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Abstract: Carbon is a material with interesting properties which exists in large quantities on Earth, so
many studies involving carbon have been conducted. In particular, nano-sized carbon allotropes,
referred to as carbon nanomaterials, comprise the subject of various studies currently underway. The
electrical, chemical, physical properties of carbon nanowalls (CNWs) are modified by parameters
such as surface density, height and thickness. These characteristics have significant effects on
CNWs and can be adjusted as a growth interlayer. It was confirmed that the molybdenum disulfide
(MoS2) interlayer synthesized in this paper by radio frequency (RF) magnetron sputtering altered the
morphological characteristics of the CNWs, including its shaped edge, pores diameter and density.
We provide interesting results through FE-SEM, EDS and Raman analysis in this paper. Based on the
Raman analysis, both the D-peak of carbon and the ID/IG ratio decreased. Through this study, the
effect of MoS2 on the morphological characteristics of CNWs was confirmed.

Keywords: carbon nanowall; molybdenum disulfide; interlayer; morphological characteristics

1. Introduction

Carbon-based materials have the advantages offered by metals, chemicals and ceram-
ics. They have excellent strength and flexibility, are lightweight and have high electrical
conductivity. In addition, carbon-based materials are used in various fields around the
world because of the chemical stability they offer [1,2]. Various carbon allotropes ex-
ist, depending on hybridization bonding, such as sp2, sp3, corresponding to graphene,
graphite, and diamond. Among them, carbon nanowalls (CNWs), or the vertically oriented
structures of graphene [3–6], are promising candidates with very large specific surface
areas [7]. Among carbon allotropes, CNWs can be grown by plasma enhanced chemical
vapor deposition (PECVD) at relatively low temperature [8]. Without catalysts, CNWs can
be grown on various substrates, such as glass and polymer-based substrates. In addition,
CNWs exhibit various physical properties depending to the morphological characteristics.
Variations in morphological characteristics depends on several parameters, such as the
reactant gas, power and working pressure [9]. These results can be confirmed through
diverse literature reports, but studies on morphological characteristics attributed to the in-
terlayer remain limited [10]. However, our research group did not control parameters such
as the ratio of the reaction gas, including the microwave power and the working pressure,
and the variation in morphological characteristics of the CNWs is brought on by the MoS2
interlayer. MoS2, one of the representative materials of transition metal dichalcogenides
(TMDC), is a two-dimensional material with excellent physicochemical properties [11,12]
which has been in the spotlight as a semiconductor material that can replace graphene.
Although many studies on carbon-based materials and MoS2 hybrid composites have been
conducted around the world, there are limitations in that the synthesis is difficult and
time-consuming [13]. In this paper, a MoS2 interlayer was synthesized on a glass substrate
using an radio frequency (RF) magnetron sputtering system to vary the morphological
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characteristics of CNWs, which shortened the synthesis time and obtained high purity
MoS2. It was characterized through FE-SEM, EDS and Raman analysis. CNWs grown on
the MoS2 interlayer showed interesting morphological characteristics. These results are
attributed to the initial growth of CNWs in the MoS2 crystal plane, and could also be due
to van der Waals forces between the surface of MoS2 and graphene sheets [14].

2. Experimental Method
2.1. Preparation of Substrate

A glass substrate consisting of amorphous SiO2 was used. In the substrate cleaning
process step, ultrasonic degreasing of the glass substrates was performed for 10 min in
the following order: trichloroethylene (TCE), acetone, methanol, and deionized water
(DI water).

2.2. MoS2 Interlayer Synthesis and Annealing

The MoS2 interlayer was synthesized through an RF magnetron sputtering system
using a molybdenum disulfide (MoS2, 99.99%) 4-inch target (Table 1). Afterwards, it was
annealed in a vacuum chamber at 400 ◦C and 10−6 Torr for 40 min.

Table 1. Sputtering system parameters for MoS2 interlayer synthesis.

Parameters MoS2

RF Power 200 W
Base Pressure 10−6 Torr

Working Pressure 1.5 × 10−2 Torr
Temperature Room Temperature

Synthesis Time 10 min

2.3. Growth of the Carbon Nanowall

The prepared MoS2 samples were placed in a PECVD (2.45 GHz microwave) chamber,
and a base vacuum at 10−6 Torr was applied for 24 h. After 40 sccm of hydrogen (H2)
gas and 20 sccm of methane (CH4) gas were injected into the chamber, a plasma was
formed using 1300 W of 2.45 GHz microwave power. During the CNW growth process,
the temperature and pressure were maintained at 600 ◦C and 4 × 10−2 Torr, respectively
(Table 2).

Table 2. Process parameters of PECVD method for CNW growth.

Parameters CNW

Microwave Power 1300 W
Reaction Gas H2 40 sccm and CH4 20 sccm
Base pressure 10−6 Torr

Working Pressure 4 × 10−2 Torr
Temperature 600 ◦C
Growth Time 5, 10 and 15 min

2.4. Characterization and Analysis of Materials

In this study, the morphological characteristics of CNWs were analyzed through
field-emission scanning electron microscopy (FE-SEM, HITACH, Japan, S-4800) at 15 kV
and energy-dispersive X-ray spectroscopy (EDS). In addition, the intrinsic properties of
carbon, such as the graphitization degree and defects of CNW were analyzed using Raman
spectroscopy (HORIBA, Japan, LabRAM HR-800). The laser power was 3 mW, the excitation
wavelength was 532 nm and a ×50 objective with NA = 0.5 was used.
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3. Results and Discussion
3.1. Molphological Characteristics of Carbon Nanowalls

Figure 1(a-1–a-3) shows the surface FE-SEM image of the CNW grown on a glass
substrate. The CNW surface is serpentine and disordered regardless of the growth time.
It exhibits morphological characteristics of primitive CNWs and is defined by the zigzag-
shaped edge [15], shown in Figure 1(a-2). This is because CNW grows anisotropically or
is disordered due to defects in the graphene sheets that occur during the initial growth
process [16]. Figure 1(b-1–b-3) shows the surface FE-SEM image of CNW growth on the
MoS2 interlayer. In this case, Figure 1(b-1,b-2) shows sharp-edge shapes [17,18] compared
to CNWs grown directly on the glass substrate. As the deposition time was increased to
15 min, a round-edged shape formed in Figure 1(b-3), and compared to Figure 1(a-1–a-3),
the density was lower and the pore diameter between the edges increased. The CNW
grown on the MoS2 interlayer for 10 min showed the greatest deformation in surface
morphological characteristics of the existing CNW.

Nanomaterials 2022, 12, x FOR PEER REVIEW 3 of 7 
 

 

and energy-dispersive X-ray spectroscopy (EDS). In addition, the intrinsic properties of 
carbon, such as the graphitization degree and defects of CNW were analyzed using Ra-
man spectroscopy (HORIBA, Japan, LabRAM HR-800). The laser power was 3 mW, the 
excitation wavelength was 532 nm and a ×50 objective with NA = 0.5 was used. 

3. Results and Discussion 
3.1. Molphological Characteristics of Carbon Nanowalls 

Figure 1a-1–a-3 shows the surface FE-SEM image of the CNW grown on a glass sub-
strate. The CNW surface is serpentine and disordered regardless of the growth time. It 
exhibits morphological characteristics of primitive CNWs and is defined by the zigzag-
shaped edge [15], shown in Figure 1a-2. This is because CNW grows anisotropically or is 
disordered due to defects in the graphene sheets that occur during the initial growth pro-
cess [16]. Figure 1b-1–b-3 shows the surface FE-SEM image of CNW growth on the MoS2 
interlayer. In this case, Figure 1b-1,b-2 shows sharp-edge shapes [17,18] compared to 
CNWs grown directly on the glass substrate. As the deposition time was increased to 15 
min, a round-edged shape formed in Figure 1b-3, and compared to Figure 1a-1–a-3, the 
density was lower and the pore diameter between the edges increased. The CNW grown 
on the MoS2 interlayer for 10 min showed the greatest deformation in surface morpholog-
ical characteristics of the existing CNW. 

 
Figure 1. FE-SEM surface images of grown CNWs on the glass substrate with a growth time of (a-
1) 5 min, (a-2) 10 min and (a-3) 15 min. Samples (b-1–b-3) are FE-SEM surface images of CNWs 
grown on the MoS2 interlayer for 5 min, 10 min and 15 min, respectively. 

Cross-sectional FE-SEM images of CNW/MoS2 samples synthesized on glass sub-
strates for 10 min each are shown in Figure 2. The height is 250 nm for MoS2 and 750 nm 

1 μm 

(b-1) 

1 μm 

(b-3) 

Rounded-shape 

1 μm 

(b-2) 

Sharped-shape 

1 μm 

(a-1) 

1 μm 

(a-3) 

1 μm 

(a-2) 

Zigzag-shape 

Figure 1. FE-SEM surface images of grown CNWs on the glass substrate with a growth time of
(a-1) 5 min, (a-2) 10 min and (a-3) 15 min. Samples (b-1–b-3) are FE-SEM surface images of CNWs
grown on the MoS2 interlayer for 5 min, 10 min and 15 min, respectively.

Cross-sectional FE-SEM images of CNW/MoS2 samples synthesized on glass sub-
strates for 10 min each are shown in Figure 2. The height is 250 nm for MoS2 and 750 nm
for CNWs. The vertically oriented MoS2 sheet and graphene sheet regions have different
diameters and densities. For this reason, we show a clear interface between MoS2 and
the CNW. They grow at a slower rate than native CNWs because of the initial growth
process of CNW occurring in macropores (<50 nm) in the MoS2 interlayer (Figure 3). For a
10 min synthesis, CNW grown directly on a glass substrate grew to a height of about 1 µm,
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whereas the MoS2 interlayer grew to 750 nm The morphological characteristics of CNW
vary under the influence of the MoS2 interlayer, and this variation can be attributed to the
interaction between sulfur or molybdenum atoms on the MoS2 surface and carbon atoms
in the graphene sheet. A graphene sheet with a low defect density is formed in the growth
of the initial process by van der Waals forces generated at the interface, and it grows with
a sharp-shaped edge. A stoichiometric analysis of the CNW/MoS2 sample by EDS was
performed and is shown in Figure 4. This result confirmed the existence of CNWs and
MoS2, and also confirmed that the sample was successfully synthesized.

3.2. Raman Spectra

Figure 5a shows the results of the Raman spectroscopy analysis before and after
annealing of the MoS2 interlayer. E1

2g, showing in-plane vibrational characteristics, and
A1g, showing interlayer vibrational characteristics, were observed. Compared to pristine
MoS2, annealed MoS2 exhibited a peak shift of approximately 11 cm−1 in the E1

2g mode
from 351 cm−1 to 362 cm−1 [19]. The blue shift phenomenon is due to the increase in the
van der Waals forces between the MoS2 interlayers during the annealing process. When
the thickness of the interlayer decreases, the distance between E1

2g and A1g decreases [20].
Results of the Raman spectrum analysis of the CNW are shown in Figure 5b. Defects
in graphite or amorphous carbon cause a high intensity D-peak, and this was observed
at 1345 cm−1 [21]. The presence of the MoS2 interlayer decreases the D-peak of CNW
(Figure 5c). In addition, there is a G-peak at about 1592 cm−1, which is commonly found in
carbon-based materials, and appears due to sp2 bonding or the effect of graphitization [22].
The peak observed at around 2686 cm−1 is a 2D peak, indicating the double resonance
of the pi-bond. When the number of layers of graphene is relatively low, the relatively
higher intensity peaks appear. The CNW exhibits low-intensity peaks due to the existence
of multi-layer graphene [23].
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Figure 2. Cross-sectional FE-SEM image of a CNW: (a) CNW grown for 10 min on a glass substrate;
(b) CNW grown for 10 min on the MoS2 interlayer and the corresponding magnified image.
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and G peaks enlarged; and (d) ID/IG ratio of each CNW sample grown under various conditions.
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4. Conclusions

In summary, MoS2, a transition metal dichalcogenide material, was successfully syn-
thesized using the RF magnetron sputtering system, while CNW, a carbon allotrope, was
grown using the PECVD method. MoS2 was used as an interlayer material, represents
the key subject of this study. The surface density, pores diameter, and growth rate of
CNW were changed, and results were characterized through SEM and EDS. Based on these
results, it was confirmed that the MoS2 interlayer is an innovative material that greatly
affects the initial growth of CNW and consequently causes variation in its morphological
characteristics. In addition, further studies have shown the possibility of application to
various nanostructure growth.
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