture supernatant was mixed with 25 µL Griess Reagent I (1% sulfanilamide in 5% HCl) and
incubated for 5 min. Then, 25 µL Griess Reagent II [0.1% N-(1-naphthyl)-ethylenediamine]
was added, followed by incubation at room temperature for 10 min. Absorbance at 570 nm
was measured by the microplate reader.

2.17. Statistical Analysis

All data are expressed as means ± S.D. Data for each experiment were obtained from
at least three independent experiments. Statistical analyses were performed using Student’s
t-test with the level of significance set at p < 0.05.

3. Results and Discussion
3.1. Cell Recognition-Inactivated SubABS35A (S35A) Mutant Had Decreased Uptake by Cells

Wildtype SubAB (WT) binds to cell surface receptors and enters through lipid rafts
and actin-dependent macropinocytosis-like mechanisms in HeLa cells [26,41,42]. The
35th serine residue (S35) of the B subunit (corresponds to S12 of the secreted B subunit
without the N-terminal signal peptide) is required for binding to N-glycolylneuraminic
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acid-terminated glycans of receptors [23,41]. To evaluate cellular uptake of mutant SubAB
toxins including the catalytically inactive mutant SubAS272AB (S272A), site-directed B
subunit mutant SubABS35A (S35A), and B subunit-deficient mutant SubA, we treated cells
with fluorescent dye-labeled toxins [HF555-wildtype SubAB (WT), S272A, S35A, and SubA
(A)] and observed the distribution by fluorescence microscopy. Figure 1 shows fluorescent
signals of HF555 around nuclei in both RAW264.7 and HeLa cells treated with HF555-
WT and HF555-S272A, suggesting that both WT and mutant S272A, which have intact B
subunits, were internalized and localized in the ER (Figure 1a,b). However, intracellular
accumulation of HF555 fluorescence was not observed in cells treated with HF555-A
and HF555-S35A. In agreement with a previous report [23,43], our results indicated that
intracellular uptake of SubAB was dramatically decreased by deficiency of the B subunit
or mutation in serine at position 35. Yersinia pestis and Salmonella enterica serovar Typhi
encode homologs of SubB, namely YpeB and PltB [44,45]. Mutations in the serine residue
corresponding to S35 of SubB negate the binding activity, demonstrating the importance of
the serine residue at this position for sialoglycan-modified cell surface receptors. However,
mutation in the active site of the A subunit did not affect cellular uptake and accumulation
around the nucleus.

SubAB is known to specifically cleave the endoplasmic reticulum chaperone BiP.
Figure 1c shows the Western blot images of BiP cleavage by incubation of RAW264.7, HeLa,
and HeLa cell lysates with the indicated toxins. WT cleaved BiP in both RAW 264.7 and
HeLa cells, and in cell lysates, whereas SubA (A) and SubABS35A (S35A) cleaved BiP only in
cell lysates (Figure S1a–c). These results indicate that both A and S35A have an enzymatic
activity that cleaves BiP but cannot enter cells because of reduced cell binding. Therefore,
the accumulation of HF555-SubAB toxins around the nucleus indicates ER accumulation
that depends on the binding activity of the B subunit. However, S272A translocates to the
ER but does not cleave BiP in macrophages, HeLa cells, or cell lysates because of mutation
in the active site.
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Figure 1. Evaluation of cellular uptake and BiP cleavage activity of various SubAB toxins.
(a,b) RAW264.7 cells (a) and HeLa cells (b) were treated with 5 µg/mL Hylite555 (HF555)-labeled
toxins and then incubated for 1 h at 37 ◦C. After adding a DAPI solution, cells were observed by
fluorescence microscopy. WT: HF555-labeled wildtype SubAB; S272A: HF555-labeled SubAS272AB; A:
HF555-labeled SubA; S35A: HF555-labeled SubABS35A. Scale bars: 10 µm. (c) RAW264.7 and HeLa
cells and a HeLa cell lysate were treated for 1 h with 5 µg/mL toxins. BiP cleavage in cultured cells
and the cell lysate were evaluated by Western blotting. WT: wildtype SubAB; S272A: SubAS272AB; A:
SubA; S35A: SubABS35A. β-Actin served as a loading control.
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3.2. Preparation and Characterization of PLGA NPs Modified with Various SubAB Toxins

Poly(D,L-lactide-co-glycolic) acid (PLGA) is a synthetic copolymer composed of lactic
and glycolic acids. PLGA has amphipathic properties because of the lactic acid-derived
hydrophobic crystalline characteristic and glycolic acid-derived hydrophilic amorphous
characteristic. It is degraded by cellular hydrolysis and metabolized by the tricarboxylic
acid cycle, and subsequently eliminated from the body as carbon dioxide and water [46].
PLGA NPs are one of the most characterized biomaterials available for the development of
drug delivery systems in terms of design and performance as a biodegradable micro/nano-
device [47,48]. To expose carboxyl groups outside of the particle, we prepared PLGA
NPs by the single oil-in-water emulsion method in presence of stearic acids (Figure 2a).
TEM observation showed that the PLGA NPs were spherical and dispersed individually
(Figure 2b). The PLGA NPs had an average particle size of 260.7 ± 14.7 nm and a zeta
potential of −32.8 ± 0.32 mV (Table 1 and Figure S2a,b). The observed size of the PLGA
NPs on the TEM grids was smaller than the diameters measured by DLS, which is related
to the different states of the particles during these measurements. In DLS measurement, the
NPs were dispersed in an aqueous solution and therefore swollen [49,50]. Meanwhile, in
TEM observation, the NPs were observed in dry conditions. Thus, the NPs may be shrunk
during the dry process, resulting in a smaller size than that of DLS measurement [51].
Furthermore, DLS measurement is a technique to characterize particle size from the decay
of light scattering as a result of Brownian motion. In the case of a high polydispersity
index, light scattering intensity is strengthened by large particles, meaning that the size of
characterized particle was larger than that of the intrinsic particle [52]. The negative zeta
potential indicated that the carboxyl groups of stearic acid were embedded in the NP surface.
The carboxyl groups of stearic acid were modified by His-tagged WT, A, or S35A through
a Ni2+ chelate complex (Figure 2c). The poly-histidine-tagged (His-tagged) recombinant
protein binds strongly to transition metal chelates such as the Ni(II) nitrilotriacetate (Ni-
NTA) complex at pH 8.0. Protonation of the imidazole nitrogen atom in the histidine
residue (pKa3 = 6.04) and the coordination bond between histidine and transition metal
ions including Ni2+ are disrupted by a pH reduction to 5.0 [53,54]. In a previous study,
macrophage-selective delivery was not achieved by WT-PLGA NPs. WT-PLGA has also
delivered WT to epithelial cells. Thus, to target macrophages, we modified PLGA NPs
through the Ni-NTA complex at pH 8.0 with the His-tagged A and S35A, which has a low
cell-binding activity. The particle size and zeta potential of WT-, A-, and S35A-PLGA NPs
were examined by DLS. As shown in Table 1 and Figure S2c–h, the average size of the
toxin-modified PLGA NPs was approximately 300 nm, and the zeta potential had increased
positively. Theoretically calculated isoelectric point (pI) values of SubAB subunits obtained
by the Compute pI/Mw tool ExPASy (https://web.expasy.org/computepi/) (accessed
on 14 February 2022) were 9.28 (A subunit) and 8.54 (B subunit) in water. These results
suggested that PLGA NPs were successfully modified with toxins via the stearic-acid-based
Ni-NTA complex.

Table 1. Particle size, polydispersity index, and zeta potential of PLGA NPs, WT-PLGA NPs, A-PLGA
NPs, and S35A-PLGA NPs in water.

Size (nm) Polydispersity Index Zeta Potential (mV)

PLGA NPs 260.7 ± 14.7 0.215 ± 0.012 −32.8 ± 0.32
WT-PLGA NPs 303.4 ± 4.9 0.367 ± 0.030 7.09 ± 1.32
A-PLGA NPs 302.5 ± 5.6 0.355 ±0.008 8.89 ± 0.73

S35A-PLGA NPs 302.7 ± 2.3 0.362 ±0.035 3.19 ± 0.15
Data are expressed as means ± S.D. (n = 3).

https://web.expasy.org/computepi/
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Figure 2. Preparation of PLGA NPs and modification with SubAB. (a) Schematic diagram of PLGA
NPs in which stearic acids are anchored on the surface. (b) Transmission electron microscopy image
of PLGA NPs. (c) Schematic diagram of toxin-PLGA NPs in which toxins are anchored on the surface.

To evaluate pH-responsive dissociation of His-tagged SubAB toxins and SubA from
PLGA NPs, we treated WT-, A-, and S35A-PLGA NPs with buffer solutions of different pH
values as indicated in Figure S3. Most His-tagged toxins had dissociated within 1 min at
pH 5.0, but not at pH 7.4 (Figure S3a–d). Recently, functional vesicular systems consisting
of non-ionic surfactants and cholesterol such as niosome have attracted much attention in
the field of drug delivery because of their advantages, such as being capable of entrapping
both hydrophilic and hydrophobic drugs in their aqueous inner core and lipid bilayer,
high stability, biocompatible, biodegradable [55,56]. Niosome is a well-designed bilayer
membrane carrier, but it takes several hours to release the drug [57]. On the other hand, the
release of toxins from PLGA NPs is considerably faster and is expected to have a rapid drug
effect in an acidic environment. Consistent with a previous study [36], these data suggested
that the His-tagged toxins would be released from PLGA NPs in a pH-dependent manner
when taken up by cells and exposed to the acidic environment of endosomes and lysosomes.
This study evaluated the stability of NPs in water (Table 1 and Figure S2) and the release of
toxins under acid conditions (Figure S3). However, in a biological environment containing
blood or plasma, the stability of NPs may change and uncontrolled toxin release may occur.
Therefore, further studies under various biological conditions are needed to better explore
its stability and toxin release.
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3.3. WT- and S35A-PLGA NPs Induce ER Stress and Inhibit iNOS Expression in Macrophages

SubAB cleaves BiP to produce 44 and 28 kDa polypeptides [27]. The cleavage of BiP
induces an ER stress response, leading to expression of CHOP, cleavage of PARP, and
activation of caspases [58–60]. To investigate the effect of toxin-modified PLGA NPs on
J774.1 cells, the cells were incubated for 3, 8, and 20 h with free or toxin-modified PLGA
NPs, followed by detection of BiP cleavage, PARP cleavage, and CHOP expression.

After 3 h of incubation, free WT cleaved BiP, but not free S35A, A, and PLGA NPs
alone. However, WT and S35A-modified PLGA NPs induced BiP cleavage, but not A-PLGA
NPs (Figure 3a,b). PARP was cleaved from 116 kDa to 85 kDa as apoptosis progressed.
Evaluation of PARP cleavage at 8 h revealed more fragments in cells treated with WT, WT-
PLGA NPs, and S35A-PLGA NPs compared with other treatments (Figure 3c,d). Consistent
with the results of BiP and PARP cleavage, CHOP expression at 8 and 20 h was higher
after WT, WT-PLGA NP, and S35A-PLGA NP treatments compared with other treatments.
S35A-PLGA NPs induced a lower level of CHOP expression compared with WT at 8 h, but
the expression was equal to WT at 20 h (Figure 3c,e,f and Figure S4a). In any time period,
A did not induce PARP cleavage or CHOP expression even when modified to PLGA NPs.
Therefore, these results suggest that S35A-PLGA NPs affect macrophages, although it is
slightly less than WT and WT-PLGA NPs.

Previously, we reported that SubAB-mediated ER stress inhibits LPS-induced iNOS
expression by suppressing nuclear translocation of NF-κB [35]. iNOS is an inflammatory
marker, which produces NO from L-arginine as a substrate [61]. The produced NO is
oxidized to nitrite as a stable metabolite [62]. At 20 h of treatment, iNOS and nitrite
generation were quantified by Western blotting and the Griess assay, respectively. S35A-
PLGA NPs inhibited iNOS expression and nitrite production in addition to free WT and WT-
PLGA NPs (Figure 3g–i). Additionally, cell viability assessed by MTT assays after treatment
for 24 h revealed that WT, WT-PLGA NPs, and S35A-PLGA NPs showed cytotoxicity
(Figure S4b).

These results revealed that free S35A did not induce ER stress and suppressed inflam-
mation because it was not taken up by cells. The PLGA NP modification induced S35A
uptake by J774.1 cells, followed by ER stress due to BiP cleavage, and suppressed iNOS
expression and nitrite production in J774.1 cells. However, A-PLGA NPs did not induce ER
stress or BiP cleavage, suggesting that the B subunit of SubAB is important not only for
cell adhesion but also for delivery of the A subunit to the ER. In general, the ER retention
signal sequence, such as KDEL and KKXX-like motif sequences, play a crucial role in the
localization of transmembrane proteins in the ER [63], and the B subunit has the KKNS
sequence at amino acids 128–131. Although S35A has a mutation in serine at position 35 of
the B subunit to alanine, this mutation does not affect the sequence of KKNS. Therefore, WT
and S35A transferred to the ER via KKNS sequences after being taken up by macrophages.

3.4. S35A-PLGA NPs Do Not Induce ER Stress or Cytotoxicity in HeLa Cells

As shown in Figure 3, S35A-PLGA NPs showed anti-inflammatory effects in macrophages.
To develop macrophage-specific delivery, it was necessary to prove that S35A-PLGA NPs
did not enter non-phagocytic cells such as epithelial cells and do not induce ER stress.
Therefore, we used HeLa cells to investigate whether S35A-PLGA NPs induced ER stress in
non-phagocytic cells. Caspase is activated by the ER stress response and is a useful marker
of cell death due to apoptosis [64]. Phosphorylation of eIF2α at Ser51 is induced by various
environmental stresses such as ER and oxidative stresses or amino acid starvation. There
are four types of protein kinases known to phosphorylate eIF2α in mammals, including
PERK, general control nonderepressible-2 (GCN2), heme-regulated inhibitory (HRI), and
protein kinase R (PKR) [65]. PERK activation induces eIF2α phosphorylation, caspase
3 and 7 cleavage, CHOP expression, and PARP cleavage [66–69]. We next evaluated
eIF2α phosphorylation, caspase and PARP cleavage, and CHOP expression to assess the
cytotoxicity of S35A-PLGA NPs
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Figure 3. Induction of ER stress and anti-inflammatory effect by SubAB-PLGA NPs on macrophages.
(a–h) J774.1 cells were treated with or without LPS (100 ng/mL) in the presence or absence of
5 µg/mL toxins and 20 µg/mL PLGA NPs for 3, 8, and 20 h. After incubation, the cells were lysed
in SDS sample buffer and subjected to Western blotting. (a) Evaluation of BiP cleavage at 3 h by
Western blot analysis. (b) Quantification of BiP cleavage by densitometry. (c) Evaluation of cleaved
PARP (cPARP) and CHOP expression at 8 h by Western blot analysis. (d) Quantification of PARP
cleavage by densitometry. (e) Evaluation of CHOP expression at 20 h by Western blot analysis.
(f) Quantification of CHOP expression by densitometry. (g) Evaluation of iNOS expression at 20 h by
Western blot analysis. (h) Quantification of iNOS expression by densitometry. (i) Quantification of
nitrite production by the Griess assay. Data are expressed as means ± S.D. (n = 3). Statistical analyses
were performed using Student’s t-test. ** p < 0.01.
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We evaluated the BiP cleavage, eIF2α phosphorylation, and cleaved caspase 7 at
3 h in HeLa cells (Figure 4a,b). WT and WT-PLGA NPs cleaved BiP, which correlated
with caspase 7 activation and eIF2α phosphorylation. Interestingly, BiP cleavage was not
detected in S35A-PLGA NP-treated HeLa cells (Figure 4a,b and Figure S5a,b). Caspase
7 activation and eIF2α phosphorylation in S35A-PLGA NP-treated cells were lower than
those in WT or WT-PLGA NP-treated cells. At 8 h, PARP cleavage, as well as caspase 3 and
7 activation, were detected in WT or WT-PLGA NP-treated HeLa cells (Figure 4c,d and
Figure S5c,d), but not in cells treated with S35A-PLGA NPs. CHOP expression induced
by S35A-PLGA NPs was hardly detected compared with WT or WT-PLGA NP treatments,
suggesting that ER stress did not occur in HeLa cells (Figure 4e,f). Consistent with these
results, WT and WT-PLGA, but not S35A-PLGA NPs, caused cell death after 24 h of
treatment (Figure S5e). ER stress mediated by activation of the PERK-eIF2α pathway is
important as the main cell death mechanism induced by SubAB [70]. SubAB inhibits protein
synthesis through eIF2α phosphorylation and caspase 3/7 activation and fragmentation,
followed by apoptosis [71,72]. Notably, S35A-PLGA NPs showed lower activation of these
factors than WT-PLGA NPs in HeLa cells. By summarizing the results from Figure 3,
Figure 4, Figures S4 and S5, our data suggested that S35A-PLGA NPs induce ER stress and
cytotoxicity in macrophages through activation of these cell death mechanisms, but not in
endothelial cells.

3.5. S35A-PLGA NPs Specifically Enter Macrophages, but Not Epithelial Cells

To examine the cellular uptake of PLGA NPs by RAW264.7 and HeLa cells, we synthe-
sized FITC-labeled PLGA NPs and then modified them with WT or S35A. The intracellular
localization of these fluorescent PLGA NPs was evaluated by fluorescence microscopy
and a fluorescence microplate reader. Fluorescence images revealed that FITC-labeled
PLGA NPs were taken up by macrophages regardless of the toxin type (Figure 5a). Ad-
ditionally, evaluation of PLGA NP uptake by the fluorescence microplate reader revealed
no significant difference in the uptake by RAW264.7 cells of any of the NPs (Figure 5b).
However, WT-PLGA NPs were taken up and HF555-WT was detected in HeLa cells, but
not PLGA NPs alone or S35A-PLGA NPs (Figure 5c). The fluorescence intensity read by
the microplate reader showed that S35A-PLGA NPs did not enter HeLa cells (Figure 5d).
These data suggested that S35A-PLGA specifically targets macrophages. In addition to
macrophages, S35A-PLGA NPs have the potential to target neutrophils and dendritic cells
that have a phagocytic activity.
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Figure 4. Induction of ER stress and cytotoxicity by SubAB-PLGA NPs in HeLa cells. (a–f) HeLa cells
were treated with or without 5 µg/mL toxins and 20 µg/mL toxin-PLGA NPs for 3, 8, and 20 h. After
treatment, the cells were lysed in SDS sample buffer and subjected to Western blotting. cCas7, cleaved
caspase 7; cCas3, cleaved caspase 3; cPARP, cleaved PARP. (a) Evaluation of BiP cleavage, caspase
7 activation, and eIF2 phosphorylation at 3 h. (b) Quantification of BiP cleavage by densitometry.
(c) Evaluation of PARP cleavage, and caspase 3 and 7 activation at 8 h. (d) Quantification of PARP
cleavage by densitometry. (e) Evaluation of CHOP expression at 20 h. (f) Quantification of CHOP
expression by densitometry. Data are expressed as means ± S.D. (n = 3). Statistical analyses were
performed using Student’s t-test. n.s., not significant. * p < 0.05, ** p < 0.01.
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Figure 5. Uptake of SubAB-PLGA NPs by RAW264.7 and HeLa cells. RAW264.7 (a,b) and HeLa (c,d)
cells were treated with 5 µg/mL FITC-labeled PLGA NPs modified with or without HF555-labeled
WT or S35A. After incubation for 20 h, intracellular localization of fluorescent dye-labeled PLGA NPs
and toxins was analyzed by fluorescence microscopy (a,c) and a fluorescence microplate reader (b,d).
Scale bars: 10 µm. Data are expressed as means ± S.D. (n = 3). Statistical analyses were performed
using Student’s t-test. n.s., not significant. * p < 0.05, ** p < 0.01.



Nanomaterials 2022, 12, 2161 15 of 19

WT-PLGA NPs exert a higher effect on macrophages than free SubAB at low con-
centrations [36]. It has been considered that this may be due to uptake of PLAGA NPs
via phagocytosis caused by the entry of SubAB through other pathways or promotion
of the normal pathway, including endocytosis or a macropinocytosis-like mechanism.
However, WT-PLGA NPs showed cytotoxicity in HeLa cells (Figure S5e), which are non-
phagocytic epithelial cells. SubAB enters HeLa cells via an actin/lipid-raft-dependent
macropinocytosis-like uptake pathway [26]. The B subunit binds to sialoglycan which
mainly has N-glycolylneuraminic acid as a sialic acid [43]. S35A is a synthetic mutant in
which the 35th serine (S35) of the B subunit is replaced with alanine, but the BiP cleav-
age ability of the A subunit and ER retention signal sequence of the B subunit are active.
Although the entry of S35A into cells was reduced, if taken up, it was transported to the
ER, cleaved BiP (Figure 1c), and induced ER stress in macrophages (Figure 3). These data
indicated that S35 is responsible for the binding activity of the B subunit. By focusing on
this property, we conceived delivery using the phagocytosis of PLGA NPs by macrophages.
In fact, S35A was not incorporated as a free toxin, but S35A-PLGA NPs were taken up
by macrophages (Figure 5a), leading to ER stress and anti-inflammatory effects (Figure 3).
As expected, S35A-PLGA NPs did not enter HeLa cells (Figure 5b) and produced nei-
ther ER stress nor cytotoxicity. Interestingly, we achieved specific delivery of S35A to the
macrophage ER by targeting the uptake with PLGA NP. Previous KO cell screening using
the CRISPR/Cas9 gRNA library has demonstrated that KDEL receptors 1 and 2 are impor-
tant host factors for SubAB toxicity [41]. Cell death is attenuated in KDELR1 and 2 KO cells,
suggesting that the ER retention KKNS sequence in the C-terminal of the SubAB B subunit
contributes to the localization of the ER and the cytotoxicity of SubAB. S35A reached the
ER via this sequence, but SubA was unable to suppress macrophage inflammation even
when modified with PLGA NPs. As SubA does not have an ER retention KKNS sequence,
these results suggest that SubA cannot reach the ER even if this subunit enters the cell with
PLGA NPs. Our observation raises the possibility that PLGA NPs modified with SubB
containing an ER retention signal sequence could deliver a reagent of interest to the ER of
phagocytic cells. By modifying proteins or peptides with organelle-targeting sequences,
our system may deliver substances to various organelles such as nuclei and mitochondria.
The ER and Golgi pathways play important roles in the post-translational modification
and maturation of synthesized proteins. In particular, the ER is an essential organelle for
redox regulation of disulfide bond formation and sugar chain modification, and enzymes
that mediate these maturation processes are mainly abundant in the ER. In the future, it
is expected that this technology will be applied to DDSs that target organelles, leading to
the development of treatment strategies for many diseases such as infectious diseases and
cancer as well as inflammation.

4. Conclusions

In this study, we established a macrophage-specific delivery system using site-directed
mutagenesis of bacterial toxins and PLGA NP modification. SubABS35A (S35A), which
has a mutated serine residue (S35) of the B subunit to reduce cell-binding activity [23,43],
was not taken up by cells without the PLGA modification. However, S35A-PLGA NPs
were efficiently taken up by J774.1 cells and suppressed inflammation. S35A-PLGA NPs
were hardly taken up by HeLa cells and did not show toxicity, suggesting that S35A
PLGA NPs do not have a non-specific effect on epithelial cells. Additionally, PLGA NPs
conjugated with His-tagged S35A via the Ni-NTA complex resulted in rapid dissociation
of S35A from PLGA NPs at a low pH, which was similar to the results observed in our
previous study. This suggests that S35A is efficiently released from NPs by intracellular
acidification during cellular trafficking after phagocytosis. Our well-designed DDS has
achieved macrophage-specific delivery of anti-inflammatory toxins and it is exerting their
effects in the ER. S35A-PLGA NPs are nano-sized materials that are biodegradable and
expected to be an anti-inflammatory nanomaterial with low side effects. However, further
confirmation of the stability of PLGA NPs and the release of toxins from NPs under
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biological conditions is necessary in future studies. Toxins from various microorganisms
are bioactive and act specifically on the target molecule in the host. Many toxins have
useful functions, such as anti-inflammatory, anti-cancer, and immune-potentiating effects,
to support bacterial survival and transmission. Therefore, such bioactive toxins could be
applied as new therapeutic agents without side effects if their binding activity and cellular
uptake are regulated by modification with NP. These results are also expected to be applied
to organelle-specific delivery of drugs and therapeutic strategies for autoimmune diseases,
infection, and cancer. This study has been limited to experiments using cultured cells,
especially mouse macrophages. In the future, we would like to establish a therapeutic
treatment for mouse inflammation models and an experimental system using human NO-
producing cells and a co-culture system consisting of macrophages and epithelial cells, and
evaluate the potential of anti-inflammatory NPs for clinical application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12132161/s1, Figure S1: Densitometry of BiP cleavage in (a)
J774.1 cells, (b) HeLa cells, and (c) a HeLa cell lysate; Figure S2: Characterization of PLGA NPs; Figure
S3: pH-responsive dissociation of His-tagged WT, A, and S35A from PLGANPs; Figure S4: Evaluation
of ER stress and cytotoxicity in J774.1 cells; Figure S5: Evaluation of ER stress and apoptosis induction
in HeLa cells.
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