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Abstract: In this study, a high-photoresponsivity self-powered deep ultraviolet (DUV) photodetector
based on an Ag2O/β-Ga2O3 heterojunction was fabricated by depositing a p-type Ag2O thin film
onto an n-type β-Ga2O3 layer. The device characteristics after post-annealing at temperatures ranging
from 0 to 400 ◦C were investigated. Our DUV devices exhibited typical rectification characteristics.
At a post-annealing temperature of 300 ◦C, the as-fabricated device had a low leakage current of
4.24 × 10−11 A, ideality factor of 2.08, and a barrier height of 1.12 eV. Moreover, a high photo-
responsivity of 12.87 mA/W was obtained at a 100 µW/cm2 light intensity at a 254 nm wavelength
at zero bias voltage, the detectivity was 2.70 × 1011 Jones, and the rise and fall time were 29.76,
46.73 ms, respectively. Based on these results, the Ag2O/β-Ga2O3 heterojunction photodetector
operates without an externally applied voltage and has high responsivity, which will help in the
performance improvement of ultraviolet sensing systems.

Keywords: Ag2O/β-Ga2O3; heterojunction; deep ultraviolet; photodetector; post-annealing

1. Introduction

Ultraviolet (UV) radiation from the sun has been used in a variety of applications such
as disinfection of air, surfaces, and instruments [1]. Depending on the wavelength, UV
light can be divided into UV-A (320–400 nm), UV-B (280–320 nm), and UV-C (200–280 nm).
Among them, UV-C light does not reach the ground level owing to strong ozone layer
absorption at the earth’s surface. It is also known as solar-blind deep UV (DUV) radiation.
In addition, DUV can catalyze chemical reactions, sterilize, and radiate from initial flame
combustion. Owing to these characteristics, the need for DUV utilization has increased,
and photodetector sensing DUV research has been extensively conducted in various fields,
including biological and chemical analyses, solar UV monitoring, and flame sensors [2–6].

Proper materials for DUV photodetectors are ultra-wide bandgap semiconductors,
such as ZnMgO and AlGaN [7,8]. However, the incorporation of significant amounts of Al
in AlGaN deteriorates the crystal quality, and ZnMgO appears to be phase-separated [9,10].
Conversely, gallium oxide (β-Ga2O3), a well-known wide-bandgap semiconductor, has
attracted considerable attention because it can fabricate high-quality thin films without
other methods such as doping [11]. β-Ga2O3 has been extensively studied for DUV opto-
electronics and power electronic devices because of its large direct bandgap energy (4.8 eV),
high breakdown electric field (Ebr = 8 × 106 V/cm), and excellent chemical and thermal
stability [12–14]. In addition, β-Ga2O3 exhibits n-type semiconductor properties owing to
oxygen vacancies [15].

Most photodetectors require additional external power to promote the generation of
photocurrents. This increases the size of the device, making it inconvenient to package and
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carry, and becomes overly dependent on external power supplies, limiting practical appli-
cation in various negative complex environments. To complement these disadvantages,
a new type of self-powered photodetector has been designed through extensive research.
Small in size, economical, and featuring low energy consumption, these self-powered
photodetectors do not depend on externally applied voltages and can be implemented inde-
pendently of self-powered photodetectors. The response mechanism of this self-powered
photodetector utilizes electron-hole pairs generated by light irradiation. i.e., It is based
on the photovoltaic effect of semiconductors. The photodetector can be classified into
a photoconductor and photodiode type according to the operating principle. However,
the photodiode type is important because it implements a self-powered sensor with high
responsivity depending on the material selection. According to photodiode construction
mechanism, the current self-powered photodiode can be divided into two types: Schot-
tky junction, and p-n heterojunction [16,17]. Schottky junctions have the advantages of
fabrication simplicity and high-speed response. However, Schottky barriers built into the
contacts of a Schottky barrier photodetector can make it difficult for the charge to transfer
and degrades the device responsivity. The p-n heterojunction is important because of its
low reverse saturation current, high breakdown voltage, and adjustment of the photode-
tection wavelength according to the heterojunction material [18]. Herein, suitable p-type
semiconductors for the fabrication of photodetector devices as counterparts for n-type
β-Ga2O3 are explored.

In this study, a photodetector based on a p-n junction was fabricated, and hetero-
junctions of n-type β-Ga2O3 and p-type Ag2O were investigated. Compounds of Ag
with oxygen have been extensively investigated. Silver oxide has various phases, such as
AgO, Ag2O, Ag2O3, Ag4O3, and Ag4O4 [19–23]. Among them, Ag2O is the most thermo-
dynamically stable, and Ag2O thin films exhibit p-type semiconducting properties [24].
Various studies have been conducted on p-type Ag2O thin films owing to their excellent
electrical properties and transparent properties in the infrared and visible ranges [25]. In
addition, the transition from Ag to Ag2O by adjusting the oxygen flow ratio has previously
been reported. Ag2O thin films can be fabricated by various techniques, such as thermal
oxidation of Ag films [26], thermal evaporation [27], pulsed laser deposition [28], and sput-
tering [29,30]. In this study, an Ag2O layer was deposited using a facing target sputtering
(FTS) system, which is a DC sputtering system. The FTS system consists of two targets
facing each other within the chamber, and the substrate is separated from the plasma area,
resulting in less surface damage compared to typical sputtering systems [31–34]. Based on
the Ag2O/β-Ga2O3 heterojunction, we fabricated a self-powered solar-blind photodetector.
It exhibited high performance in terms of photoresponsivity and DUV detectivity at zero
bias, and it was confirmed that the Ag2O/β-Ga2O3 heterojunction photodetector operated
with high performance without an external power supply.

2. Experimental Procedure
2.1. Materials

The solar-blind heterojunction photodetector was fabricated on an n-type single-crystal
Sn-doped β-Ga2O3 wafer (thickness of 415 µm, Nd-Na = 4.50 × 1018 cm−3, Novel Crystal
Technology, Inc.). Halide vapor phase epitaxy (HVPE) was used to grow the epitaxial layer
of Si-doped β-Ga2O3 (thickness of 10 µm, Nd-Na = 2.20 × 1016 cm−3, µn = 300 cm2/Vs,
ρ = 0.94 Ω cm), which was used as the active layer in this solar-blind heterojunction
photodetector. This layer is used due to its high purity and provides low resistance and
on-resistance, and a high breakdown voltage [35]. Ti/Au electrodes (10/40 nm) were
deposited by sputtering on the backside of the Sn-doped β-Ga2O3 wafer for the ohmic
device contact. For the deposition of the p-type Ag2O thin film, a 4–inch Ag targets (RND
Korea, Gwangmyeong-si, Korea) and soda–lime glass substrate (75 × 25 cm, 1 mm thick,
Marienfeld, Lauda-Königshofen, Germany) were used.
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2.2. Fabrication of the Ag2O/β-Ga2O3 Heterojunction Photodetector

Figure 1 shows a schematic illustration of the fabricated Ag2O/β-Ga2O3 heterojunction
photodetector. Ag is used as the front photodetector electrode because it is capable of
multilayer Ag2O deposition through continuous deposition. Ag2O/Ag (50/50 nm) thin
films were patterned into circles with a 300 µm radius using a shadow mask on the top-
epitaxial surface of the n-type β-Ga2O3 using an FTS system to fabricate an Ag2O/β-Ga2O3
heterojunction photodetector. The Ag2O thin film was deposited by controlling the oxygen
flow, and the Ag thin film was continuously deposited without an oxygen atmosphere. The
sputtering conditions are summarized in detail in Table 1. In addition, to improve the device
performance of the fabricated photodetector, a post-annealing process was performed in
the range from room temperature (RT) to 400 ◦C using rapid thermal annealing (RTA) in an
Ar condition at 100 mTorr for 1 min.
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Figure 1. Schematic illustration of the fabricated Ag2O/β-Ga2O3 heterojunction photodetector.

Table 1. Sputtering conditions of Ag2O and Ag thin films.

Parameters Sputtering Condition

Layer Ag2O Ag
Substrate Soda-lime glass Soda-lime glass
Targets Ag (99.99%) Ag (99.99%)

Base pressure 3 × 10−5 Torr 3 × 10−5 Torr
Working pressure 2 mTorr 2 mTorr

Gas flow Ar: 10 sccm, O2: 3 sccm Ar: 10 sccm
Input power 50 W 50 W

Thickness 50 nm 50 nm

The crystallographic properties of the thin films were evaluated using X-ray diffraction
(XRD; Bruker D8) at the Smart Materials Research Center for IoT, Gachon University.
Scanning electron microscopy (SEM, S-4700, Hitachi, Tokyo, Japan) at the Smart Materials
Research Center for IoT, Gachon University and a KLA-Tencor Alpha-step D-500 Stylus
Profiler were used to observe the surface morphologies and thicknesses of the thin films,
respectively. The optical properties of the as-deposited thin films were evaluated using a
UV-vis spectrometer (Lambda 750 UV-vis-NIR, Perkin Elmer, Waltham, MA, USA). The
electrical properties of the thin films were evaluated by Hall effect measurement system
(HMS-5500, ECOPIA, Anyang, Korea). X-ray photoelectron spectroscopy (XPS, K-alpha +,
Thermo Fisher Scientific, Waltham, MA, USA) was used to investigate the binding energy
of Ag2O before and after post-annealing.
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2.3. Evaluation of the Ag2O/β-Ga2O3 Heterojunction Photodetector

The electrical current density-voltage (J-V) characteristics were analyzed using a
semiconductor analyzer (4200A-SCS parameter analyzer, Keithley, Cleveland, OSU, USA).
A Keithley 2401 was used to measure the time-dependent photoresponse of the fabricated
device. Time-dependent photoresponse measurements were performed using a UV-C lamp
(TN-4LC, wavelength: 254 nm, Korea Ace Scientific) with varying light intensities ranging
from 100 to 1000 µW/cm2 at RT. The UV-C intensity was measured using a UV-C light
meter (UVC-254SD, Lutron, PA, USA).

3. Results and Discussion

For the heterojunction photodetector fabrication, p-type Ag2O thin-film deposition
was conducted. In reactive sputtering, a transition region representing the change from
various metals to oxides through discharge voltage changes has been observed in numerous
studies. For example, by changing the discharge voltage of Si, the metal target surface
switches to the oxide mode when oxygen reacts with the metal particles and target surface.
A transition region was observed, and the result of the conversion to SiO2 was reported
in a previous study [36]. Therefore, to deposit p-type Ag2O, the discharge voltage change
under different oxygen flows in the Ag target was measured.

Figure 2 shows the variation in the discharge voltage with the oxygen flow rate in the
Ag target. As the oxygen flow rate increased, the discharge voltage also increased; therefore,
the transition region representing the change from metal to oxide was not observed. As a
predictable cause of this trend, reactive gas such as oxygen can easily form negative ions
in the plasma state. In the case of Si, because the emission coefficient of the secondary
electrons emitted from the surface of the Si target is higher than that of oxygen gas, the
discharge voltage decreases as the oxygen gas flow rate increases. However, in Ag, because
the emission coefficient of secondary electrons emitted from the Ag metal target surface is
lower than that of oxygen gas, the discharge voltage is expected to increase as the oxygen
gas flow rate increases [37].
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Figure 3A shows the XRD patterns of as-deposited thin film by changing oxygen
gas flow in the range of 0 to 5 sccm. Without the oxygen gas, the Ag peaks appeared at
2θ = 38.2◦, 44.4◦, 64.6◦, and 77.6◦ corresponding to the (111), (200), (220), and (311) planes,
respectively, according to the reference data (ICDD card 01-087-0720). At 2 sccm, the
intensity of Ag peaks decreased and the (100) planes of Ag2O (ICDD card 01-072-2108)
additionally appeared at 2θ = 33.6◦, indicating a mixed phase of Ag2O and Ag. Moreover,
at 3 sccm, the broad peaks representing the (100) and (011) planes of Ag2O appeared at
2θ = 33.6◦ and 38.4◦ without other impurities. The (011) peak of Ag2O and the (111) peak
of Ag may overlap. However, it could be sufficiently distinguished through the additional
peaks of Ag and Ag2O. As the oxygen gas flow increases from 4 to 5 sccm, the Ag2O
peaks were not seen, and peaks corresponding to AgO (JCPDS card 75-0969) were observed
at 2θ = 32.3◦ and 35.6◦. It is suggested that with an increased oxygen gas flow rate, an
additional chemical bond between Ag and O is generated, resulting in AgO peaks [38]. The
AgO demonstrated deteriorated electrical properties compared to Ag2O, and its properties
as a p-type are reduced [39]. Hence, our work was conducted at 3 sccm where only the
Ag2O peak exists. In the top-view SEM images of Figure 3B,C, the surface morphologies of
the Ag and Ag2O thin film indicate a dense surface.
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Figure 4A shows the UV-vis spectra of the as-deposited thin film with the oxygen
gas flow rate controlled from 0 to 5 sccm. The transmittance near 300 nm of the Ag thin
film deposited at 0 and 1 sccm increase sharply than other conditions. The reason is the
surface plasmon resonance (SPR) phenomenon that occurs on the surface of planar metals
(typically gold or silver) or on the surface of metal nanoparticles. Therefore, it is a SPR
phenomenon that appears on the surface of the Ag thin film through the light used for
UV-vis, which increases the transmittance near 300 nm [40]. As the oxygen flow rate
increased, the transition from Ag to Ag2O occurred, increasing the transmittance in visible
light of the thin film more than the Ag thin film [41]. Moreover, the average transmittance
in visible light of the thin film deposited at 3 sccm was significantly increased to 42.5%.
Additionally, when the oxygen gas flow was increased to 4–5 sccm, it was confirmed that
the average visible light transmittance increased. However, as mentioned in the XRD study,
the AgO phase appeared at the 4–5 sccm oxygen gas flow condition. Therefore, the optimal
condition was chosen as 3 sccm.
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Figure 4B shows the optical bandgap energy of the Ag2O thin film calculated by the
Tauc plot equation [42], given by

αhv = β(hv − Eg)1/2 (1)

where hν is the photon energy, α is the absorption coefficient, and β is a fixed constant.
The Tauc plot shows that the optical bandgap energy can be estimated by extrapolating
the linear section to the axis energy. The optical bandgap energy of the Ag2O thin film
deposited at 3 sccm was calculated to be 3.74 eV. Electrical properties of as-deposited Ag2O
thin film were evaluated using Hall measurement. The carrier concentration, hall mobility,
and resistivity of as-deposited Ag2O thin film are 6.2 × 1018 cm−3, 41.5 cm2/Vs, and
2.4 × 10−2 Ω cm, respectively. Moreover, the positive value of Hall coefficient of 1.0 cm3/C
was obtained, confirming that the as-deposited Ag2O thin film was a p-type semiconductor.

The influence of post-annealing on the Ag2O properties was also evaluated. It has
been reported that an appropriate post-annealing temperature improves the photodetector
characteristics owing to a reduction in interfacial defects [43]. The crystallinity quality,
uniformity of the deposited thin film, and native defect correction at the heterojunction
interface resulted in an increased photocurrent or apparent photoresponse for the fabricated
device. Because the deposited Ag2O thin films are affected by electrical and crystallographic
properties depending on the post annealing temperature, the as-deposited Ag2O thin films
were studied in the temperature range RT−600 ◦C to evaluate the variation in Ag2O
crystallographic properties.

The XRD patterns of the post-annealed Ag2O thin films are shown in Figure 5. The
annealing temperature range was from RT to 600 ◦C. Broad peaks appeared in the Ag2O
thin film deposited at RT, and as the post-annealing temperature increased, the Ag2O
peak intensity increased. The intensity of (011) peak at 38.4◦, the preferred growth plane,
increased the most at 300 ◦C, without crystal transition from Ag2O to Ag. The Scherrer
equation was used to calculate the crystallite sizes of the Ag2O (011) plane according to
the annealing temperature [44]. It was confirmed that the crystallite size increase with
annealing temperature (pristine: 13.3 nm, 100 ◦C: 14 nm, 200 ◦C: 15 nm, 300 ◦C: 16.5 nm). As
the heat treatment temperature increases, it becomes a high-quality thin film with improved
crystallinity, and the surface of the film becomes homogenous due to reduced roughness.
The smooth surface exhibits good interfacial properties and can effectively suppress the
formation of interfacial charge traps and reduce the carrier scattering centers to achieve
greater electron mobility, which greatly improves the performance of the photodetector [45].
However, after heat treatment at 400 ◦C, the intensity of Ag2O (100) peak was slightly
decreased, and it was confirmed that the intensity of the Ag peaks (200), (220), and (311)
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increased. This means that the sample post-annealed at 400 ◦C presents both Ag2O and
Ag phases. These thin films have inhomogeneous surface which cause more traps and
dislocations at the Ag2O/Ag and Ag2O/β-Ga2O3 interfaces. Since these defects acts as a
resistance in the diode characteristics, it is expected that such as hump phenomenon will
appear. The transition of Ag2O into Ag is attributed to the increase in the Ag diffusion
rate owing to the thermal effect, and the diffusion rate of oxygen atoms becomes relatively
smaller than that of Ag. Therefore, owing to sufficient thermal energy, the Ag diffusion
increases and the chemical bond with oxygen is broken [46]. Thus, at 500 ◦C or higher,
the Ag2O peaks were not observed and the Ag peaks appeared. Moreover, the core level
binding energy was further investigated through XPS analysis of the post-annealed sample
at 400 ◦C, in which both Ag2O and Ag peaks exist.
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Figure 6 shows the XPS spectra of Ag2O thin films with and without post-annealing.
The XPS analysis was performed to further investigate the changes in Ag2O film properties
post-annealed at 400 ◦C via the core-level binding energy. The chemical composition of
Ag2O was determined by XPS. As presented in Figure 6A, the full XPS spectrum of Ag2O
reveals the presence of C, O, and Ag. Through the XPS analysis, the atom ratio between
Ag and O was 2:1. However, after heat treatment at 400 ◦C, the atom ratio of Ag and O
is changed to 3.5:1. Since the atom ratio of Ag becomes higher than that of O, it can be
seen that Ag2O is transitioning to Ag. The spectrum in Figure 6B shows the characteristic
core-level binding energies at approximately 368 and 374 eV, corresponding to Ag 3d5/2
and Ag 3d3/2, respectively, related to the Ag2O thin films. The core-level binding energies
shown in the XPS spectra are consistent with those reported in other studies [47]. Moreover,
after post-annealing at 400 ◦C, the core level binding energy of Ag 3d5/2 was shifted to
368.3 eV and Ag 3d3/2 shifted to 374.3 eV. In the O 1s XPS spectrum in Figure 6C, the two
peaks at 529.5 and 531.4 eV are related to the core-level binding energy of the O ion in
Ag2O, whereas the higher-energy peak corresponds to hydroxyl groups (-OH). Compared
with thin film post-annealed at 400 ◦C, the core-level binding energy of the O ion shifted
to 529.4 eV and -OH shifted to 532.1 eV. This indicates that the transition from Ag2O to
Ag was caused by thermal decomposition [48]. As shown in Figure 6, the sample without
post-annealing indicated Ag2O. However, the post-annealing of the 400 ◦C sample showed
an Ag2O to Ag transition region. These XPS results are in good agreement with the XRD
results. Hence, heat treatment was performed on the photodetector in the range of 0–400 ◦C,
where the Ag2O peaks were maintained.
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After optimizing the Ag2O condition, an Ag2O/β-Ga2O3 heterojunction photodetec-
tor was fabricated, and its structure is shown in Figure 7A. The J-V characteristics of the
Ag2O/β-Ga2O3 heterojunction photodetectors fabricated at various post-annealing temper-
atures were measured in the range of −2–4 V are shown in Figure 7B. All devices exhibited
p-n junction rectification characteristics; in particular, a high on-off ratio of 1.40 × 108 was
achieved through a low off-current of 4.24 × 10−11 A at 0 V and an on-current of 5.74 × 10−3

A at 1.86 V in the device post-annealed at 300 ◦C. Moreover, the J-V curve of the fabricated
device without heat treatment indicates that the leakage current increases as the reverse
bias voltage increases. However, the leakage current decreased as the post-annealing
temperature increased. The change in leakage current with annealing temperature may
influence the Ag2O physical properties at different annealing temperatures. Post-annealing
of the layers can improve the interface properties between the heterojunctions; thus, the
homogeneity of the junction reduces carrier recombination and leakage current [49]. As
shown in Figure 7C, it exhibited the variation of the breakdown voltage with post-annealing
temperature. The breakdown voltage increased as the annealing temperature increased,
and the device post-annealed at 300 ◦C exhibited the highest value at 238 V. The photodetec-
tor is primarily used at low current, but the as-fabricated device has high durability owing
to its high breakdown voltage and low leakage current, such that it can be applied in harsh
industries where a sudden short circuit occurs [50]. In addition, diode parameters such as
the ideality factor and barrier height were investigated. The diode J-V characteristics can
be expressed, correlating the current and voltage with the ideality factor and barrier height,
as follows:

J = JS exp{q(V − IRS)/nkT} (2)
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where JS is the saturation current density, V is the voltage across the diode, T is the
temperature in Kelvin, q is the electron charge, k is Boltzmann’s constant, and n is an
ideality factor. The value of the ideality factor determines the deviation from the ideal
diode owing to the presence of the barrier inhomogeneity and tunneling component [51],

JS = AA*T2exp(−qϕB/kT) (3)

where A* is Richardson’s constant (41 A cm−2 K−2 for β-Ga2O3), A is the contact area, T is
the temperature in Kelvin, q is the electron charge, k is Boltzmann’s constant, and ϕB is the
effective barrier height.
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Figure 7. (A) Schematic illustration of the as-fabricated Ag2O/β-Ga2O3 heterojunction photodetector.
(B) J-V characteristics of Ag2O/β-Ga2O3 heterojunction photodetectors. (C) Breakdown voltage of
the as-fabricated devices. (D) Variation of the ideality factor (n) and barrier height (ϕB) with the
post-annealing temperature. (E) Logarithmic plot of the J-V characteristics with difference in reverse
saturation current according to post-annealing temperature. (F) J-V characteristics for the forward
and reverse sweep of bias voltage.
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Figure 7D shows the changes in n and ϕB with the post-annealing temperature. As
the post-annealing temperature increased up to 300 ◦C, the value of n decreased and
ϕB increased. The ideality factor of the device post-annealed at 300 ◦C had the lowest
value of 2.08, and ϕB increased to 1.12 eV. This can be attributed to improvements in
crystallization and reduced interfacial defects with fewer dislocations because of post-
annealing [52]. However, the values of n and ϕB increased rapidly at 400 ◦C, this is due
to the hump phenomenon observed in the J-V curve in Figure 7B. This was related to the
transition of Ag2O to Ag caused by the post-annealing process at 400 ◦C. As shown in the
XRD study, the thin film post-annealed at 400 ◦C indicates a mixed state of Ag2O and Ag. It
is thought that the trap density increases owing to the trapping of charged species occurring
from the difference in the resistivity and conductivity of the mixed crystallinity, causing
the hump phenomenon [53]. Furthermore, the interface quality of the Ag2O/β-Ga2O3
heterojunction was investigated. The occurrence of electrical hysteresis was analyzed by
measuring the forward and reverse J-V characteristics. Figure 7E shows a logarithmic plot
of the J–V characteristics with small electrical hysteresis at the reverse saturation current
according to the post-annealing temperature. The presence of electrical hysteresis in the
reverse saturation current exhibits the quality of interface states and surface defects for
the Ag2O/β-Ga2O3 heterojunction [54,55]. It was confirmed that the difference in reverse
current and the reverse saturation current decreased as the post-annealing temperature
increased, showing the narrowest gap at 300 ◦C. As the difference in reverse current and
reverse saturation current is much smaller, charge trapping is reduced, indicating an
enhanced interface state. Figure 7F shows the forward and reverse sweeps of the post-
annealed device at 300 ◦C under dark condition. The measured J–V characteristics indicated
almost no hysteresis effect compared to the forward and reverse, showing an excellent
interface state.

Figure 8A shows the continuous time-dependent photoresponse according to the post-
annealing temperature at a wavelength of 254 nm and a light intensity of 1000 µW/cm2

at zero bias voltage. When the UV light was turned on, the photocurrent instantaneously
flowed, and the photoresponse of all the samples remained approximately the same, indi-
cating high reproducibility. Moreover, when the UV light was turned off, the photocurrent
immediately returned to the dark current. This on/off operating characteristic of the UV
irradiation clearly indicates that it behaves as a photodetector. Moreover, the effect on
heat treatment was examined, the photocurrent increased with increasing post-annealing
temperature, showing the highest photocurrent density of 9.70 µA/cm2 at 300 ◦C. In the
case of 400 ◦C, the photocurrent decreased owing to the hump phenomenon, in which Ag2O
transitions to Ag caused by post-annealing at 400 ◦C. The change in photocurrent density
according to post-annealing temperature tends to be the same as the J-V analysis. The
interfacial traps interfere the movement of electrons separated from a pair of electron holes
generated by light irradiation. However, it can be seen that the interfacial traps reduced
at 300 ◦C through the J-V analysis and photoresponse according to the heat treatment,
thereby stabilizing the interface between Ag2O and β-Ga2O3 and improving the quality. In
addition, temperature-dependent external quantum efficiency (EQE) was calculated using
the following formulas:

ηeff = (hvR/e) × 100% (4)

where ηeff is the EQE, hv is the incident photon energy, R is the responsivity, and e is
elementary charge.

Comparing the values of ηeff for each annealing temperature, it was confirmed that
the device post-annealed at 300 ◦C achieved the highest ηeff of 6.3% (100 ◦C: 1.9%, 200 ◦C:
2.8%, 300 ◦C: 6.3%, 400 ◦C: 4.8%) at zero-bias under 254 nm irradiation at 100 µW/cm2.
Hence, it was confirmed that 300 ◦C is the optimal condition, the change in photocurrent of
the 300 ◦C sample according to the intensity of light at 254 nm was investigated. Figure 8B
shows the photoresponse of the post-annealed device at 300 ◦C under a UV light intensities
ranging from 100 to 1000 µW/cm2 under 254 nm irradiation. The photocurrent gradually
increased with the intensity of light because the higher the light intensity, the more electron-
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hole pairs, which in turn produced a higher photocurrent. However, contrary to this
tendency, the responsivity and detectivity of the photodetector exhibited different results.
Figure 8C,D shows the change in the photodetector responsivity and detectivity according
to the light intensity. The responsivity, which evaluates the photodetector sensitivity and
the detectivity, which is the figure of merit for detecting the smallest signal, were calculated
using the following formulas [56,57]:

R = (JPhoto − JDark)/P (5)

where R is the responsivity, JPhoto is the photocurrent density, JDark is the dark-current
density, and P is the supplied light power. The detectivity value is determined by,

D = R/(2eJ)1/2 (6)

where D is the detectivity, J is the dark-current density, and e is the elemental charge.
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that as more electron-hole pairs are generated by high light intensity, scattering is in-
creased because of the generated charge carriers, and the possibility of recombination in-
creases, thereby reducing responsivity and detectivity [58]. Figure 8E,F show the rise and 
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Figure 8. The photoresponse and parameters of the Ag2O/β-Ga2O3 heterojunction photodetector
under zero-bias at 254 nm irradiation. (A) Photoresponse of the devices with the Ag2O thin films
grown under different post-annealing temperatures. (B) Photoresponse of the device post-annealed
at 300 ◦C with various light intensities. (C) Responsivity as a function of the light intensity. (D) De-
tectivity as a function of the light intensity. (E) Rise time and (F) Fall time. (G) Responsivity under
zero-bias at 254 and 365 nm irradiation.
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Consequently, the responsivity under 254 nm irradiation decreased with increasing
light intensity. The maximum responsivity was obtained as 12.87 mA/W at 100 µW/cm2.
Moreover, the detectivity decreased with increasing light intensity, and the highest D was
obtained at 2.70 × 1011 Jones under 254 nm irradiation at 100 µW/cm2. The device ex-
hibited high responsivity and detectivity at low light intensities. For this reason, it is
suggested that as more electron-hole pairs are generated by high light intensity, scattering
is increased because of the generated charge carriers, and the possibility of recombination
increases, thereby reducing responsivity and detectivity [58]. Figure 8E,F show the rise
and fall times of the Ag2O/β-Ga2O3 heterojunction photodetector. It was measured to be
29.8 and 46.7 ms, respectively. As shown in Figure 8G, we confirmed that the rejection ratio
of 254 nm (UVC) to 365 nm (UVA) at zero bias under the light intensity of 1000 µW/cm2 is
3.1 × 102. The photoresponse parameters under zero bias of the Ag2O/β-Ga2O3 hetero-
junction photodetector in this study showed higher responsivity and detectivity than those
of other solar-blind photodetectors, as shown in Table 2 [59–65].

Table 2. Comparison of the self-powered solar-blind photodetector characteristics parameters with
other reported studies.

Photodetector Wavelength
(nm)

Responsivity
(mA/W)

Detectivity
(Jones)

Rise Time/Fall
Time Ref.

Ag2O/β-Ga2O3 254 12.87 2.70 × 1011 29.76 ms/46.73 ms This work
Diamond/β-Ga2O3 244 0.2 [59]

Au/β-Ga2O3 258 0.01 1 µs/100 µs [60]
4H-SiC/β-Ga2O3 254 10.35 8.8 × 109 11 ms/19 ms [61]

Polyanline/MgZnO 250 0.16 1.5 × 1011 0.3 s/0.3 s [62]
p-Gr/ZnS QDs/4H-SiC 250 0.29 1.41 × 1010 28 µs/0.75 ms [63]

MoS2/β-Ga2O3 245 2.05 1.21 × 1011 [64]
β-Ga2O3/Ga:ZnO 254 0.76 0.18 s/0.27 s [65]

The photoresponse properties of the Ag2O/β-Ga2O3 photodetector can be explained
from the energy band diagram as shown in Figure 9. The mechanism of photocurrent
generation is related to the depletion region. For p-type Ag2O, in which positive holes
are the major carriers, the Fermi level is located near the valance band, whereas n-type
β-Ga2O3, in which free electrons are the major carriers, exists near the conduction band.
When forming the p-n junction holes from p-type diffuse to n-type, and electrons from
n-type diffuse to p-type. As a result, each Fermi level is matched, forming an electrically
neutral depletion region. In addition, due to the large difference in optical bandgap, a
strong built-in electric field will be created at the Ag2O/β-Ga2O3 interface. When the
device is irradiated to DUV light, electron–hole pairs are generated in the depletion region
due to absorption of the incident DUV light, which is rapidly separated by the strong
built-in electric field. Moreover, electrons are transferred to the electrode, leading to
a fast photoresponse speed and an increase in photocurrent. Besides, the strong built-
in electric field ensures that this heterojunction photodetector can operate at zero bias
and proper heat treatment reduces defects between interfaces, resulting in low leakage
currents and high photoresponse. In this study, we successfully fabricated a self-powered
DUV photodetector through the heterojunction of Ag2O and β-Ga2O3. The photodetector
characteristics according to the post-annealing temperature were evaluated, and the sample
that was post-annealed at 300 ◦C had the best performance. Our research provides a new
route for the DUV sensing industry and shows potential for military applications, including
flame sensing, spatial sensing, and image sensors.
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4. Conclusions

A self-powered solar-blind photodetector was successfully fabricated with an
Ag2O/β-Ga2O3 heterojunction via deposition of a p-type Ag2O thin film onto an n-type
β-Ga2O3 layer using an FTS system. Ag2O thin films were deposited by controlling the oxy-
gen gas flow, with 3 sccm being the optimal condition for presenting p-type semiconductor
characteristics. After the Ag/Ag2O thin film deposition, the effects of post-annealing on
the Ag2O/β-Ga2O3 heterojunction photodetector were investigated. Typical rectification
characteristics were observed in J-V characteristics, and as the post-annealing temperature
increased to 300 ◦C, a low leakage current (4.24 × 10−11 A), high breakdown voltage of
238 V, ideality factor of 2.08, and barrier height of 1.12 eV were observed. A high respon-
sivity of 12.87 mA/W, detectivity rate of 2.70 × 1011 Jones, and fast rise and fall times of
29.76 and 46.73 ms were observed under 254 nm irradiation at zero bias. From these results,
it was confirmed that the device operates without an external applied voltage and has
high responsivity in DUV. Ag2O/β-Ga2O3 heterojunction photodetectors have confirmed
their potential for application in DUV sensing systems, and further research is planned to
improve the device characteristics.
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