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S1 Matrix model

As mentioned in the main article, the Hamiltonian H2q of the two DQDs with the Coulomb interaction
of electrons between the DQDs is written as

H2q =


− 1

2 (εl + εr) + J2 − 1
2∆r − 1

2∆l 0
− 1

2∆r − 1
2 (εl − εr) + J3 0 − 1

2∆l

− 1
2∆l 0 − 1

2 (−εl + εr) + J1 − 1
2∆r

0 − 1
2∆l − 1

2∆r − 1
2 (−εl − εr) + J2

 (S1)

The Hamiltonian in equation (S1) can be extracted for the subsystems, whose Hamiltonians for the
left and right DQDs are respectively given by

Hl = −1

2
(εlσz +∆lσx) + J2 (⟨R|0⟩r⟨0|rR⟩) |0⟩l⟨0|l

+J3 (⟨R|1⟩r⟨1|rR⟩) |0⟩l⟨0|l + J1 (⟨R|0⟩r⟨0|rR⟩) |1⟩l⟨1|l
+J2 (⟨R|1⟩r⟨1|rR⟩) |1⟩l⟨1|l (S2)

Hr = −1

2
(εrσz +∆rσx) + J2 (⟨L|0⟩l⟨0|lL⟩) |0⟩r⟨0|r

+J3 (⟨L|1⟩l⟨1|lL⟩) |0⟩r⟨0|r + J1 (⟨L|0⟩l⟨0|lL⟩) |1⟩r⟨1|r
+J2 (⟨L|1⟩l⟨1|lL⟩) |1⟩r⟨1|r (S3)

If the state can be written as a product of the subsystem, the solution of H2q in equation (S1) and
that from the product solutions of Hl in equation (S2) and Hr in equation (S3) are the same, as shown
in Figure S1.
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Figure S1: The dynamics of states of two DQDs with the inter-DQD Coulomb interaction for the
initial state |01⟩, the QD base length b = 2.0 nm, the inter-QD distance d = 3.0 nm. The two DQDs
are separated by the inter-DQD distance a = 8.0 nm. The solid and dash lines show the results from
equation (S1) and from equations (S2) and (S3), respectively.

S2 Supercell size

(a) (b)

Figure S2: (a) The DQD energy as a function of the supercell length Lx = Ly = L. (b) The DQD
energy as a function of the inter-QD distance d with different supercell length Lx and Ly. The solid
and dash lines denote the bonding and anti-bonding energies, respectively.

The geometrical parameters, the potential and the spatial-dependent effective mass of MoS2 are used
in simulation. The height of the QDs is though they can be varied as desired scaled by h = b/2.
In Figure S2, the solid and dash lines represent the bonding and anti-bonding state energies. In
Figure S2a, the DQD energies converge when the supercell is large. In Figure S2b, we compare
energies the different supercell lengths with Lx = Ly = 6.0 nm, Lx = Ly = 9.0 nm and Lx = 9.0 nm,
Ly = 4.5 nm. The supercell with Lx = Ly = 9.0 nm (denoted by circle green lines) is large enough for
convergence. The calculation with Lx = 9.0 nm, Ly = 4.5 nm (or blue lines) have accuracy close to
that the green lines, but the calculation time is shorter by about four times. Hence, we have decided
to use the supercell of dimensions Lx = 9.0 nm, Ly = 4.5 nm for calculating the dynamics of states.
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Figure S3: The DQD energy as a function of the inter-QD distance d with different supercell lengths
Lx and Ly. The solid and dash lines are bonding and anti-bonding energies, respectively.

S3 Fitting energy of the DQD

S3.1 Energy of 1D double quantum wells with WKB approximation

Considering the 1D double quantum wells as depicted by the diagram in Figure S4. Two finite potential
wells with a potential V0, each of width b, are separated by distance d. The two wells are embedded in
the infinite well of length L. We are interested in the energies E < V0 for bound of state of an electron
in the wells. Using the WKB approximation, the quantization condition of energy for symmetrical
double wells is tan(θ) = ±2eϕ, see J. D. Griffiths Introduction to Quantum Mechanics [54] in Chapter
8 for more details. The variables θ and ϕ are calculated by the integral following

θ =
1

h̄

∫ x2

x1

p(x) dx =
1

h̄

∫ d/2+ b

d/2

√
2mE dx =

b

h̄

√
2mE, (S4)

ϕ =
1

h̄

∫ x1

−x1

|p(x′)| dx′ =
1

h̄

∫ d/2

−d/2

√
2m(V0 − E) dx′ = k

√
V0 − E, (S5)

Figure S4: Diagram of 1D double quantum wells.

where k =
√
2md/h̄. In case of high and/or broad central barrier (V0 and d), ϕ is large and eϕ becomes

even larger. It means that θ is close to a half integer multiple of π. Then, the quantization condition
can be approximated as

θ ≈ (n+
1

2
)π ∓ 1

2
e−ϕ. (S6)
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Using equations (S4) and (S6), the electron energy can be approximated as

E = (n+
1

2
)2

π2h̄2

2mb2
+

h̄2

8mb2
e−2ϕ ∓ (n+

1

2
)
πh̄2

2mb2
e−ϕ. (S7)

The energy level n splits into two values. We are interested in the first lowest level, and denote this
splitting as the bonding Eb and anti-bonding Eab energies. Defining the parameter β = h̄2/(2mb2),
the splitting energies and the variable ϕ in equation (S5) are given by

Eb = (n+
1

2
)2π2β +

1

4
βe−2ϕb

− (n+
1

2
)πβe−ϕb

(S8)

Eab = (n+
1

2
)2π2β +

1

4
βe−2ϕab

+ (n+
1

2
)πβe−ϕab

(S9)

ϕb = k
√
V0 − Eb (S10)

ϕab = k
√
V0 − Eab. (S11)

Therefore, the energy splitting of the bonding and anti-bonding states is ∆ = Eab − Eb. Solving
these equations to find close forms for E and ϕ is difficult because they nonlinearly depend on other
parameters. For some symmetrical double wells, using the WKB without additional approximation of
the quantization condition, the numerical solutions of the coupling equation for the energy splitting are
demonstrated and compared to the variational principle method in Ref. [53] In the coupling equations
above, for the approximation of the splitting energy, we assume that the bonding and anti-bonding
energies are symmetrical splitting around mean energy Ẽ. Then, the bonding and anti-bonding energies
can be written as

Eb = Ẽ − ϵ and Eab = Ẽ + ϵ, (S12)

so that ∆ = Eab − Eb = 2ϵ. Then, the variables ϕb and ϕab are

ϕb,ab = k
√
V0 − Eb,ab = k

√
V0 − Ẽ ± ϵ. (S13)

Then, approximating equation (S13) yields

ϕb ≈ k

√
V0 − Ẽ

(
1 +

ϵ

2(V0 − Ẽ)

)
, (S14)

ϕab ≈ k

√
V0 − Ẽ

(
1− ϵ

2(V0 − Ẽ)

)
. (S15)

If we define ϕ̃ = k
√
V0 − Ẽ and δ = (ϵk) /

(
2
√
V0 − Ẽ

)
, then we can write ϕb = ϕ̃+δ and ϕab = ϕ̃−δ.

Using equation (S12), the relation of the parameter δ and splitting energy ∆ is obtained via

δ =
k√

V0 − Ẽ

∆

4
. (S16)

Considering, the splitting energy in terms of the parameters ϕ̃ and δ

∆ = Eab − Eb

≈ β

4
e−2ϕ̃

(
e2δ − e−2δ

)
+ (n+

1

2
)πβe−ϕ̃

(
eδ + e−δ

)
=

β

4
e−2ϕ̃(4δ) + (n+

1

2
)πβe−ϕ̃(2)

=
β

4
e−2ϕ̃(

k∆√
V0 − Ẽ

) + (n+
1

2
)2πβe−ϕ̃

=
(n+ 1

2 )2πβe
−k

√
V0−Ẽ

1− β/4√
V0−Ẽ

ke−2k
√

V0−Ẽ
(S17)

The term 1− β/4√
V0−Ẽ

ke−2k
√

V0−Ẽ must be positive because the splitting energy ∆ is positive. Therefore,

β/4√
V0−Ẽ

ke−2k
√

V0−Ẽ ≪ 1, where the variable k is proportional to the distance d. This term is zero

4



when d = 0, increases slightly, then rapidly decays to zero as d increases. Therefore, the denominator

of equation (S17) is close to one when the ratio of β/(4
√
V0 − Ẽ) is small. In the asymptotic limit of

a vary large d, the two wells are considered independently, so the bonding and anti-bonding energies
are close to the energy of one finite well, and the splitting tends to zero. The wavefunction of such
bonding state is similar to that of one well with a half amplitude placing in two wells. Also, when
there is no energy splitting for very large distance d, an electron is in one well entirely (with two wells
having degenerate energy), or it is in the bonding state or anti-bonding state with half amplitudes. In
equation (S17), the splitting energy is assumed symmetrical around mean the energy Ẽ which will be

considered as the energy in the asymptotic limit. Therefore, the term
√
V0 − Ẽ can be considered as

a function depending on parameters of a single quantum well.

Equation (S17) a motivation to define the fitting function of the 2D DQD energy gap in the main
article as the maximum energy gap multiplied by the exponential decay as a function of the separating
distance of QDs (d − b). The decay rate depends on the parameters of a quantum dot. That is,
∆ = ∆max(V, b)e

−α(V,b)(d−b).
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S3.2 Fitting energy of the DQD

(a) (b)

(c) (d)

(e) (f)

Figure S5: The energy gaps between bonding and anti-bonding states of an electron as a function of
the inter-QD distance d which the different electronic potential (a) V = 0.60 eV, (b) V = 0.915 eV,
(c) V = 1.20 eV, (d) V = 1.50 eV, (e) V = 2.00 eV the color curves represent the different QD base
lengths; (f) the maximum energy gaps as a function of the QD base length b which different potential
values.
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V
b 0.600 0.915 1.200 1.500 2.000
1.0 0.278 0.481 0.689 0.935 1.401
1.4 0.560 0.949 1.322 1.781 2.382
1.6 0.717 1.184 1.608 2.058 2.797
1.8 0.873 1.341 1.874 2.371 3.158
2.0 1.019 1.601 2.122 2.652 3.465
2.2 1.157 1.792 2.350 2.900 3.726

Table S1: The fitting of the exponential component α as a function of V and b.

V
b 0.600 0.915 1.200 1.500 2.000
1.0 0.99866 0.99954 0.99979 0.99986 0.99912
1.4 0.99994 0.99983 0.99941 0.99933 0.99960
1.6 0.99995 0.99965 0.99957 0.99969 0.99981
1.8 0.99987 0.99950 0.99979 0.99985 0.99989
2.0 0.99987 0.99986 0.99990 0.99991 0.99993
2.2 0.99991 0.99993 0.99994 0.99994 0.99995

Table S2: R2 of the fitting of exponential component α.

V m1(V ) c1(V )
0.600 0.7400 -0.4460
0.915 1.0881 -0.5888
1.200 1.3837 -0.6454
1.500 1.6193 -0.5826
2.000 1.9367 -0.4064

Table S3: The fitting of parameters m1 and c1 as a function of V .

S4 Initial state of DQD under electric field strength

In this section, the suitable initial preparations are given for some examples by varying the electric
field strength. The ideal qubit states |0⟩ and |1⟩ are defined by a linear combination of two bonding
and anti-bonding states of the DQD without the electric field strength. The DQDs are prepared in the
position-dependent eigenstates of the Hamiltonian with the electric field, which can define the initial
state |0⟩ or |1⟩ . Such initial are verified by the projection onto the ideal qubit states. Suppose we
need to prepare the initial state such as |0⟩ in Figures S6 and S7. If the applied external electric field
is too weak or too strong, then the initial state is prepared with less accuracy.
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Figure S6: The probability of preparing the initial state in |0⟩ when the DQD is under the applied
electric field strength varying in strength. The potential parameter V = 0.915 eV (MoS2), the QD
base b = 1.8 nm and the inter-QD distance d are used in calculating the color lines.

Figure S7: The probability of preparing the initial state in |0⟩ when the DQD is under the applied
electric field strength varying in strength. The potential parameter V = 0.60 eV, the QD base
b = 2.0 nm and the inter-QD distance d are used in calculating the color lines.
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S5 Electronic potential and matrix models with varying time
steps.

Figure S8: The dynamics of states of two DQDs with the inter-DQD Coulomb interaction with the
initial state |01⟩, the QD base length b = 2.0 nm, the inter-QD distance d = 3.0 nm and the two DQDs
are separated by the inter-DQD distance a = 8.0 nm. The dynamics of the state |01⟩ are shown as a
function of time for the electronic potential model (PM) and the matrix model (MM). The time step
(dt) of the calculation is varied in the different curves.

Figure S9: The dynamics of the state |01⟩ of the the two DQDs without the inter-DQD Coulomb
interaction.

In Figure S8, the dynamics of the state |01⟩ from the electronic potential model (PM) are compared
with those from the matrix model (MM). The time step (dt) of the calculation is varied. The electronic
potential model is calculated by the Crank-Nicolson (CN) method and the matrix mode is calculated
by the fourth order Runge–Kutta (RK) method. For a larger time step, the time evolution with the
RK method in the matrix model does not conserve the norm of the states, but that with the CN
method in the electronic potential model does. However, in the electronic potential model, a larger
time step make the errors accumulate more as the calculation time increases. For the smaller time
step, the results of the two models are nearly identical.

In the case of two DQDs without the inter-DQD interaction, in the matrix model, we know exactly
the time period for the dynamics of state to again return to the initial state; that period is given by
t2π = 2πh̄/∆ = 0.316 ps, where ∆ is the energy gap. The numerical results are good agreement as
evident in Figure S9.

9



S6 CNOT operation efficiency ∆P

Figure S10: The CNOT operation efficiency ∆P as a function of the inter-DQD distance a, the QD
base lengths b = 2.0 nm and b = 2.2 nm are shown in the top and bottom panels, respectively. The
electronic potential parameter is V = 0.60 eV. The results from different the inter-QD distance d are
denoted by different symbols. The solid and dash lines are from the electronic potential and matrix
models, respectively.

Figure S11: The CNOT operation efficiency ∆P as a function of the inter-DQD distance a, the QD
base lengths b = 1.8 nm. The electronic potential parameter is V = 1.50 eV. The results from
different the inter-QD distance d are denoted by different symbols. The solid and dash lines are from
the electronic potential and matrix models, respectively.

10



S7 The dynamics of state with hypothetical parameters

Figure S12: The CNOT operation efficiency ∆P as a function of the inter-DQD distance a, the QD
base length b = 2.0 nm and the inter-QD distance d = 3.0 nm. This structure gives the parameters
∆l = ∆r = 0.013083 eV in matrix model. We use εl = 0.0 eV, εr = 2.0 eV. The inter-qubit interaction
J1 is artificially increased by 5%, 10% and 15% and the others (J2 and J3) are not changed. Then,
the ∆P increases by almost 2 - 3 folds.
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(a) (b)

(c) (d)

Figure S13: The dynamics of states in the matrix model are simulated with hypothetical parameters
for the CNOT operation. The probability as a function of time in two qubit states are shown for the
initial states (a) |01⟩, (b) |11⟩, (c) |00⟩ and (d) |10⟩.

The DQD structure has the QD base length b = 2.0 nm, the inter-QD distance d = 3.0 nm, and inter-
DQD distance a = 8.0 nm. The parameters of the matrix model can be extracted from the electronic
potential model as ∆l = ∆r = 0.013083 eV. The inter-qubit interactions are J1 = 0.102854 eV,
J2 = 0.084704 eV and J3 = 0.071998 eV calculating from the model of distance for this structure. We
use εl = 0.0 eV, εr = 2.0 eV for the CNOT simulation. The dynamics of state for the initial state |01⟩
is given in the Figure S1.

For a hypothetical set of parameters {J1, J2, J3} such as small J2 ≈ J3 and very strong J1, we
choose the parameters above as J2 = J3 = 0.071998 eV and J1 = 1.3J1. In CNOT simulation for the
right qubit controlling the left qubit, the dynamics of state are illustrated in Figure S13 for different
initial states. We see that if the right qubit is in the state |1⟩r then the left qubit can be flipped under
the operation. On the other hand, if the right qubit is in the state |0⟩r, then the left qubit remains
almost in the initial state, satisfying the CNOT operation.
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