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Abstract: In this work, we have performed an investigation to increase our understanding of the
motion of a hybrid nanofluid trapped inside a three-dimensional container. The room also includes a
three-dimensional heated obstacle of an elliptic cross-section. The top wall of space is horizontally
movable and adiabatic, while the lower part is zigzagged and thermally insulated as well. The lateral
walls are cold. The container’s space is completely replete with Al2O3-Cu/water; the concentration
of nanoparticles is 4%. The space is also characterized by the permeability, which is given by the
value of the Darcy number (limited between 10−5 and 10−2). This studied system is immersed in a
magnetic field with an intensity is defined in terms of Hartmann number (limited between 0 and 100).
The thermal buoyancy has a constant impact (Gr = 1000). This study investigates the influences of
these parameters and the inclination angle of the obstacle on the heat transfer coefficient and entropy
generation. The Galerkin finite element method (GFEM) was the principal technique for obtaining
the solution of the main partial equations. Findings from our work may be exploited to depict the
conditions for which the system is effective in thermal cooling and the case in which the system is
effective in thermal insulation.

Keywords: mixed convection; entropy generation; nanofluid; permeability; MHD

1. Introduction

A heated baffle inside a liquid-filled chamber is a popular field of investigation. It is
used in either cooling systems for thermal transformers and heating devices or in thermal
insulation systems. Because of the importance of these systems in daily life, researchers
have provided interesting results from these systems under various initial conditions [1–10].

Most of these studies focus on the study of an open room [11–13], with a wavy shape
then inserted between the room’s walls [14–17]. In order to improve the thermal transfer
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process between the inner obstacle and the flow, different shapes have been tested, such as
triangular [18,19], square [20,21] and hexagonal [22] forms.

Several recent studies have used nanofluids as a new technique to improve the ther-
mal transfer process [23–26]. This type of fluid depends mainly on adding very fine
solid particles of metals to raise the fluid’s thermal proprieties without changing its
hydrodynamic behavior.

Chamkha et al. [27] investigated a confined nanofluid in a cone-shaped room. In the
middle of this container, a circular obstacle regularly rotates. The interior of the room is
porous. This system was also subjected to a magnetic field. Among the most important
criteria that have proven to be effective in increasing heat transfer is the blockage ratio,
which was found to be able to raise the heat transfer rate by up to 95%. Selimefendigil
and Chamkha [28] studied the hybrid nanofluid (Ag–MgO/H2O) in a square container
under the presence of thermal buoyancy, magnetohydrodynamics, and space porosity. The
results of this work have proven that these parameters have a clear effect on the fluid
movement inside the container and thus directly affect the thermal transfer. Sun et al. [29]
numerically examined double diffusion using triangular fins of conductive performance in
a lid-driven room. They proved that the triangular fin is a suitable control criterion for the
flow structure and heat transfer rate. Elatar et al. [30] generated the heat by using natural
convection in a laminar regime in a square room with an adiabatic horizontal part with a
single horizontal fin at different lengths and places connected to the heated source. They
tested the impact of fin length and frame placement on flow trajectory and heat patterns.
Laidoudi and Helmaoui [31] studied the natural convection from an elliptical obstacle
located in a circular chamber. The most important point considered here is the positioning
of the inner obstacle. It has been verified that the angle of inclination of this type of obstacle
greatly affects the thermal transfer.

In addition, there are other similar works to these studies that aim to determine
the fluid’s heat transfer activity [32–35]. Lv et al. [36–39] have completed a series of
investigations on the cooling process inside a micromixer.

Through the foregoing studies, it has been found that:

• The use of solid metal particles in a liquid enhances its ability to conduct heat.
• The application of a magnetic field on a flow affects its trajectory and velocity, which

either negatively or positively effects the thermal transfer rate.
• Using zigzagged walls for rooms instead of flat walls enhances heat transfer.
• Using an elliptical shape for the baffles instead of a circular shape may improve heat

transfer.
• This study is a 3D heated elliptical obstacle enclosed in the middle of a chamber. The

lower end of the room is zigzagged, while the upper end is horizontally movable.
The space between the room walls and the elliptical obstacle is filled with a hybrid
nanofluid containing 4% nanoparticles (Al2O3-Cu/water). The magnetic field is also
applied to the present system.

Moreover, the space is also considered to be porous. The contours of isotherm, entropy
generation, and pathlines are depicted to explain the thermal and dynamic patterns of the
flow. In addition, the average Nu and Be numbers are plotted versus all studied parameters.

2. Mathematical Model and the Study Configuration

In Table 1, the values of thermophysical characteristics of nanofluid elements are
presented. In Figure 1, the proposed configuration is depicted as a 3D-zigzagged porous
cavity containing a nanofluid with a magnetic force applied along the positive y- and z-axes.
Except for the zigzagged wall, which is considered at the hot temperature designated (Th),
and the front wall, which is considered at the cold temperature denoted (C), all walls
are assumed to be adiabatic (Tc). The rough wall is assumed to be the primary geometry
influencer and will have multiple undulations (N = 4, 2, and 1). The upper wall travels at a
constant speed, U, in the opposite direction.
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Table 1. Thermophysical properties of Al2O3, Cu, and water.

Thermophysical Properties Al2O3 Cu water

ρ
(
kg/m3) 3970 8933 997.1

Cp(J/kgK) 765 385 4179
k(W/mK) 40 400 0.613

σ(S/m) 3.69× 107 5.96× 107 0.05
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2.1. Mathematical Model

The mathematical model refers to flow inside a 3D porous cavity, and the selected
liquid is a Newtonian-incompressible fluid undergoing a laminar regime [35]:

The conservation equations are:

∂U
∂X

+
∂V
∂Y

+
∂W
∂Z

= 0 (1)

The momentum equations along the three directions are:

ρn f
ρ f

[
U
ε2

∂U
∂X + V

ε2
∂U
∂Y + W

ε2
∂U
∂Z

]
= − ρn f

ρ f
∂P
∂X + 1

Re
1
ε

µn f
µ f

(
∂U
∂X + ∂U

∂Y + ∂U
∂Z

)
− µn f

µ f ReDa U − ρn f
ρ f

0.55√
Da

√
U2 + V2 + W2U

(2)

ρn f
ρ f

[
U
ε2

∂V
∂X + V

ε2
∂V
∂Y + W

ε2
∂V
∂Z

]
= − ρn f

ρ f
∂P
∂Y + 1

Re
1
ε

µn f
µ f

(
∂V
∂X + ∂V

∂Y + ∂V
∂Z

)
− µn f

µ f ReDa V − ρn f
ρ f

0.55√
Da

√
U2 + V2 + W2V − σn f

σf
Ha2 V

ε

(3)

ρn f
ρ f

[
U
ε2

∂W
∂X + V

ε2
∂W
∂Y + W

ε2
∂W
∂Z

]
= − ρn f

ρ f
∂P
∂Z + 1

Re
1
ε

µn f
µ f

(
∂W
∂X + ∂W

∂Y + ∂W
∂Z

)
− µn f

µ f ReDa W − ρn f
ρ f

0.55√
Da

√
U2 + V2 + W2W +

(ρβ)n f
(ρβ) f

Riθ − σn f
σf

Ha2 W
ε

(4)

where the last terms in Equations (3) and (4) are the Lorentz force. The heat equation is:

U
∂θ

∂X
+ V

∂θ

∂X
+ W

∂θ

∂Z
=

(ρcP) f

(ρcP)n f

ke f f

k f

1
RePr

[
∂2θ

∂X2 +
∂2θ

∂Y2 +
∂2θ

∂Z2

]
(5)

where ke f f = (1− ε)ks + εkn f (ks refers to the solid thermal conductivity for the matrix of
the porous layer, ks = 0.78 W/m·K, and ε = 0.37)

X, Y, Z =
x, y, z

L
, U, V, W =

(u, v, w)L
αn f

, θ =
T − Tc

Th − Tc
,
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P =
pL2

ρn f α2
f l

, Pr =
v f

α f
, Da =

K
L2

Ra =
gβ f (Th − Tc)L3

α f v f
, Ha = LB

√
σn f

µn f
,

where ε is the porosity,

Ri =
Gr
Re2

Table 2. The physical meaning of the dimensionless numbers.

Dimensionless Number Physical Meaning

Reynolds (Re) Determines wall speed

Grashof (Gr) Determines the thermal buoyancy strength

Richardson (Ri) Determines the ratio between natural and forced convection

Darcy (Da) Shows the permeability of the space

Hartmann (Ha) Controls the strength of the magnetic field

The hybrid nano-liquid thermophysical properties are shown in Table 3.

Table 3. Correlations that define the hybrid nano-liquid thermophysical properties [36].

Property Correlation

Density ρn f = (1−Ø)ρ f + Øρnp

Heat capacity cpn f = (1−Ø)cp f + Øcpnp

Coefficient of thermal dilatation βn f = (1−Ø)β f + Øβnp

Electrical conductivity σn f = (1−Ø)σf + Øσnp

Thermal conductivity kn f =
knp+(n−1)k f−(n−1)(k f−knp)Ø

knp+(n−1)k f +(k f−knp)Ø
k f

Viscosity µn f =
µ f

(1−Ø)2.5

2.2. Boundary Conditions
Total Entropy Generation

The dimensionless form of the total entropy generation Stot is expressed as follows [37]:

STOT = SHT + SFF + SMF (6)

where:

SHT =
khn f

k f luid

[(
∂θ

∂X

)2
+

(
∂θ

∂Y

)2
+

(
∂θ

∂Z

)2
]

(7)

SFF =
µhn f
µ f luid

ϕ


2
(

∂U
∂X

)2
+ 2
(

∂V
∂Y

)2
+ 2
(

∂W
∂Z

)2

+
(

∂U
∂Y + ∂V

∂X

)2
+
(

∂W
∂Y + ∂V

∂Z

)2

+
(

∂U
∂Z + ∂W

∂X

)2
+ U2+V2+W2

Da

 (8)

and

SMF = ϕ
σhn f

σf luid

Ha2

ε

(
W2 + V2

)
(9)
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where ϕ =
εµn f T0

ke f f

(
αn f
L∆T

)2
, with T0 = Th+Tc

2 = 0.5 and ∆T = Th − Tc.
The dimensionless form of the Bejan number is as follows:

Be =
SHT
STOT

(10)

The local and average Nusslet numbers are calculated as follows:

Nuloc = −
ke f f

k f l

∂θ

∂S
; Nuavg =

1
S

S∫
0

Nu dxdz (11)

3. Numerical Method and Validation
3.1. Computation Procedure

The main partial Equations (1)–(3) were numerically solved using the appropriate
boundary conditions(Table 2) to derive each of the Equations (4)–(10) (Table 4). The
Galerkin-weighted residual finite element approach [38] was used to solve the equations.
Mesh dependency was investigated using a variety of grids. A grid of 629215 elements was
used for the current simulations (Table 5).

Table 4. Boundary conditions for our study.

Thermal Condition Velocity Condition

The left wall θ = 0 U, V, W = 0

The right wall θ = 0 U, V, W = 0

The top and bottom wall adiabatic U = 1, V, W = 0

The top wall adiabatic U, V, W = 0

The inner cylinder wall θ = 1 U, V, W = 0

Table 5. Nuavg and Beavg for different mesh sizes for Re = 10.

No. of Grid Elements 53,274 93,700 218,558 629,215 2,576,359

Nuavg 6.6421 6.5563 6.5515 6.5432 6.5429

Beavg 0.64964 0.64951 0.64832 0.64832 0.64831

The finite element method based on the Newton technique was used to discretize and
solve the governing equations in a grid composed of triangular elements. The convergence
of the solution is only adequate if the following convergence criterion for the relative error
of each variable is achieved: ∣∣∣∣∣Γi+1 − Γi

Γi+1

∣∣∣∣∣ ≤ η (12)

where i indicates the iteration value and η represents the convergence criterion. In this
numerical study, the convergence criterion was defined as η = 10−6.

3.2. Validation

To ensure that the numerical technique used to convert the authorized code is correct,
the velocity profile inside the enclosure with obstructions is compared to the work of
Ghia et al. [39], Figure 2:
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4. Results and Discussion

The results of this research aim to expand the understanding of the heat transfer
process between an elliptical cylinder’s external surface and a nanofluid. This thoughtful
system is confined in a room. The upper wall moves horizontally at a constant speed and
under adiabatic conditions, while the rest of the walls are stationary. In addition, the lower
wall of the container is zigzagged and thermally insulated (adiabatic surface). The value of
the Reynolds number (Re) is a determinant of the speed of the movement of the upper wall.
In fact, the horizontal movement of the wall serves to move the fluid within the chamber.

For the heat transfer mechanism, the horizontal walls of the room are cold, while the
cylinder wall is hot. That is, the studied fluid (hybrid nanofluid) in this system acts as a
thermal medium, transferring thermal energy between the cylinder and the cold horizontal
walls. Moreover, the interior medium of the container is characterized by fluid permeability,
the value of which is expressed in the Darcy (Da) number. That is, the greater this value,
the better the permittivity of the medium to cross the fluid flow. In addition, this system
is placed inside an external magnetic field where a new force called the Lorentz force is
generated. The intensity of this force is controlled by the Hartmann (Ha) number.

Richardson’s number (Re) is defined by the following expression, Ri = Gr/(Re2), where
Gr = 1000. This means that the heat transfer combines natural and forced convection. The
natural convection is superior to the forced convection for Re = 1 and 10, whereas the forced
convection predominates for Re = 100 and 500.

We should mention that the main points studied in this work are: the value of Da
(=10−5, 10−4, 10−3, 10−2), which determines the permeability of the space; the value of
Re (=1, 10, 100, and 500) defined for the speed movement of the upper wall; the angle of
inclination of the elliptical obstacle (=0, 30, 60, and 90); and the value of Ha (=0, 25, 50, 75,
and 100), which indicates the intensity of the Lorentz force. The nanoparticles used here
are 4% Al2O3-Cu/water.

Figure 3 depicts the impact of Da number (=10−5, 10−4, 10−3, 10−2) on the characteris-
tic contours of the pathline, the generation of total entropy, and the isotherm for Ha = 0,
γ = 0, and Re = 100. In fact, Figure 3 shows how the permeability of the annular space
affects the movement of the nanofluid particles, the thermal distribution, as well as the
total entropy generation. Since the movement of the upper wall is from left to right, there
is a circular flow movement in the clockwise direction. The fluid velocity is low near the
lower wall and increases gradually as we move towards the moving upper wall. It is also
observed that the movement of the nanofluid particles increases as the value of Da increases
because the annular space becomes more permeable to the fluid. This is confirmed by the
gradient temperature around the elliptical obstacle, which gradually increases in terms of
the Da number. So, we conclude that by increasing the Da number, the heat transfer of the
inner obstacle increases. In addition, the presence of thermal distribution in the form of the
plume on the left side indicates that the heat transfer from the right side of the cylinder
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is better than on the left side. As for the total entropy generation, its basic distribution is
observed near the top wall due to the movement of fluid particles and near the cylinder and
lateral walls due to the presence of thermal activity. Generally, the total entropy generation
in these zones is seen to be augmented with increasing Da. We can conclude that the faster
the flow, the greater the transfer of the heat energy; thus, the thermal activity becomes
more effective.
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10−2 are well presented in Figure 4. Overall, there is no significant effect of the values of 
Ha number on the displayed items. Therefore, it can be concluded that changes in this 
number (Ha) do not cause sensitive changes in the value of the Nusselt number. The value 
of the Ha number indicates the existence of a force (Lorentz force) applied mainly in the 
opposite direction of the flow, which somewhat hinders the movement of fluid particles 
and results in a decrease in the thermal transfer rate. The Lorentz force affects the opposite 
of the movement of the flow, which means a decrease in the flow’s speed, making the heat 
transfer more difficult. 
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Figure 3. Distribution of the velocity pathlines, isotherms, and total entropy for different Da in
different scenarios for Ha = 0, ϕ = 0.04, and Re = 100.

The gradual effect of the Hartmann number (=0, 25, 50, 75, and 100) on each of the
streamline contours, isotherms, and total entropy generation for Re = 100, γ = 0, and
Da = 10−2 are well presented in Figure 4. Overall, there is no significant effect of the values
of Ha number on the displayed items. Therefore, it can be concluded that changes in this
number (Ha) do not cause sensitive changes in the value of the Nusselt number. The value
of the Ha number indicates the existence of a force (Lorentz force) applied mainly in the
opposite direction of the flow, which somewhat hinders the movement of fluid particles
and results in a decrease in the thermal transfer rate. The Lorentz force affects the opposite
of the movement of the flow, which means a decrease in the flow’s speed, making the heat
transfer more difficult.
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increase in the gradient temperature around the cylinder as the angle of the inclination 
increases. This indicates that the heat transfer, in this case, increases with increases in the 
angle of inclination. Since the cylinder’s rotation allows the nanofluid’s movement and 
enhances the thermal activity, it is also noted that the total entropy generation near the 
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Figure 4. Distribution of the velocity pathlines, isotherm, and total entropy for different Ha in
different scenarios for Da = 10−2, ϕ = 0.04, and Re = 100.

Figure 5 presents the impact of the inclination angle (=0, 30, 60, 90) of the elliptical
cylinder on the streamlines, dimensionless temperature (isotherms), and the contours of
total entropy generation for Re = 100, Ha = 0, and Da = 10−2. From the streamlines, the
displacement of the elliptical obstacle from 0 to 90 degrees makes it more streamlined,
making the streamlines more stable and balanced. This observation is reinforced by the
increase in the gradient temperature around the cylinder as the angle of the inclination
increases. This indicates that the heat transfer, in this case, increases with increases in the
angle of inclination. Since the cylinder’s rotation allows the nanofluid’s movement and
enhances the thermal activity, it is also noted that the total entropy generation near the
cylinder and the walls increase with the increase in obstacle inclination.
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The influence of the Re number value (=1, 10, 100, and 500) on the previously pre-
sented elements (contours) for Da = 10−2 and Ha = 0 is depicted in Figure 6. Clearly, the 
higher value of the Re number leads to an increase in the velocity of the upper wall and 
interference in the fluid’s viscosity. The fluid layers move each other, creating a recircula-
tion flow. Through the isotherms, it is noted that the increase in the flow velocity makes 
the distribution of gradient temperature around the obstacle more important, and accord-
ingly, the rate of thermal transfer increases gradually in terms of Re. As for the positional 
distribution of the total entropy generation, it is seen that the higher the value of the Re 
number, the higher the total entropy around the inner obstacle and also near the sides of 
the horizontal walls and the upper wall. 

 Velocity pathlines Isotherms Total entropy 

R
e 

= 
1 

   

R
e 

= 
10

 

   

Figure 5. Distribution of the velocity pathlines, isotherm, and total entropy in different scenarios for
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The influence of the Re number value (=1, 10, 100, and 500) on the previously pre-
sented elements (contours) for Da = 10−2 and Ha = 0 is depicted in Figure 6. Clearly, the
higher value of the Re number leads to an increase in the velocity of the upper wall and
interference in the fluid’s viscosity. The fluid layers move each other, creating a recirculation
flow. Through the isotherms, it is noted that the increase in the flow velocity makes the dis-
tribution of gradient temperature around the obstacle more important, and accordingly, the
rate of thermal transfer increases gradually in terms of Re. As for the positional distribution
of the total entropy generation, it is seen that the higher the value of the Re number, the
higher the total entropy around the inner obstacle and also near the sides of the horizontal
walls and the upper wall.
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value increases analogously with the value of Re. On the other hand, Lorentz force inten-
sity acts against the movement of the nanofluid flow, which causes a decrease in the ve-
locity and a consequent reduction in the thermal transfer process, and this is explained by 
the development in the values of Nu number in terms of Ha. Figure 7B presents the mean 
value of the Be number in terms of Ha and Re. For the low values of Re (1 and 10), the 
entropy produced by the temperature is greater than that by the dynamic movement of 
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Figure 6. Distribution of velocity pathlines, isotherm, and total entropy for different Re in different
scenarios for Ha = 0, Da = 10−2, and ϕ = 0.04.

Figure 7A presents the development of the mean Nu number for the elliptical obstacle
in terms of Re (=1, 10, 100, and 500) and Ha (=0, 25, 50, and 100) for Da = 10−2 and
inclination angle (γ = 0). As expected from the analysis of the previous results, the increase
in the speed of the movement of the upper wall increases the velocity of the flow, which
results in the acceleration of thermal transfer. Therefore, we find that the value of Nu value
increases analogously with the value of Re. On the other hand, Lorentz force intensity
acts against the movement of the nanofluid flow, which causes a decrease in the velocity
and a consequent reduction in the thermal transfer process, and this is explained by the
development in the values of Nu number in terms of Ha. Figure 7B presents the mean
value of the Be number in terms of Ha and Re. For the low values of Re (1 and 10), the
entropy produced by the temperature is greater than that by the dynamic movement
of the flow source. Whereas for the values of 100 and 500 for Re, the dynamic source
becomes dominant.
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Figure 7. Effect of Ha on (A) Nuavg and (B) Beavg for Da = 10−2, φ = 0.04.

Figure 8A presents the effect of enclosure permeability on the value of the obstacle’s
Nu number for all studied values of Re number. These results confirm our previous analysis:
the higher the permeability of the annular space (increasing Da), the higher the flow speed,
which positively reflects the speed of thermal evacuation. Therefore, Figure 8A shows that
the value of Nu increases proportionally as the value of Da or Re increases. On the other
hand, Figure 8B describes the change in Be number in terms of Re and Da. It is noticed that
whenever the permeability of the space is low, the value of Be number is significant. This
can be explained by the following: when the fluid particles move less, most of the entropy
generation produced is due to the heat source.
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Figure 9A presents the effect of the inclination angle of the elliptical obstacle on the
values of Nu of the obstacle itself for Ha = 0 and Da = 10−2. It is evident from this Figure 9A
that the angle of inclination has an effect on the value of the Nu number. That is, the
greater the inclination of the obstacle, the greater the value of Nu. From here, it can be
concluded that an angle of zero (γ = 0) for the elliptical obstacle is very effective in industrial
heat-insulating applications, while an angle of ninety (γ = 90) is effective in the cooling
system. Figure 9B shows the variation in Be versus the inclination angle (γ = 0, 30, 60, 90)
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and Re. There is an approximate correspondence between the values of Be in terms of the
inclination angle of the obstacle.
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5. Conclusions

The present work employs a simulation model of a confined nanofluid flowing around
a hot elliptical obstacle. The flow conditions are: the annular space is porous; the bottom
wall is zigzagged; the upper part of the container is moving horizontally; the lateral walls
have a low temperature; a magnetic field is considered to be applied to the system; and
finally, the elliptical obstacle is subjected to an angle of inclination. The results focused
on: the angle of inclination of the obstacle (γ = 0 to 90); the porosity of the annular space
(Da = 10−5 to 10−2); the intensity of the magnetic field (Ha = 0 to 100) and the speed
movement of the upper part (Re = 1 to 100). We highlight the appropriate conditions for
increasing the thermal activity for the applications related to refrigeration and identify the
suitable conditions for insulating applications. Overall, we confirmed the following points:

• Increasing the value of Da and/or Re increases the average Nu of the obstacle, and
therefore the heat transfer rate increases in terms of these elements. Here we can say
that increasing the speed of wall movement and/or the porosity of the space is suitable
for cooling activities.

• The magnetic field applied to the present system decreases the Nu value of the elliptical
obstacle and hampers the thermal transfer activity. Hence, this case can be applied to
thermal insulators.

• Rotating the cylinder from the horizontal position to the vertical position increases the
heat transfer; therefore, the first case is suitable for thermal insulation cases, while the
second is the best for cooling applications.

A base fluid of the non-Newtonian type can be proposed for future work.
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